organic compounds
Powder diffraction study of 1,2:3,4-dibenzanthracene
aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, England
*Correspondence e-mail: alastair.florence@strath.ac.uk
The 22H14, was solved by simulated annealing from laboratory X-ray powder diffraction data collected at room temperature to 1.8 Å resolution. Subsequent yielded an Rwp value of 0.036. The molecules crystallize in P21 with two independent molecules in the which pack in a stacked arrangement along the b axis.
of 1,2:3,4-dibenzanthracene, CComment
The title compound, (I), was used as supplied and its was solved by simulated annealing using laboratory X-ray powder diffraction data (Fig. 1). The compound crystallizes in P21 with two independent molecules in the (Fig. 2).
The crystal packing adopts a γ-type structure, with molecules stacked in the direction of the b axis (Desiraju & Gavezzotti, 1989). The distance between the centres of mass of neighbouring molecules within each stack (Rn) equals the shortest cell axis, 5.062 Å, and the perpendicular distance between the molecular planes within each stack (Rip) is 3.740 Å, with an offset angle α = 43° (Fig. 3).
Experimental
1,2:3,4-Dibenzanthracene (Sigma–Aldrich) was lightly ground in a mortar, loaded into a 0.7 mm borosilicate glass capillary and mounted on the diffractometer. Data were collected from a sample in a rotating 0.7 mm borosilicate glass capillary using a variable count time scheme (Hill & Madsen, 2002).
Crystal data
|
Data collection
|
Refinement
|
The diffraction pattern indexed to a monoclinic cell [F(25) = 210.1, M(25) = 71.8; DICVOL-91 (Boultif & Louer, 1991)], and P21 was assigned from volume considerations and a statistical consideration of the The data set was background-subtracted and truncated to 2θ = 51.9° for Pawley fitting (Pawley, 1981; χPawley2 = 3.96), and the structure was solved using the simulated annealing (SA) global optimization procedure of David et al. (1998), as implemented in the DASH computer program (David et al., 2001). The SA structure solution involved the optimization of two independent fragments in the totalling 12 The best SA solution had a favourable χSA2/χPawley2 ratio of 4.53 and a chemically reasonable packing arrangement, and exhibited no significant misfit to the data. The solved structure was then refined with the full data set (2θ 4–69.8°) using a restrained (Rietveld, 1969), as implemented in TOPAS (Coelho, 2003), with the value of Rwp falling from 0.146 to 0.036 during the The y coordinate of atom C1 was fixed and all remaining atomic positions (including H atoms) were refined, subject to a series of restraints on bond lengths, bond angles and planarity. Inclusion of a March–Dollase (Dollase, 1986) correction indicated the presence of mild (1.16) along the [010] direction, and a spherical harmonics correction of intensities for was applied in the final The observed and calculated diffraction patterns for the refined are shown in Fig. 1.
Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); cell TOPAS (Coelho, 2003); data reduction: DASH (David et al., 2001); structure solution: DASH; structure TOPAS; molecular graphics: PLATON (Spek, 2003); publication software: enCIFer (Allen et al., 2004).
Supporting information
https://doi.org/10.1107/S1600536805012171/lh6405sup1.cif
contains datablocks global, I. DOI:Rietveld powder data: contains datablock I. DOI: https://doi.org/10.1107/S1600536805012171/lh6405Isup2.rtv
Data collection: D8-Advance Control Software; cell
Please provide missing details; data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS (Coelho, 2003); molecular graphics: Please provide missing details; software used to prepare material for publication: Please provide missing details.C22H14 | F(000) = 584 |
Mr = 278.33 | Dx = 1.311 Mg m−3 |
Monoclinic, P21 | Melting point: 500 K |
Hall symbol: P 2yb | Cu Kα1 radiation, λ = 1.54056 Å |
a = 18.2966 (5) Å | µ = 0.56 mm−1 |
b = 5.06225 (10) Å | T = 295 K |
c = 15.7245 (4) Å | Particle morphology: visual estimate, flat plates |
β = 104.5574 (15)° | pale-yellow |
V = 1409.68 (6) Å3 | cylinder, 10 × 0.7 mm |
Z = 4 | Specimen preparation: Prepared at 295 K |
Bruker D8 Advance diffractometer | Data collection mode: transmission |
Radiation source: sealed X-ray tube, Bruker D8 | Scan method: step |
Primary focussing, Ge 111 monochromator | 2θmin = 4°, 2θmax = 69.8°, 2θstep = 0.014° |
Specimen mounting: 0.7 mm borosilicate capillary |
Least-squares matrix: selected elements only | 214 restraints |
Rp = 0.036 | 1 constraint |
Rwp = 0.036 | Only H-atom coordinates refined |
Rexp = 0.014 | Weighting scheme based on measured s.u.'s 1/σ(Yobs)2 |
4544 data points | (Δ/σ)max = 0.011 |
Profile function: Fundamental parameters with axial divergence correction | Background function: Chebyshev polynomial |
241 parameters | Preferred orientation correction: A spherical harmonics-based preferred orientation correction was applied with TOPAS during the Rietveld refinement. |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
x | y | z | Uiso*/Ueq | ||
C1 | 0.305 (3) | −0.06763 | 0.781 (5) | 0.0465 (10)* | |
C2 | 0.235 (3) | −0.011 (17) | 0.724 (3) | 0.0465 (10)* | |
C3 | 0.283 (3) | 0.274 (16) | 0.880 (3) | 0.0465 (10)* | |
C4 | 0.331 (2) | 0.085 (17) | 0.857 (3) | 0.0465 (10)* | |
C5 | 0.211 (3) | 0.323 (15) | 0.824 (3) | 0.0465 (10)* | |
C6 | 0.187 (3) | 0.179 (16) | 0.746 (4) | 0.0465 (10)* | |
C7 | 0.115 (3) | 0.228 (15) | 0.690 (3) | 0.0465 (10)* | |
C8 | 0.163 (3) | 0.513 (13) | 0.847 (3) | 0.0465 (10)* | |
C9 | 0.092 (3) | 0.562 (14) | 0.791 (4) | 0.0465 (10)* | |
C10 | 0.067 (3) | 0.419 (14) | 0.712 (3) | 0.0465 (10)* | |
C11 | −0.052 (3) | 0.658 (16) | 0.679 (4) | 0.0465 (10)* | |
C12 | −0.005 (3) | 0.467 (17) | 0.656 (4) | 0.0465 (10)* | |
C13 | −0.029 (3) | 0.323 (16) | 0.578 (4) | 0.0465 (10)* | |
C14 | −0.100 (3) | 0.372 (16) | 0.522 (3) | 0.0465 (10)* | |
C15 | −0.148 (3) | 0.561 (16) | 0.545 (4) | 0.0465 (10)* | |
C16 | −0.123 (3) | 0.706 (16) | 0.622 (4) | 0.0465 (10)* | |
C17 | 0.044 (3) | 0.752 (17) | 0.813 (4) | 0.0465 (10)* | |
C18 | −0.028 (3) | 0.801 (14) | 0.757 (4) | 0.0465 (10)* | |
C19 | −0.075 (3) | 0.991 (18) | 0.780 (4) | 0.0465 (10)* | |
C20 | −0.050 (3) | 1.136 (17) | 0.858 (4) | 0.0465 (10)* | |
C21 | 0.021 (3) | 1.084 (17) | 0.915 (3) | 0.0465 (10)* | |
C22 | 0.068 (3) | 0.896 (16) | 0.891 (4) | 0.0465 (10)* | |
H23 | 0.34 (3) | −0.19 (11) | 0.76 (3) | 0.0760* | |
H24 | 0.22 (3) | −0.11 (9) | 0.67 (3) | 0.0760* | |
H25 | 0.30 (3) | 0.37 (11) | 0.93 (2) | 0.0760* | |
H26 | 0.38 (2) | 0.05 (10) | 0.90 (3) | 0.0760* | |
H27 | 0.10 (3) | 0.13 (10) | 0.64 (3) | 0.0760* | |
H28 | 0.18 (2) | 0.61 (12) | 0.90 (3) | 0.0760* | |
H29 | 0.00 (2) | 0.20 (11) | 0.56 (3) | 0.0760* | |
H30 | −0.12 (2) | 0.28 (9) | 0.47 (3) | 0.0760* | |
H31 | −0.196 (17) | 0.59 (8) | 0.51 (3) | 0.0760* | |
H32 | −0.16 (2) | 0.83 (9) | 0.64 (3) | 0.0760* | |
H33 | −0.12 (2) | 1.03 (12) | 0.74 (3) | 0.0760* | |
H34 | −0.08 (2) | 1.26 (10) | 0.87 (3) | 0.0760* | |
H35 | 0.04 (3) | 1.18 (12) | 0.97 (3) | 0.0760* | |
H36 | 0.12 (2) | 0.86 (9) | 0.93 (3) | 0.0760* | |
C1A | 0.393 (3) | 0.174 (16) | 0.616 (3) | 0.0465 (10)* | |
C2A | 0.421 (3) | 0.133 (15) | 0.542 (4) | 0.0465 (10)* | |
C3A | 0.308 (3) | 0.511 (18) | 0.538 (4) | 0.0465 (10)* | |
C4A | 0.337 (3) | 0.364 (18) | 0.614 (3) | 0.0465 (10)* | |
C5A | 0.335 (3) | 0.470 (15) | 0.463 (3) | 0.0465 (10)* | |
C6A | 0.391 (3) | 0.281 (15) | 0.465 (4) | 0.0465 (10)* | |
C7A | 0.419 (3) | 0.240 (17) | 0.390 (5) | 0.0465 (10)* | |
C8A | 0.306 (3) | 0.618 (17) | 0.387 (4) | 0.0465 (10)* | |
C9A | 0.333 (3) | 0.577 (15) | 0.312 (4) | 0.0465 (10)* | |
C10A | 0.389 (3) | 0.388 (17) | 0.313 (3) | 0.0465 (10)* | |
C11A | 0.386 (3) | 0.498 (19) | 0.161 (4) | 0.0465 (10)* | |
C12A | 0.416 (3) | 0.349 (16) | 0.237 (4) | 0.0465 (10)* | |
C13A | 0.472 (3) | 0.159 (16) | 0.237 (3) | 0.0465 (10)* | |
C14A | 0.499 (3) | 0.122 (17) | 0.163 (4) | 0.0465 (10)* | |
C15A | 0.469 (3) | 0.271 (16) | 0.087 (4) | 0.0465 (10)* | |
C16A | 0.413 (3) | 0.460 (15) | 0.086 (4) | 0.0465 (10)* | |
C17A | 0.303 (3) | 0.726 (16) | 0.236 (3) | 0.0465 (10)* | |
C18A | 0.330 (3) | 0.687 (15) | 0.161 (4) | 0.0465 (10)* | |
C19A | 0.300 (3) | 0.838 (16) | 0.085 (4) | 0.0465 (10)* | |
C20A | 0.244 (3) | 1.027 (17) | 0.086 (3) | 0.0465 (10)* | |
C21A | 0.217 (3) | 1.063 (17) | 0.161 (5) | 0.0465 (10)* | |
C22A | 0.247 (3) | 0.91 (2) | 0.236 (4) | 0.0465 (10)* | |
H23A | 0.41 (2) | 0.08 (10) | 0.67 (2) | 0.0760* | |
H24A | 0.46 (3) | 0.01 (11) | 0.54 (3) | 0.0760* | |
H25A | 0.27 (2) | 0.64 (9) | 0.54 (3) | 0.0760* | |
H26A | 0.32 (2) | 0.39 (11) | 0.67 (3) | 0.0760* | |
H27A | 0.46 (2) | 0.11 (10) | 0.39 (3) | 0.0760* | |
H28A | 0.27 (2) | 0.75 (11) | 0.39 (3) | 0.0760* | |
H29A | 0.49 (2) | 0.06 (9) | 0.29 (2) | 0.0760* | |
H30A | 0.54 (2) | −0.01 (10) | 0.16 (3) | 0.0760* | |
H31A | 0.49 (2) | 0.24 (11) | 0.04 (3) | 0.0760* | |
H32A | 0.39 (3) | 0.56 (10) | 0.04 (2) | 0.0760* | |
H33A | 0.32 (2) | 0.81 (10) | 0.03 (3) | 0.0760* | |
H34A | 0.22 (2) | 1.13 (9) | 0.03 (3) | 0.0760* | |
H35A | 0.18 (2) | 1.19 (11) | 0.16 (3) | 0.0760* | |
H36A | 0.23 (2) | 0.94 (12) | 0.29 (3) | 0.0760* |
C1—C2 | 1.40 (9) | C1A—C2A | 1.40 (8) |
C1—C4 | 1.40 (9) | C1A—C4A | 1.40 (10) |
C2—C6 | 1.40 (10) | C2A—C6A | 1.41 (9) |
C3—C4 | 1.41 (9) | C3A—C4A | 1.39 (9) |
C3—C5 | 1.41 (8) | C3A—C5A | 1.40 (8) |
C5—C6 | 1.40 (9) | C5A—C6A | 1.40 (9) |
C5—C8 | 1.41 (9) | C5A—C8A | 1.40 (9) |
C6—C7 | 1.41 (8) | C6A—C7A | 1.41 (9) |
C7—C10 | 1.41 (9) | C7A—C10A | 1.41 (10) |
C8—C9 | 1.41 (8) | C8A—C9A | 1.40 (9) |
C9—C10 | 1.41 (8) | C9A—C10A | 1.40 (10) |
C9—C17 | 1.39 (10) | C9A—C17A | 1.40 (9) |
C10—C12 | 1.40 (8) | C10A—C12A | 1.42 (7) |
C11—C12 | 1.41 (10) | C11A—C12A | 1.40 (10) |
C11—C16 | 1.40 (8) | C11A—C16A | 1.40 (9) |
C11—C18 | 1.40 (9) | C11A—C18A | 1.40 (10) |
C12—C13 | 1.40 (10) | C12A—C13A | 1.41 (9) |
C13—C14 | 1.40 (8) | C13A—C14A | 1.38 (8) |
C14—C15 | 1.41 (10) | C14A—C15A | 1.40 (10) |
C15—C16 | 1.39 (9) | C15A—C16A | 1.40 (10) |
C17—C18 | 1.40 (8) | C17A—C18A | 1.40 (8) |
C17—C22 | 1.40 (10) | C17A—C22A | 1.38 (11) |
C18—C19 | 1.41 (10) | C18A—C19A | 1.41 (9) |
C19—C20 | 1.40 (10) | C19A—C20A | 1.40 (10) |
C20—C21 | 1.41 (8) | C20A—C21A | 1.40 (9) |
C21—C22 | 1.40 (10) | C21A—C22A | 1.40 (11) |
C1—H23 | 1.0 (5) | C1A—H23A | 1.0 (3) |
C2—H24 | 1.0 (4) | C2A—H24A | 1.0 (5) |
C3—H25 | 0.9 (5) | C3A—H25A | 1.0 (4) |
C4—H26 | 0.9 (5) | C4A—H26A | 1.0 (5) |
C7—H27 | 0.9 (4) | C7A—H27A | 1.0 (4) |
C8—H28 | 0.9 (6) | C8A—H28A | 0.9 (5) |
C13—H29 | 0.9 (4) | C13A—H29A | 1.0 (3) |
C14—H30 | 0.9 (4) | C14A—H30A | 1.0 (4) |
C15—H31 | 0.9 (3) | C15A—H31A | 0.9 (4) |
C16—H32 | 1.0 (5) | C16A—H32A | 0.9 (4) |
C19—H33 | 0.9 (4) | C19A—H33A | 1.0 (4) |
C20—H34 | 0.9 (5) | C20A—H34A | 1.0 (4) |
C21—H35 | 1.0 (6) | C21A—H35A | 0.9 (5) |
C22—H36 | 1.0 (5) | C22A—H36A | 1.0 (5) |
C2—C1—C4 | 120 (5) | C2A—C1A—C4A | 120 (5) |
C1—C2—C6 | 121 (5) | C1A—C2A—C6A | 119 (6) |
C4—C3—C5 | 120 (5) | C4A—C3A—C5A | 120 (6) |
C1—C4—C3 | 120 (4) | C1A—C4A—C3A | 120 (5) |
C3—C5—C6 | 120 (6) | C3A—C5A—C6A | 120 (6) |
C3—C5—C8 | 120 (5) | C3A—C5A—C8A | 120 (6) |
C6—C5—C8 | 120 (5) | C6A—C5A—C8A | 120 (5) |
C2—C6—C5 | 120 (5) | C2A—C6A—C5A | 121 (5) |
C2—C6—C7 | 121 (6) | C2A—C6A—C7A | 120 (6) |
C5—C6—C7 | 120 (6) | C5A—C6A—C7A | 120 (6) |
C6—C7—C10 | 121 (5) | C6A—C7A—C10A | 120 (6) |
C5—C8—C9 | 120 (5) | C5A—C8A—C9A | 120 (6) |
C8—C9—C10 | 120 (6) | C8A—C9A—C10A | 120 (6) |
C8—C9—C17 | 120 (6) | C8A—C9A—C17A | 119 (6) |
C10—C9—C17 | 120 (5) | C10A—C9A—C17A | 120 (5) |
C7—C10—C9 | 120 (5) | C7A—C10A—C9A | 120 (5) |
C7—C10—C12 | 120 (5) | C7A—C10A—C12A | 120 (6) |
C9—C10—C12 | 120 (6) | C9A—C10A—C12A | 120 (6) |
C12—C11—C16 | 119 (6) | C12A—C11A—C16A | 120 (7) |
C12—C11—C18 | 119 (5) | C12A—C11A—C18A | 120 (5) |
C16—C11—C18 | 121 (6) | C16A—C11A—C18A | 120 (6) |
C10—C12—C11 | 120 (6) | C10A—C12A—C11A | 120 (6) |
C10—C12—C13 | 121 (6) | C10A—C12A—C13A | 120 (6) |
C11—C12—C13 | 120 (6) | C11A—C12A—C13A | 120 (5) |
C12—C13—C14 | 120 (6) | C12A—C13A—C14A | 120 (6) |
C13—C14—C15 | 120 (5) | C13A—C14A—C15A | 121 (6) |
C14—C15—C16 | 120 (5) | C14A—C15A—C16A | 120 (6) |
C11—C16—C15 | 121 (6) | C11A—C16A—C15A | 120 (6) |
C9—C17—C18 | 120 (6) | C9A—C17A—C18A | 120 (6) |
C9—C17—C22 | 120 (6) | C9A—C17A—C22A | 120 (5) |
C18—C17—C22 | 120 (6) | C18A—C17A—C22A | 121 (6) |
C11—C18—C17 | 121 (6) | C11A—C18A—C17A | 121 (6) |
C11—C18—C19 | 119 (6) | C11A—C18A—C19A | 120 (6) |
C17—C18—C19 | 120 (6) | C17A—C18A—C19A | 120 (6) |
C18—C19—C20 | 120 (6) | C18A—C19A—C20A | 119 (5) |
C19—C20—C21 | 120 (7) | C19A—C20A—C21A | 121 (6) |
C20—C21—C22 | 119 (6) | C20A—C21A—C22A | 119 (7) |
C17—C22—C21 | 121 (5) | C17A—C22A—C21A | 120 (6) |
C2—C1—H23 | 118 | C2A—C1A—H23A | 124 |
C4—C1—H23 | 121 | C4A—C1A—H23A | 116 |
C1—C2—H24 | 118 | C1A—C2A—H24A | 124 |
C6—C2—H24 | 121 | C6A—C2A—H24A | 117 |
C4—C3—H25 | 119 | C4A—C3A—H25A | 117 |
C5—C3—H25 | 121 | C5A—C3A—H25A | 123 |
C1—C4—H26 | 122 | C1A—C4A—H26A | 117 |
C3—C4—H26 | 118 | C3A—C4A—H26A | 123 |
C6—C7—H27 | 118 | C6A—C7A—H27A | 122 |
C10—C7—H27 | 121 | C10A—C7A—H27A | 119 |
C5—C8—H28 | 119 | C5A—C8A—H28A | 117 |
C9—C8—H28 | 120 | C9A—C8A—H28A | 123 |
C12—C13—H29 | 123 | C12A—C13A—H29A | 117 |
C14—C13—H29 | 117 | C14A—C13A—H29A | 123 |
C13—C14—H30 | 124 | C13A—C14A—H30A | 123 |
C15—C14—H30 | 116 | C15A—C14A—H30A | 116 |
C14—C15—H31 | 121 | C14A—C15A—H31A | 116 |
C16—C15—H31 | 119 | C16A—C15A—H31A | 124 |
C11—C16—H32 | 120 | C11A—C16A—H32A | 114 |
C15—C16—H32 | 118 | C15A—C16A—H32A | 126 |
C18—C19—H33 | 119 | C18A—C19A—H33A | 120 |
C20—C19—H33 | 121 | C20A—C19A—H33A | 121 |
C19—C20—H34 | 118 | C19A—C20A—H34A | 120 |
C21—C20—H34 | 121 | C21A—C20A—H34A | 120 |
C20—C21—H35 | 123 | C20A—C21A—H35A | 119 |
C22—C21—H35 | 118 | C22A—C21A—H35A | 122 |
C17—C22—H36 | 119 | C17A—C22A—H36A | 120 |
C21—C22—H36 | 121 | C21A—C22A—H36A | 120 |
Acknowledgements
The authors thank the CCLRC Centre for Molecular Structure and Dynamics for studentship funding for PF and the EPSRC for grant No. GR/N07462/01.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Boultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987–993. CrossRef CAS Web of Science IUCr Journals Google Scholar
Coelho, A. A. (2003). TOPAS User's Manual. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 2.1. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge, England. Google Scholar
David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932. Web of Science CSD CrossRef Google Scholar
Desiraju, G. R. & Gavezzotti A. (1989). Acta Cryst. B45, 473–482. CrossRef CAS Web of Science IUCr Journals Google Scholar
Dollase, W. A. (1986). J. Appl. Cryst. 19, 267–272. CrossRef CAS Web of Science IUCr Journals Google Scholar
Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker & Ch. Baerlocher, pp. 114–116. Oxford University Press. Google Scholar
Hunter, A. & Sanders, J. K. M. (1990). J. Am. Chem. Soc. 112, 5525–5534. CrossRef CAS Web of Science Google Scholar
Kienle, M. & Jacob, M. (2003). DIFFRAC plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany. Google Scholar
Pawley, G. S. (1981). J. Appl. Cryst. 14, 357–361. CrossRef CAS Web of Science IUCr Journals Google Scholar
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71. CrossRef CAS IUCr Journals Web of Science Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.