organic compounds
Carbamazepine N,N-dimethylformamide solvate
aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk
In the title compound, C15H12N2O·C3H7NO, carbamazepine molecules form the R22(8) N—H⋯O hydrogen-bonded dimer arrangement observed in the crystal structures of each of the four known anhydrous polymorphs. The molecules of N,N-dimethylformamide are located between adjacent carbamazepine dimers and form an N—H⋯O hydrogen bond to the anti-oriented NH group of the carboxamide moiety of carbamazepine.
Comment
The antiepileptic compound carbamazepine (CBZ) is known to crystallize in at least four anhydrous polymorphic forms (Grzesiak et al., 2003) and the crystal structures of several solvates and co-crystals have also been reported (Fleischman et al., 2003). The title solvate, (I), was produced during an automated parallel crystallization polymorph screen on CBZ. The sample was identified as a new form using multi-sample X-ray powder of all recrystallized samples (Florence et al., 2003). Subsequent manual recrystallization from a saturated N,N-dimethylformamide (DMF) solution by slow evaporation at 278 K yielded samples suitable for single-crystal X-ray analysis (Fig. 1).
In the ), CBZ molecules form the centrosymmetric hydrogen-bonded R22(8) dimer motif observed in all of the known polymorphs and the majority of CBZ solvate crystal structures (Fleischman et al., 2003) (Fig. 2). CBZ also forms a second N—H⋯O contact to atom O2 of the solvent molecule. Two C—H⋯O contacts exist between the DMF methyl H atoms (H17C and H18B) and atom O1 of CBZ. Atom O2 of DMF is further involved in a third C—H⋯O contact with an adjacent DMF molecule, forming a centrosymmetric R22(10) motif (Fig. 2). The CBZ dimers pack back-to-back, forming offset face-to-face hydrophobic interactions between adjacent azepine ring systems (Fig. 3).
of (IExperimental
A single-crystal sample of the title compound was recrystallized from DMF solution by slow evaporation at 278 K.
Crystal data
|
Data collection
|
Refinement
|
Five H atoms (H2A, H2B, H8, H9 and H16) were located in difference maps and refined isotropically, but all other H atoms were constrained to idealized geometry using a riding model; for CH3 groups, Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å, while for CH groups, Uiso(H) = 1.2Ueq(C) and C—H = 0.95 Å.
Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536805012535/sg6004sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805012535/sg6004Isup2.hkl
Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell
DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.C15H12N2O·C3H7NO | Z = 2 |
Mr = 309.36 | F(000) = 328 |
Triclinic, P1 | Dx = 1.305 Mg m−3 |
a = 7.7118 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1503 (4) Å | Cell parameters from 3432 reflections |
c = 11.6969 (6) Å | θ = 2.9–27.0° |
α = 100.192 (3)° | µ = 0.09 mm−1 |
β = 95.379 (2)° | T = 123 K |
γ = 101.908 (3)° | Fragment, colourless |
V = 787.58 (7) Å3 | 0.20 × 0.20 × 0.05 mm |
Nonius KappaCCD diffractometer | 2475 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.054 |
Graphite monochromator | θmax = 27.2°, θmin = 3.1° |
ω and φ scans | h = −9→9 |
15107 measured reflections | k = −11→11 |
3476 independent reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0505P)2 + 0.208P] where P = (Fo2 + 2Fc2)/3 |
3476 reflections | (Δ/σ)max = 0.002 |
230 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.21 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.86234 (15) | −0.08670 (12) | 0.35964 (10) | 0.0275 (3) | |
O2 | 0.76776 (19) | 0.54750 (14) | 0.56447 (13) | 0.0482 (4) | |
N1 | 0.84593 (17) | 0.07785 (14) | 0.23638 (11) | 0.0228 (3) | |
N2 | 1.06578 (19) | 0.13981 (17) | 0.39877 (13) | 0.0251 (3) | |
N3 | 0.68494 (19) | 0.30325 (15) | 0.58731 (13) | 0.0269 (3) | |
C1 | 0.9231 (2) | 0.03844 (18) | 0.33519 (14) | 0.0220 (3) | |
C2 | 0.6856 (2) | −0.02317 (17) | 0.17131 (14) | 0.0225 (4) | |
C3 | 0.6971 (2) | −0.15694 (19) | 0.09830 (15) | 0.0278 (4) | |
H3 | 0.8107 | −0.1791 | 0.0895 | 0.033* | |
C4 | 0.5434 (2) | −0.2582 (2) | 0.03832 (15) | 0.0312 (4) | |
H4 | 0.5515 | −0.3499 | −0.0115 | 0.037* | |
C5 | 0.3778 (2) | −0.2257 (2) | 0.05097 (15) | 0.0302 (4) | |
H5 | 0.2721 | −0.2951 | 0.0100 | 0.036* | |
C6 | 0.3666 (2) | −0.09263 (19) | 0.12297 (15) | 0.0277 (4) | |
H6 | 0.2523 | −0.0715 | 0.1311 | 0.033* | |
C7 | 0.5203 (2) | 0.01298 (18) | 0.18488 (14) | 0.0240 (4) | |
C8 | 0.5007 (2) | 0.15180 (19) | 0.26111 (15) | 0.0263 (4) | |
C9 | 0.6154 (2) | 0.28859 (19) | 0.28799 (15) | 0.0260 (4) | |
C10 | 0.7853 (2) | 0.33202 (18) | 0.24291 (14) | 0.0242 (4) | |
C11 | 0.8920 (2) | 0.22866 (18) | 0.21166 (14) | 0.0228 (4) | |
C12 | 1.0437 (2) | 0.27058 (19) | 0.15885 (15) | 0.0261 (4) | |
H12 | 1.1135 | 0.1987 | 0.1366 | 0.031* | |
C13 | 1.0930 (2) | 0.41757 (19) | 0.13867 (15) | 0.0296 (4) | |
H13 | 1.1958 | 0.4459 | 0.1017 | 0.036* | |
C14 | 0.9924 (2) | 0.52293 (19) | 0.17237 (15) | 0.0295 (4) | |
H14 | 1.0276 | 0.6241 | 0.1600 | 0.035* | |
C15 | 0.8412 (2) | 0.48080 (18) | 0.22387 (14) | 0.0269 (4) | |
H15 | 0.7733 | 0.5540 | 0.2470 | 0.032* | |
C16 | 0.7986 (3) | 0.4210 (2) | 0.56419 (16) | 0.0332 (4) | |
C17 | 0.7293 (3) | 0.1566 (2) | 0.58202 (18) | 0.0377 (5) | |
H17A | 0.6608 | 0.0850 | 0.5123 | 0.057* | |
H17B | 0.6997 | 0.1179 | 0.6524 | 0.057* | |
H17C | 0.8575 | 0.1674 | 0.5777 | 0.057* | |
C18 | 0.5100 (3) | 0.3173 (2) | 0.6171 (2) | 0.0510 (6) | |
H18A | 0.5225 | 0.3760 | 0.6972 | 0.077* | |
H18B | 0.4342 | 0.2155 | 0.6117 | 0.077* | |
H18C | 0.4551 | 0.3698 | 0.5625 | 0.077* | |
H2B | 1.102 (2) | 0.1196 (19) | 0.4670 (17) | 0.024 (5)* | |
H2A | 1.096 (3) | 0.240 (2) | 0.3909 (16) | 0.038 (5)* | |
H16 | 0.917 (3) | 0.399 (2) | 0.5475 (18) | 0.044 (6)* | |
H8 | 0.386 (2) | 0.1441 (19) | 0.2895 (15) | 0.028 (5)* | |
H9 | 0.578 (2) | 0.372 (2) | 0.3334 (16) | 0.029 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0302 (6) | 0.0237 (6) | 0.0275 (7) | 0.0010 (5) | −0.0002 (5) | 0.0107 (5) |
O2 | 0.0570 (9) | 0.0264 (7) | 0.0524 (9) | −0.0058 (6) | −0.0159 (7) | 0.0148 (6) |
N1 | 0.0256 (7) | 0.0214 (7) | 0.0211 (7) | 0.0033 (6) | 0.0005 (6) | 0.0075 (6) |
N2 | 0.0263 (8) | 0.0251 (8) | 0.0233 (8) | 0.0017 (6) | −0.0007 (6) | 0.0107 (6) |
N3 | 0.0253 (7) | 0.0242 (7) | 0.0313 (8) | 0.0032 (6) | 0.0038 (6) | 0.0091 (6) |
C1 | 0.0224 (8) | 0.0233 (8) | 0.0222 (9) | 0.0064 (7) | 0.0066 (7) | 0.0063 (7) |
C2 | 0.0263 (9) | 0.0218 (8) | 0.0189 (8) | 0.0016 (7) | 0.0010 (7) | 0.0086 (6) |
C3 | 0.0317 (10) | 0.0290 (9) | 0.0243 (9) | 0.0073 (7) | 0.0040 (7) | 0.0087 (7) |
C4 | 0.0436 (11) | 0.0257 (9) | 0.0222 (9) | 0.0042 (8) | 0.0024 (8) | 0.0043 (7) |
C5 | 0.0334 (10) | 0.0304 (9) | 0.0224 (9) | −0.0028 (8) | −0.0031 (7) | 0.0094 (7) |
C6 | 0.0252 (9) | 0.0319 (9) | 0.0258 (9) | 0.0020 (7) | 0.0014 (7) | 0.0115 (7) |
C7 | 0.0298 (9) | 0.0252 (9) | 0.0184 (8) | 0.0041 (7) | 0.0035 (7) | 0.0100 (7) |
C8 | 0.0256 (9) | 0.0327 (10) | 0.0231 (9) | 0.0077 (8) | 0.0063 (7) | 0.0093 (7) |
C9 | 0.0315 (9) | 0.0270 (9) | 0.0215 (9) | 0.0100 (8) | 0.0052 (7) | 0.0055 (7) |
C10 | 0.0284 (9) | 0.0254 (9) | 0.0171 (8) | 0.0036 (7) | −0.0009 (7) | 0.0051 (7) |
C11 | 0.0262 (9) | 0.0229 (8) | 0.0184 (8) | 0.0025 (7) | −0.0011 (7) | 0.0073 (7) |
C12 | 0.0270 (9) | 0.0287 (9) | 0.0235 (9) | 0.0054 (7) | 0.0032 (7) | 0.0089 (7) |
C13 | 0.0274 (9) | 0.0329 (9) | 0.0283 (9) | 0.0004 (7) | 0.0039 (7) | 0.0126 (8) |
C14 | 0.0363 (10) | 0.0231 (9) | 0.0273 (10) | 0.0007 (7) | 0.0004 (8) | 0.0096 (7) |
C15 | 0.0333 (10) | 0.0232 (8) | 0.0234 (9) | 0.0063 (7) | 0.0001 (7) | 0.0046 (7) |
C16 | 0.0366 (11) | 0.0315 (10) | 0.0260 (10) | −0.0053 (8) | −0.0045 (8) | 0.0108 (8) |
C17 | 0.0455 (12) | 0.0310 (10) | 0.0434 (12) | 0.0129 (9) | 0.0173 (9) | 0.0151 (9) |
C18 | 0.0340 (12) | 0.0440 (12) | 0.0823 (17) | 0.0133 (10) | 0.0153 (11) | 0.0227 (12) |
O1—C1 | 1.2379 (18) | C8—C9 | 1.341 (2) |
O2—C16 | 1.228 (2) | C8—H8 | 0.964 (18) |
N1—C1 | 1.388 (2) | C9—C10 | 1.464 (2) |
N1—C2 | 1.437 (2) | C9—H9 | 0.960 (18) |
N1—C11 | 1.4395 (19) | C10—C11 | 1.400 (2) |
N2—C1 | 1.343 (2) | C10—C15 | 1.404 (2) |
N2—H2B | 0.884 (19) | C11—C12 | 1.390 (2) |
N2—H2A | 0.92 (2) | C12—C13 | 1.388 (2) |
N3—C16 | 1.327 (2) | C12—H12 | 0.9500 |
N3—C17 | 1.444 (2) | C13—C14 | 1.385 (2) |
N3—C18 | 1.449 (2) | C13—H13 | 0.9500 |
C2—C3 | 1.387 (2) | C14—C15 | 1.378 (2) |
C2—C7 | 1.398 (2) | C14—H14 | 0.9500 |
C3—C4 | 1.384 (2) | C15—H15 | 0.9500 |
C3—H3 | 0.9500 | C16—H16 | 1.01 (2) |
C4—C5 | 1.385 (3) | C17—H17A | 0.9800 |
C4—H4 | 0.9500 | C17—H17B | 0.9800 |
C5—C6 | 1.376 (2) | C17—H17C | 0.9800 |
C5—H5 | 0.9500 | C18—H18A | 0.9800 |
C6—C7 | 1.408 (2) | C18—H18B | 0.9800 |
C6—H6 | 0.9500 | C18—H18C | 0.9800 |
C7—C8 | 1.461 (2) | ||
C1—N1—C2 | 118.24 (13) | C10—C9—H9 | 114.5 (10) |
C1—N1—C11 | 122.93 (13) | C11—C10—C15 | 117.76 (15) |
C2—N1—C11 | 117.16 (12) | C11—C10—C9 | 122.68 (14) |
C1—N2—H2B | 115.4 (11) | C15—C10—C9 | 119.48 (15) |
C1—N2—H2A | 123.1 (12) | C12—C11—C10 | 120.85 (14) |
H2B—N2—H2A | 116.9 (16) | C12—C11—N1 | 119.50 (14) |
C16—N3—C17 | 121.52 (16) | C10—C11—N1 | 119.64 (14) |
C16—N3—C18 | 120.79 (16) | C13—C12—C11 | 119.94 (16) |
C17—N3—C18 | 117.69 (15) | C13—C12—H12 | 120.0 |
O1—C1—N2 | 123.12 (15) | C11—C12—H12 | 120.0 |
O1—C1—N1 | 119.92 (14) | C14—C13—C12 | 120.07 (16) |
N2—C1—N1 | 116.94 (14) | C14—C13—H13 | 120.0 |
C3—C2—C7 | 121.07 (15) | C12—C13—H13 | 120.0 |
C3—C2—N1 | 119.42 (15) | C15—C14—C13 | 119.90 (15) |
C7—C2—N1 | 119.49 (14) | C15—C14—H14 | 120.0 |
C4—C3—C2 | 120.15 (16) | C13—C14—H14 | 120.0 |
C4—C3—H3 | 119.9 | C14—C15—C10 | 121.41 (16) |
C2—C3—H3 | 119.9 | C14—C15—H15 | 119.3 |
C3—C4—C5 | 119.93 (16) | C10—C15—H15 | 119.3 |
C3—C4—H4 | 120.0 | O2—C16—N3 | 124.8 (2) |
C5—C4—H4 | 120.0 | O2—C16—H16 | 121.5 (11) |
C6—C5—C4 | 119.87 (16) | N3—C16—H16 | 113.7 (11) |
C6—C5—H5 | 120.1 | N3—C17—H17A | 109.5 |
C4—C5—H5 | 120.1 | N3—C17—H17B | 109.5 |
C5—C6—C7 | 121.62 (16) | H17A—C17—H17B | 109.5 |
C5—C6—H6 | 119.2 | N3—C17—H17C | 109.5 |
C7—C6—H6 | 119.2 | H17A—C17—H17C | 109.5 |
C2—C7—C6 | 117.35 (15) | H17B—C17—H17C | 109.5 |
C2—C7—C8 | 123.25 (15) | N3—C18—H18A | 109.5 |
C6—C7—C8 | 119.39 (15) | N3—C18—H18B | 109.5 |
C9—C8—C7 | 127.99 (16) | H18A—C18—H18B | 109.5 |
C9—C8—H8 | 117.3 (10) | N3—C18—H18C | 109.5 |
C7—C8—H8 | 114.5 (10) | H18A—C18—H18C | 109.5 |
C8—C9—C10 | 126.91 (16) | H18B—C18—H18C | 109.5 |
C8—C9—H9 | 118.1 (10) | ||
C2—N1—C1—O1 | 5.9 (2) | C7—C8—C9—C10 | 2.6 (3) |
C11—N1—C1—O1 | 170.75 (14) | C8—C9—C10—C11 | −31.2 (3) |
C2—N1—C1—N2 | −175.61 (14) | C8—C9—C10—C15 | 145.31 (18) |
C11—N1—C1—N2 | −10.8 (2) | C15—C10—C11—C12 | −2.8 (2) |
C1—N1—C2—C3 | −76.47 (19) | C9—C10—C11—C12 | 173.83 (15) |
C11—N1—C2—C3 | 117.80 (16) | C15—C10—C11—N1 | 176.11 (14) |
C1—N1—C2—C7 | 101.90 (17) | C9—C10—C11—N1 | −7.3 (2) |
C11—N1—C2—C7 | −63.84 (19) | C1—N1—C11—C12 | 82.2 (2) |
C7—C2—C3—C4 | −0.7 (2) | C2—N1—C11—C12 | −112.76 (17) |
N1—C2—C3—C4 | 177.63 (14) | C1—N1—C11—C10 | −96.67 (18) |
C2—C3—C4—C5 | 0.2 (2) | C2—N1—C11—C10 | 68.34 (19) |
C3—C4—C5—C6 | 0.1 (2) | C10—C11—C12—C13 | 1.3 (2) |
C4—C5—C6—C7 | 0.1 (2) | N1—C11—C12—C13 | −177.57 (15) |
C3—C2—C7—C6 | 0.9 (2) | C11—C12—C13—C14 | 0.8 (2) |
N1—C2—C7—C6 | −177.44 (13) | C12—C13—C14—C15 | −1.3 (3) |
C3—C2—C7—C8 | 179.64 (15) | C13—C14—C15—C10 | −0.2 (2) |
N1—C2—C7—C8 | 1.3 (2) | C11—C10—C15—C14 | 2.3 (2) |
C5—C6—C7—C2 | −0.6 (2) | C9—C10—C15—C14 | −174.47 (15) |
C5—C6—C7—C8 | −179.39 (15) | C17—N3—C16—O2 | 178.25 (17) |
C2—C7—C8—C9 | 31.3 (3) | C18—N3—C16—O2 | −0.8 (3) |
C6—C7—C8—C9 | −150.03 (17) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2i | 0.921 (18) | 1.963 (19) | 2.822 (2) | 154.5 (18) |
N2—H2B···O1ii | 0.884 (19) | 2.103 (19) | 2.9719 (19) | 167.4 (15) |
C17—H17C···O1ii | 0.98 | 2.51 | 3.373 (3) | 147 |
C18—H18B···O1iii | 0.98 | 2.43 | 3.259 (2) | 142 |
C18—H18C···O2iv | 0.98 | 2.49 | 3.435 (3) | 163 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y, −z+1; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z+1. |
Acknowledgements
We thank the Basic Technology programme of The Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk).
References
Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919. Web of Science CSD CrossRef CAS Google Scholar
Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938. Web of Science CSD CrossRef PubMed CAS Google Scholar
Grzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260–2271. Web of Science CSD CrossRef PubMed CAS Google Scholar
Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.