metal-organic compounds
(C7H20N2)[(UO2)2(SO4)3(H2O)]: an organically templated uranium sulfate with a novel layer topology
aDepartment of Chemistry, Haverford College, 370 Lancaster Avenue, Haverford, PA 19041, USA, and bChemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: dermot.ohare@chem.ox.ac.uk
The title compound, poly[N,N,N′,N′-tetramethylpropane-1,3-diaminium [aquatetraoxotri-μ3-sulfatodiuranate(VI)]], (C7H20N2)[(UO2)2(SO4)3(H2O)]n, contains two-dimensional [(UO2)2(SO4)3(H2O)]2− layers that are unprecedented in uranium chemistry. The layers in this compound are separated by C7H20N22+ cations, forming the basis of an extensive hydrogen-bonding network. An independent intralayer hydrogen-bonding network is also observed, involving water molecules bound directly to a uranium centre.
Comment
Hydrothermal actinide chemistry has been the focus of intense interest in recent years. Great structural diversity is observed in actinide sulfates (Doran et al., 2002; Norquist et al., 2002; Thomas et al., 2003), phosphates (Doran, Stuart et al., 2004; Burns et al., 2004), iodates (Bean et al., 2004), selenites (Almond et al., 2004), carbonates (Kubatko & Burns, 2004), molybdates (Krivovichev et al., 2005) and chromates (Sykora et al., 2004). These studies have led to the formation of a host of novel inorganic structures. Several strategies are employed for the formation of new structure types, including the use of alternate coordination polyhedra (Kubatko & Burns, 2004; Sykora et al., 2004), inclusion of organic components into the framework (Kim et al., 2003), systematic exploration of reaction conditions (Norquist et al., 2003) and use of varied organic (Doran, Norquist et al., 2004). The last approach is utilized in this study for the formation of an organically templated uranium sulfate with a novel layer topology. This compound, [C7H20N2][(UO2)2(SO4)3(H2O)], (I), is denoted USO-30 (uranium sulfate from Oxford).
Two unique uranium centres are present in USO-30. Both U1 and U2 are seven-coordinate (Fig. 1), in a pentagonal bipyramidal geometry (Table 1). Two short `uranyl' bonds to axial oxide ligands are observed for each uranium environment, with distances that range from 1.754 (5) to 1.770 (5) Å, which are close to the average reported value of 1.758 (3) Å (Burns et al., 1997). The O1—U1—O2 and O8—U2—O9 bond angles are close to 180°, with values of 179.4 (2) and 178.5 (2)°. Each of the five equatorial coordination sites around U1 is occupied by O atoms that are bonded to sulfur centres. Three of these O atoms, O5, O6 and O7, bridge to different [SO4] tetrahedra, while O3 and O4 bridge to the same sulfur centre, creating a shared edge between the [SO4] and [UO7] polyhedra. The result of this shared edge is an elongation of the U1—O3 and U1—O4 bond lengths [2.470 (5) and 2.441 (5) Å] with respect to the U1—O5, U1—O6 and U1—O7 lengths [2.333 (5)–2.373 (5) Å]. A contraction of the O3—U1—O4 bond angle, with respect to the other equatorial bond angles, is also observed. The O3—U1—O4 angle is 57.28 (16)°, while the other four Oeq—U1—Oeq bond angles range between 72.00 (16) and 78.96 (17)°. The equatorial coordination sites of the second unique uranium environment, U2, are occupied by four bridging O atoms, with distances ranging between 2.337 (5) and 2.367 (5) Å, and a bound water molecule, which exhibits a U—Owater distance of 2.522 (5) Å. The assignment of the bound water molecule was based on hydrogen-bonding interactions. Three distinct sulfur environments are observed in USO-30, each of which is at the centre of an [SO4] tetrahedron. Each sulfur centre is bound to one terminal O atom and three O atoms that bridge to uranium centres. The S—Obridging distances range between 1.461 (5) and 1.509 (5) Å, while the S—Oterminal distances range from 1.437 (6) to 1.440 (5) Å.
The presence of numerous shared O atoms, between [UO7] and [SO4] polyhedra, results in the formation of an inorganic structure that extends in two dimensions (Fig. 2). This layer topology is, to the best of our knowledge, unprecendented in uranium chemistry. Two distinct one-dimensional chains are observed, both of which contain a [UO2(SO4)3/ 3] backbone. This chain structure is well known in uranium chemistry (Brandeburg & Loopstra, 1973; Zalkin et al., 1978; Serezhkin et al., 1981; Doran et al., 2003). In each chain, three of the five equatorial coordination sites surrounding both U1 and U2 participate in chain construction. The other two equatorial sites contain O atoms that are not involved in chain propagation. The two non-backbone sites in the chain containing U1 are occupied by a single [SO4] tetrahedron, containing S1, which shares a common edge with the U1 [UO7] pentagonal bipyramid. The same coordination sites on the chain that contains U2 are occupied by one bound water molecule and one O atom that is part of the aforementioned S1 sulfate tetrahedron; the result is the formation of the layers shown in Fig. 2.
The bound water molecule on U2 acts as a hydrogen-bond donor in USO-30. The acceptors are O3 and O4, resulting in intralayer hydrogen bonding. The orientations of successive bound water molecules adopt an `up–down–up' motif. The interlayer spacing is occupied by the protonated . Hydrogen bonding details are listed in Table 2.
which also act as hydrogen-bond donors. The orientation of these cations is shown in Fig. 3Experimental
UO2(CH3CO2)2·2H2O (0.2767 g, 0.653 × 10−3 mol), H2SO4 (0.3394 g, 3.46 × 10−3 mol), N,N,N′N′-tetramethyl-1,3-propanediamine (0.1317 g, 1.01× 10−3 mol) and water (1.0557g, 58.7 × 10−3 mol) were placed in a 23 ml Teflon-lined autoclave. The autoclave was heated to 453 K for 24 h, and then slowly cooled to 297 K over an additional period of 24 h. The autoclave was opened in air and the products recovered by filtration. A yield of 87%, based on uranium, was observed. USO-30 was characterized using several techniques. Through the use of IR spectroscopy, bands from both the organic and the inorganic components of USO-30 were observed. A broad band centred at 3400 cm−1, corresponding to the symmetric stretch of the bound water, was present. Bands at 3154 and 1620 cm−1 correspond to the N—H stretching and bending modes, while C—H bands were observed at 1464 and 1482 cm−1. C—N stretching modes were observed around 1230 cm−1, while S—O and uranyl bands were observed at 1100, and 930 and 942 cm−1, respectively. Analysis found: N 2.87, C 8.69, H 2.15, S 9.87, U 48.13%; calculated: N 2.86, C 8.59, H 2.25, S 9.82, U 48.67%. The thermal stability of USO-30 was probed using thermogravimetric analysis. A 1.0% weight loss was observed between 443 and 503 K, which corresponds to loss of the bound water molecules (calculated 1.8%). Template decomposition begins at 573 K, and is soon followed by the breakdown of the inorganic layers. The material calcines to UO2 by 1273 K, as determined using powder X-ray diffraction, with a total weight loss of 43.4% (calculated 44.8%). Structural analysis was conducted at 150 K.
Crystal data
|
Refinement
The C- and N-bound H atoms were positioned in idealized locations. The water H atoms were positioned geometrically to make plausible H⋯O hydrogen bonds. All H atoms were refined as riding on their carrier atoms [C—H, N—H and O—H = 1.00 Å and Uiso(H) = 1.2Ueq (carrier atom)]. The highest peak is 1.30 Å from U1 and the deepest hole is 0.99 Å from U1.
Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536805009670/cv6472sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805009670/cv6472Isup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ATOMS (Dowty, 2000); software used to prepare material for publication: CRYSTALS.(C7H20N2)[U2O4(SO4)3(H2O)] | Z = 2 |
Mr = 978.51 | F(000) = 892 |
Triclinic, P1 | Dx = 2.997 Mg m−3 |
Hall symbol: -P 1 | Melting point: not measured K |
a = 6.7861 (1) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.5143 (1) Å | Cell parameters from 4635 reflections |
c = 19.0442 (3) Å | θ = 5–27° |
α = 88.6230 (9)° | µ = 15.29 mm−1 |
β = 81.6364 (8)° | T = 150 K |
γ = 84.8577 (6)° | Block, yellow |
V = 1084.20 (3) Å3 | 0.35 × 0.18 × 0.18 mm |
Nonius Kappa CCD diffractometer | 4422 reflections with I > 3u(I) |
Graphite monochromator | Rint = 0.03 |
ω scans | θmax = 27.5°, θmin = 5.2° |
Absorption correction: multi-scan (Denzo/Scalepack; Otwinowski & Minor, 1997) | h = −8→8 |
Tmin = 0.053, Tmax = 0.064 | k = −11→11 |
9107 measured reflections | l = −24→24 |
4907 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.037 | Chebychev polynomial (Watkin, 1994, Prince, 1982) with five parameters 61.5, 99.0, 63.5, 27.7, 8.43 |
wR(F2) = 0.097 | (Δ/σ)max = 0.002 |
S = 0.91 | Δρmax = 3.72 e Å−3 |
4422 reflections | Δρmin = −3.36 e Å−3 |
281 parameters | Extinction correction: Larson 1970 Crystallographic Computing eq 22 |
0 restraints | Extinction coefficient: 70 (3) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
U1 | 1.16861 (3) | 0.66755 (3) | 0.601618 (11) | 0.0075 | |
U2 | 0.77237 (3) | 0.56677 (3) | 0.884025 (11) | 0.0086 | |
S1 | 1.0637 (2) | 0.81558 (19) | 0.74968 (8) | 0.0110 | |
S2 | 0.6892 (2) | 0.61770 (18) | 0.53520 (8) | 0.0086 | |
S3 | 0.2551 (2) | 0.61767 (18) | 0.93931 (8) | 0.0083 | |
O1 | 1.2072 (7) | 0.8486 (6) | 0.5577 (3) | 0.0138 | |
O2 | 1.1276 (7) | 0.4873 (6) | 0.6454 (3) | 0.0140 | |
O3 | 1.2667 (7) | 0.7596 (6) | 0.7125 (3) | 0.0154 | |
O4 | 0.9322 (7) | 0.8080 (6) | 0.6927 (2) | 0.0112 | |
O5 | 0.8521 (8) | 0.6785 (6) | 0.5667 (3) | 0.0152 | |
O6 | 1.2441 (7) | 0.5466 (5) | 0.4896 (2) | 0.0120 | |
O7 | 1.5188 (7) | 0.6041 (6) | 0.5931 (3) | 0.0151 | |
O8 | 0.7119 (7) | 0.7377 (6) | 0.9362 (3) | 0.0150 | |
O9 | 0.8266 (8) | 0.3941 (6) | 0.8324 (3) | 0.0163 | |
O10 | 0.6138 (8) | 0.6932 (8) | 0.7824 (3) | 0.0286 | |
O11 | 1.0037 (8) | 0.7000 (7) | 0.8048 (3) | 0.0226 | |
O12 | 1.0821 (7) | 0.5345 (6) | 0.9255 (3) | 0.0123 | |
O13 | 0.7285 (7) | 0.3965 (6) | 0.9841 (3) | 0.0132 | |
O14 | 0.4323 (7) | 0.5273 (6) | 0.8989 (3) | 0.0140 | |
O15 | 1.0571 (9) | 0.9719 (7) | 0.7773 (3) | 0.0256 | |
O16 | 0.6347 (8) | 0.7192 (6) | 0.4784 (3) | 0.0156 | |
O17 | 0.2416 (8) | 0.7810 (6) | 0.9177 (3) | 0.0184 | |
N1 | 0.6377 (10) | 0.1872 (7) | 0.6186 (3) | 0.0153 | |
N2 | 0.3177 (10) | 0.0966 (7) | 0.8688 (3) | 0.0153 | |
C1 | 0.4853 (12) | 0.2416 (9) | 0.6811 (4) | 0.0184 | |
C2 | 0.5008 (12) | 0.1413 (9) | 0.7472 (4) | 0.0186 | |
C3 | 0.3397 (12) | 0.2099 (8) | 0.8067 (4) | 0.0174 | |
C4 | 0.6097 (13) | 0.0232 (9) | 0.5970 (4) | 0.0222 | |
C5 | 0.8490 (13) | 0.1985 (12) | 0.6284 (5) | 0.0301 | |
C6 | 0.1330 (13) | 0.1472 (9) | 0.9198 (4) | 0.0228 | |
C7 | 0.4965 (12) | 0.0786 (10) | 0.9058 (4) | 0.0212 | |
H1 | 0.4760 | 0.6785 | 0.7723 | 0.0352* | |
H2 | 0.7096 | 0.7609 | 0.7537 | 0.0352* | |
H3 | 0.3474 | 0.2382 | 0.6680 | 0.0212* | |
H4 | 0.5050 | 0.3533 | 0.6921 | 0.0212* | |
H5 | 0.4766 | 0.0294 | 0.7378 | 0.0223* | |
H6 | 0.6362 | 0.1432 | 0.7614 | 0.0223* | |
H7 | 0.2088 | 0.2290 | 0.7881 | 0.0215* | |
H8 | 0.3798 | 0.3120 | 0.8226 | 0.0215* | |
H9 | 0.4665 | 0.0162 | 0.5905 | 0.0269* | |
H10 | 0.6981 | −0.0046 | 0.5517 | 0.0269* | |
H11 | 0.6435 | −0.0538 | 0.6352 | 0.0269* | |
H12 | 0.8850 | 0.1236 | 0.6667 | 0.0381* | |
H13 | 0.9396 | 0.1728 | 0.5832 | 0.0381* | |
H14 | 0.8662 | 0.3091 | 0.6425 | 0.0381* | |
H15 | 0.0122 | 0.1489 | 0.8950 | 0.0262* | |
H16 | 0.1184 | 0.0717 | 0.9610 | 0.0262* | |
H17 | 0.1439 | 0.2554 | 0.9376 | 0.0262* | |
H18 | 0.4747 | 0.0019 | 0.9463 | 0.0264* | |
H19 | 0.6164 | 0.0384 | 0.8719 | 0.0264* | |
H20 | 0.5204 | 0.1831 | 0.9244 | 0.0264* | |
H21 | 0.6123 | 0.2621 | 0.5788 | 0.0183* | |
H22 | 0.3047 | −0.0101 | 0.8496 | 0.0183* |
U11 | U22 | U33 | U12 | U13 | U23 | |
U1 | 0.00769 (15) | 0.00765 (15) | 0.00742 (15) | −0.00129 (9) | −0.00130 (9) | −0.00145 (9) |
U2 | 0.00748 (15) | 0.01087 (16) | 0.00785 (15) | −0.00169 (9) | −0.00139 (9) | −0.00041 (9) |
S1 | 0.0126 (7) | 0.0139 (8) | 0.0071 (7) | −0.0034 (6) | −0.0019 (5) | −0.0009 (5) |
S2 | 0.0080 (7) | 0.0100 (7) | 0.0084 (7) | −0.0009 (5) | −0.0021 (5) | −0.0036 (5) |
S3 | 0.0079 (7) | 0.0080 (7) | 0.0094 (7) | −0.0023 (5) | −0.0016 (5) | 0.0021 (5) |
O1 | 0.015 (2) | 0.013 (2) | 0.013 (2) | −0.0009 (18) | −0.0012 (18) | 0.0000 (18) |
O2 | 0.017 (2) | 0.009 (2) | 0.016 (2) | 0.0013 (18) | −0.0018 (19) | −0.0005 (17) |
O3 | 0.012 (2) | 0.022 (3) | 0.013 (2) | −0.0031 (19) | −0.0032 (18) | −0.0012 (19) |
O4 | 0.011 (2) | 0.016 (2) | 0.007 (2) | 0.0000 (17) | −0.0021 (16) | −0.0011 (17) |
O5 | 0.014 (2) | 0.017 (2) | 0.016 (2) | −0.0009 (19) | −0.0063 (19) | −0.0076 (19) |
O6 | 0.016 (2) | 0.007 (2) | 0.013 (2) | −0.0008 (17) | −0.0008 (18) | −0.0040 (17) |
O7 | 0.010 (2) | 0.021 (3) | 0.014 (2) | −0.0032 (19) | 0.0002 (18) | 0.0008 (19) |
O8 | 0.016 (2) | 0.010 (2) | 0.019 (2) | 0.0016 (18) | −0.0041 (19) | −0.0096 (18) |
O9 | 0.017 (2) | 0.017 (2) | 0.014 (2) | 0.0063 (19) | 0.0000 (18) | −0.0118 (19) |
O10 | 0.018 (3) | 0.047 (4) | 0.023 (3) | −0.011 (3) | −0.010 (2) | 0.020 (3) |
O11 | 0.017 (3) | 0.038 (3) | 0.014 (2) | −0.011 (2) | −0.004 (2) | 0.015 (2) |
O12 | 0.009 (2) | 0.015 (2) | 0.014 (2) | −0.0035 (17) | −0.0039 (18) | 0.0022 (18) |
O13 | 0.016 (2) | 0.014 (2) | 0.011 (2) | −0.0037 (18) | −0.0029 (18) | 0.0007 (17) |
O14 | 0.010 (2) | 0.016 (2) | 0.016 (2) | −0.0003 (18) | −0.0014 (18) | −0.0045 (19) |
O15 | 0.036 (3) | 0.019 (3) | 0.023 (3) | 0.001 (2) | −0.010 (2) | −0.011 (2) |
O16 | 0.017 (2) | 0.016 (2) | 0.013 (2) | −0.0001 (19) | −0.0029 (19) | −0.0012 (18) |
O17 | 0.025 (3) | 0.009 (2) | 0.023 (3) | −0.0035 (19) | −0.009 (2) | 0.0064 (19) |
N1 | 0.018 (3) | 0.015 (3) | 0.013 (3) | −0.001 (2) | −0.004 (2) | 0.002 (2) |
N2 | 0.024 (3) | 0.011 (3) | 0.011 (3) | −0.002 (2) | −0.004 (2) | −0.002 (2) |
C1 | 0.027 (4) | 0.017 (4) | 0.009 (3) | 0.005 (3) | −0.002 (3) | 0.004 (3) |
C2 | 0.025 (4) | 0.015 (3) | 0.014 (3) | 0.003 (3) | −0.001 (3) | 0.004 (3) |
C3 | 0.027 (4) | 0.009 (3) | 0.018 (3) | −0.001 (3) | −0.008 (3) | −0.003 (2) |
C4 | 0.035 (4) | 0.016 (4) | 0.016 (3) | 0.001 (3) | −0.004 (3) | −0.003 (3) |
C5 | 0.024 (4) | 0.036 (5) | 0.034 (5) | −0.012 (4) | −0.011 (3) | 0.015 (4) |
C6 | 0.029 (4) | 0.016 (4) | 0.020 (4) | 0.001 (3) | 0.004 (3) | −0.004 (3) |
C7 | 0.025 (4) | 0.020 (4) | 0.020 (4) | −0.004 (3) | −0.008 (3) | 0.001 (3) |
U1—O1 | 1.758 (5) | N1—C1 | 1.512 (10) |
U1—O2 | 1.754 (5) | N1—C4 | 1.501 (10) |
U1—O3 | 2.470 (5) | N1—C5 | 1.485 (10) |
U1—O4 | 2.441 (5) | N1—H21 | 1.001 |
U1—O5 | 2.333 (5) | N2—C3 | 1.507 (9) |
U1—O6 | 2.360 (5) | N2—C6 | 1.507 (10) |
U1—O7 | 2.373 (5) | N2—C7 | 1.484 (10) |
U2—O8 | 1.765 (5) | N2—H22 | 1.003 |
U2—O9 | 1.770 (5) | C1—C2 | 1.515 (9) |
U2—O10 | 2.522 (5) | C1—H3 | 1.006 |
U2—O11 | 2.361 (5) | C1—H4 | 1.003 |
U2—O12 | 2.342 (5) | C2—C3 | 1.541 (10) |
U2—O13 | 2.367 (5) | C2—H5 | 1.006 |
U2—O14 | 2.337 (5) | C2—H6 | 0.997 |
S1—O3 | 1.496 (5) | C3—H7 | 1.001 |
S1—O4 | 1.509 (5) | C3—H8 | 1.000 |
S1—O11 | 1.461 (5) | C4—H9 | 1.004 |
S1—O15 | 1.437 (6) | C4—H10 | 0.997 |
S2—O5 | 1.469 (5) | C4—H11 | 1.005 |
S2—O6i | 1.497 (5) | C5—H12 | 1.000 |
S2—O7ii | 1.487 (5) | C5—H13 | 0.999 |
S2—O16 | 1.438 (5) | C5—H14 | 1.006 |
S3—O12ii | 1.482 (5) | C6—H15 | 1.002 |
S3—O13iii | 1.480 (5) | C6—H16 | 1.001 |
S3—O14 | 1.492 (5) | C6—H17 | 1.001 |
S3—O17 | 1.440 (5) | C7—H18 | 1.002 |
O10—H1 | 1.001 | C7—H19 | 1.002 |
O10—H2 | 1.001 | C7—H20 | 1.000 |
O1—U1—O2 | 179.4 (2) | U1—O6—S2i | 134.6 (3) |
O1—U1—O3 | 92.8 (2) | U1—O7—S2iv | 133.7 (3) |
O2—U1—O3 | 87.4 (2) | U2—O10—H1 | 125.4 |
O1—U1—O4 | 88.92 (19) | U2—O10—H2 | 109.6 |
O2—U1—O4 | 90.76 (19) | H1—O10—H2 | 125.0 |
O3—U1—O4 | 57.28 (16) | U2—O11—S1 | 155.0 (3) |
O1—U1—O5 | 89.3 (2) | U2—O12—S3iv | 144.1 (3) |
O2—U1—O5 | 90.2 (2) | U2—O13—S3iii | 143.7 (3) |
O3—U1—O5 | 129.16 (17) | U2—O14—S3 | 131.3 (3) |
O4—U1—O5 | 72.00 (16) | C1—N1—C4 | 111.5 (6) |
O1—U1—O6 | 87.57 (19) | C1—N1—C5 | 114.8 (6) |
O2—U1—O6 | 92.5 (2) | C4—N1—C5 | 110.0 (7) |
O3—U1—O6 | 151.87 (16) | C1—N1—H21 | 105.3 |
O4—U1—O6 | 150.78 (16) | C4—N1—H21 | 108.9 |
O5—U1—O6 | 78.96 (17) | C5—N1—H21 | 105.9 |
O1—U1—O7 | 90.7 (2) | C3—N2—C6 | 110.0 (6) |
O2—U1—O7 | 89.9 (2) | C3—N2—C7 | 112.9 (6) |
O3—U1—O7 | 73.82 (17) | C6—N2—C7 | 110.7 (6) |
O4—U1—O7 | 131.00 (16) | C3—N2—H22 | 107.4 |
O5—U1—O7 | 156.99 (17) | C6—N2—H22 | 109.7 |
O6—U1—O7 | 78.05 (17) | C7—N2—H22 | 106.1 |
O8—U2—O9 | 178.5 (2) | N1—C1—C2 | 113.0 (6) |
O8—U2—O10 | 92.3 (2) | N1—C1—H3 | 108.8 |
O9—U2—O10 | 87.5 (2) | C2—C1—H3 | 108.7 |
O8—U2—O11 | 90.5 (2) | N1—C1—H4 | 108.8 |
O9—U2—O11 | 90.7 (2) | C2—C1—H4 | 108.6 |
O10—U2—O11 | 68.36 (18) | H3—C1—H4 | 108.8 |
O8—U2—O12 | 88.8 (2) | C1—C2—C3 | 107.7 (6) |
O9—U2—O12 | 92.3 (2) | C1—C2—H5 | 109.8 |
O10—U2—O12 | 140.21 (17) | C3—C2—H5 | 109.7 |
O11—U2—O12 | 71.85 (17) | C1—C2—H6 | 110.1 |
O8—U2—O13 | 92.8 (2) | C3—C2—H6 | 110.2 |
O9—U2—O13 | 86.6 (2) | H5—C2—H6 | 109.3 |
O10—U2—O13 | 145.43 (17) | N2—C3—C2 | 110.2 (6) |
O11—U2—O13 | 145.69 (17) | N2—C3—H7 | 109.3 |
O12—U2—O13 | 74.09 (16) | C2—C3—H7 | 109.4 |
O8—U2—O14 | 88.6 (2) | N2—C3—H8 | 109.3 |
O9—U2—O14 | 90.0 (2) | C2—C3—H8 | 109.2 |
O10—U2—O14 | 70.02 (18) | H7—C3—H8 | 109.3 |
O11—U2—O14 | 138.30 (18) | N1—C4—H9 | 109.7 |
O12—U2—O14 | 149.75 (17) | N1—C4—H10 | 110.2 |
O13—U2—O14 | 75.94 (17) | H9—C4—H10 | 109.3 |
O3—S1—O4 | 103.1 (3) | N1—C4—H11 | 109.5 |
O3—S1—O11 | 108.2 (3) | H9—C4—H11 | 108.7 |
O4—S1—O11 | 107.9 (3) | H10—C4—H11 | 109.3 |
O3—S1—O15 | 112.4 (3) | N1—C5—H12 | 109.8 |
O4—S1—O15 | 112.2 (3) | N1—C5—H13 | 110.2 |
O11—S1—O15 | 112.5 (4) | H12—C5—H13 | 109.6 |
O5—S2—O6i | 108.2 (3) | N1—C5—H14 | 109.3 |
O5—S2—O7ii | 107.4 (3) | H12—C5—H14 | 108.9 |
O6i—S2—O7ii | 106.3 (3) | H13—C5—H14 | 109.1 |
O5—S2—O16 | 110.8 (3) | N2—C6—H15 | 109.6 |
O6i—S2—O16 | 111.9 (3) | N2—C6—H16 | 109.9 |
O7ii—S2—O16 | 112.0 (3) | H15—C6—H16 | 109.2 |
O12ii—S3—O13iii | 108.6 (3) | N2—C6—H17 | 109.6 |
O12ii—S3—O14 | 104.6 (3) | H15—C6—H17 | 109.2 |
O13iii—S3—O14 | 108.5 (3) | H16—C6—H17 | 109.3 |
O12ii—S3—O17 | 113.1 (3) | N2—C7—H18 | 109.8 |
O13iii—S3—O17 | 110.3 (3) | N2—C7—H19 | 109.8 |
O14—S3—O17 | 111.5 (3) | H18—C7—H19 | 109.1 |
U1—O3—S1 | 98.8 (2) | N2—C7—H20 | 109.6 |
U1—O4—S1 | 99.7 (2) | H18—C7—H20 | 109.3 |
U1—O5—S2 | 155.4 (3) | H19—C7—H20 | 109.3 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x−1, y, z; (iii) −x+1, −y+1, −z+2; (iv) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H1···O3ii | 1.00 | 2.011 | 2.877 (7) | 143 |
O10—H2···O4 | 1.00 | 1.836 | 2.788 (7) | 158 |
N1—H21···O16v | 1.00 | 2.121 | 2.850 (8) | 128 |
N2—H22···O15vi | 1.00 | 2.339 | 2.935 (8) | 117 |
N2—H22···O17vii | 1.00 | 2.212 | 2.889 (8) | 123 |
Symmetry codes: (ii) x−1, y, z; (v) −x+1, −y+1, −z+1; (vi) x−1, y−1, z; (vii) x, y−1, z. |
Acknowledgements
The authors thank the Engineering and Physical Sciences Research Council (EPSRC) for funding.
References
Almond, P. M., Sykora, R. E., Skanthakumar, S., Soderholm, L. & Albrecht-Schmitt, T. E. (2004). Inorg. Chem. 43, 958–963. Final page number? Google Scholar
Bean, A. C., Scott, B. L., Albrecht-Schmitt, T. E. & Runde, W. (2004). J. Solid State Chem. 117, 1346–1354. Web of Science CrossRef Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Brandeburg, N. P. & Loopstra, B. O. (1973). Cryst. Struct. Commun. 2, 243–246. Google Scholar
Burns, P. C., Alexopoulos, C. M., Hotchkiss, P. J. & Locock, A. J. (2004). Inorg. Chem. 43, 1816–1818. Web of Science CrossRef PubMed CAS Google Scholar
Burns, P. C., Ewing, R. C. & Hawthorne, F. C. (1997). Can. Mineral. 35, 1551–1570. CAS Google Scholar
Doran, M. B., Norquist, A. J. & O'Hare, D. (2002). Chem. Commun. pp. 2946–2947. Web of Science CSD CrossRef Google Scholar
Doran, M. B., Norquist, A. J. & O'Hare, D. (2003). Acta Cryst. E59, m373–m375. Web of Science CSD CrossRef IUCr Journals Google Scholar
Doran, M. B., Norquist, A. J., Stuart, C. L. & O'Hare, D. (2004). Acta Cryst. E60, m996–m998. Web of Science CSD CrossRef IUCr Journals Google Scholar
Doran, M. B., Stuart, C. L., Norquist, A. J. & O'Hare, D. (2004). Chem. Mater. 16, 565–566. Web of Science CSD CrossRef CAS Google Scholar
Dowty, E. (2000). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsprot, TN 37663, USA. Google Scholar
Kim, J. Y., Norquist, A. J. & O'Hare, D. (2003). J. Am. Chem. Soc. 125, 12688–12689. Web of Science CSD CrossRef PubMed CAS Google Scholar
Krivovichev, S. V., Cahill, C. L., Nazarchuk, E. V., Burns, P. C., Armbruster, T. & Depmeier, W. (2005). Microporous Mesoporous Mater. 78, 209–215. Web of Science CrossRef CAS Google Scholar
Kubatko, K-A. H. & Burns, P. C. (2004). Can. Mineral. 42, 997–1003. CAS Google Scholar
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard. Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Norquist, A. J., Doran, M. B., Thomas, P. M. & O'Hare, D. (2003). Inorg. Chem. 42, 5949–5953. Web of Science CSD CrossRef PubMed CAS Google Scholar
Norquist, A. J., Thomas, P. M., Doran, M. B. & O'Hare, D. (2002). Chem. Mater. 14, 5179–5184. Web of Science CSD CrossRef CAS Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag. Google Scholar
Serezhkin, V. N., Soldatkina, M. A. & Efremov, V. A. (1981). J. Struct. Chem. 22, 451–454. CrossRef Web of Science Google Scholar
Sheldrick, G. M. (1985). SHELXS86. University of Göttingen, Germany. Google Scholar
Sykora, R. E., McDaniel, S. M. & Albrecht-Schmitt, T. E. (2004). J. Solid State Chem. 177, 1431–1436. Web of Science CrossRef CAS Google Scholar
Thomas, P. M., Norquist, A. J., Doran, M. B. & O'Hare, D. (2003). J. Mater. Chem. 13, 88–92. Web of Science CSD CrossRef CAS Google Scholar
Watkin D. J. (1994). Acta Cryst. A50, 411–437. Google Scholar
Zalkin, A., Rube, H. & Templeton, D. H. (1978). Inorg. Chem. 17, 3701–3702. CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.