organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbamazepine N,N-di­methyl­form­amide solvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 6 April 2005; accepted 20 April 2005; online 30 April 2005)

In the title compound, C15H12N2O·C3H7NO, carbamazepine mol­ecules form the R22(8) N—H⋯O hydrogen-bonded dimer arrangement observed in the crystal structures of each of the four known an­hydro­us polymorphs. The mol­ecules of N,N-di­methyl­form­amide are located between adjacent carbamazepine dimers and form an N—H⋯O hydrogen bond to the anti-oriented NH group of the carbox­amide moiety of carbamazepine.

Comment

The antiepileptic compound carbamazepine (CBZ) is known to crystallize in at least four an­hydro­us polymorphic forms (Grzesiak et al., 2003[Grzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260-2271.]) and the crystal structures of several solvates and co-crystals have also been reported (Fleischman et al., 2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]). The title solvate, (I[link]), was produced during an automated parallel crystallization polymorph screen on CBZ. The sample was identified as a new form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated N,N-di­methyl­form­amide (DMF) solution by slow evaporation at 278 K yielded samples suitable for single-crystal X-ray analysis (Fig. 1[link]).[link]

[Scheme 1]

In the crystal structure of (I[link]), CBZ mol­ecules form the centrosymmetric hydrogen-bonded R22(8) dimer motif observed in all of the known polymorphs and the majority of CBZ solvate crystal structures (Fleischman et al., 2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]) (Fig. 2[link]). CBZ also forms a second N—H⋯O contact to atom O2 of the solvent mol­ecule. Two C—H⋯O contacts exist between the DMF methyl H atoms (H17C and H18B) and atom O1 of CBZ. Atom O2 of DMF is further involved in a third C—H⋯O contact with an adjacent DMF mol­ecule, forming a centrosymmetric R22(10) motif (Fig. 2[link]). The CBZ dimers pack back-to-back, forming offset face-to-face hydro­phobic interactions between adjacent azepine ring systems (Fig. 3[link]).

[Figure 1]
Figure 1
The molecular structure of (I[link]), shown with 50% probability displacement ellipsoids.
[Figure 2]
Figure 2
Packing diagram illustrating the non-covalent intermolecular network formed by (1) N2—H2B⋯O1 [N2⋯O1 = 2.9719 (19)Å O1 in the mol­ecule at 2 − x, −y, 1 − z]; (2) N2—H2A⋯O2 [N2⋯O2 = 2.822 (2) Å; O2 in the mol­ecule at 2 − x, 1 − y, 1 − z]; (3) C18—H18C⋯O2 [C18⋯O = 3.435 (3) Å; C18 in the mol­ecule at 1 + x, y, z]; (4) C18—H18B⋯O1 [C18⋯O1 = 3.259 (2) Å; O1 in the mol­ecule at 2 − x, −y, 1 − z] [calculated and illustrated using PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]), program version 280604]. These interactions combine to produce three ring motifs: (A) the R22(8) CBZ dimer; (B) an R42(8) motif between CBZ dimers and mol­ecules of DMF and (C) an R22(10) motif connecting DMF mol­ecules in a centrosymmetric dimer configuration.
[Figure 3]
Figure 3
Hydro­phobic packing interactions between nearest neighbour CBZ mol­ecules with a centroid–centroid distance of 3.801 (1) Å (the carbox­amide groups have been omitted for clarity).

Experimental

A single-crystal sample of the title compound was recrystallized from DMF solution by slow evaporation at 278 K.

Crystal data
  • C15H12N2O·C3H7NO

  • Mr = 309.36

  • Triclinic, [P\overline 1]

  • a = 7.7118 (4) Å

  • b = 9.1503 (4) Å

  • c = 11.6969 (6) Å

  • α = 100.192 (3)°

  • β = 95.379 (2)°

  • γ = 101.908 (3)°

  • V = 787.58 (7) Å3

  • Z = 2

  • Dx = 1.305 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3432 reflections

  • θ = 2.9–27.0°

  • μ = 0.09 mm−1

  • T = 123 (2) K

  • Fragment, colourless

  • 0.20 × 0.20 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 15107 measured reflections

  • 3476 independent reflections

  • 2475 reflections with I > 2σ(I)

  • Rint = 0.054

  • θmax = 27.2°

  • h = −9 → 9

  • k = −11 → 11

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.117

  • S = 1.03

  • 3476 reflections

  • 230 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0505P)2 + 0.208P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O2i 0.921 (18) 1.963 (19) 2.822 (2) 154.5 (18)
N2—H2B⋯O1ii 0.884 (19) 2.103 (19) 2.9719 (19) 167.4 (15)
C17—H17C⋯O1ii 0.98 2.51 3.373 (3) 147
C18—H18B⋯O1iii 0.98 2.43 3.259 (2) 142
C18—H18C⋯O2iv 0.98 2.49 3.435 (3) 163
Symmetry codes: (i) 2-x,1-y,1-z; (ii) 2-x,-y,1-z; (iii) 1-x,-y,1-z; (iv) 1-x,1-y,1-z.

Five H atoms (H2A, H2B, H8, H9 and H16) were located in difference maps and refined isotropically, but all other H atoms were constrained to idealized geometry using a riding model; for CH3 groups, Uiso(H) = 1.5Ueq(C) and C—H = 0.98 Å, while for CH groups, Uiso(H) = 1.2Ueq(C) and C—H = 0.95 Å.

Data collection: COLLECT (Hooft, 1988[Hooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwin­owski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1988) and DENZO (Otwinowski & Minor, 1997); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

carbamazepine N,N-dimethylformamide solvate top
Crystal data top
C15H12N2O·C3H7NOZ = 2
Mr = 309.36F(000) = 328
Triclinic, P1Dx = 1.305 Mg m3
a = 7.7118 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1503 (4) ÅCell parameters from 3432 reflections
c = 11.6969 (6) Åθ = 2.9–27.0°
α = 100.192 (3)°µ = 0.09 mm1
β = 95.379 (2)°T = 123 K
γ = 101.908 (3)°Fragment, colourless
V = 787.58 (7) Å30.20 × 0.20 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2475 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 27.2°, θmin = 3.1°
ω and φ scansh = 99
15107 measured reflectionsk = 1111
3476 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0505P)2 + 0.208P]
where P = (Fo2 + 2Fc2)/3
3476 reflections(Δ/σ)max = 0.002
230 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.86234 (15)0.08670 (12)0.35964 (10)0.0275 (3)
O20.76776 (19)0.54750 (14)0.56447 (13)0.0482 (4)
N10.84593 (17)0.07785 (14)0.23638 (11)0.0228 (3)
N21.06578 (19)0.13981 (17)0.39877 (13)0.0251 (3)
N30.68494 (19)0.30325 (15)0.58731 (13)0.0269 (3)
C10.9231 (2)0.03844 (18)0.33519 (14)0.0220 (3)
C20.6856 (2)0.02317 (17)0.17131 (14)0.0225 (4)
C30.6971 (2)0.15694 (19)0.09830 (15)0.0278 (4)
H30.81070.17910.08950.033*
C40.5434 (2)0.2582 (2)0.03832 (15)0.0312 (4)
H40.55150.34990.01150.037*
C50.3778 (2)0.2257 (2)0.05097 (15)0.0302 (4)
H50.27210.29510.01000.036*
C60.3666 (2)0.09263 (19)0.12297 (15)0.0277 (4)
H60.25230.07150.13110.033*
C70.5203 (2)0.01298 (18)0.18488 (14)0.0240 (4)
C80.5007 (2)0.15180 (19)0.26111 (15)0.0263 (4)
C90.6154 (2)0.28859 (19)0.28799 (15)0.0260 (4)
C100.7853 (2)0.33202 (18)0.24291 (14)0.0242 (4)
C110.8920 (2)0.22866 (18)0.21166 (14)0.0228 (4)
C121.0437 (2)0.27058 (19)0.15885 (15)0.0261 (4)
H121.11350.19870.13660.031*
C131.0930 (2)0.41757 (19)0.13867 (15)0.0296 (4)
H131.19580.44590.10170.036*
C140.9924 (2)0.52293 (19)0.17237 (15)0.0295 (4)
H141.02760.62410.16000.035*
C150.8412 (2)0.48080 (18)0.22387 (14)0.0269 (4)
H150.77330.55400.24700.032*
C160.7986 (3)0.4210 (2)0.56419 (16)0.0332 (4)
C170.7293 (3)0.1566 (2)0.58202 (18)0.0377 (5)
H17A0.66080.08500.51230.057*
H17B0.69970.11790.65240.057*
H17C0.85750.16740.57770.057*
C180.5100 (3)0.3173 (2)0.6171 (2)0.0510 (6)
H18A0.52250.37600.69720.077*
H18B0.43420.21550.61170.077*
H18C0.45510.36980.56250.077*
H2B1.102 (2)0.1196 (19)0.4670 (17)0.024 (5)*
H2A1.096 (3)0.240 (2)0.3909 (16)0.038 (5)*
H160.917 (3)0.399 (2)0.5475 (18)0.044 (6)*
H80.386 (2)0.1441 (19)0.2895 (15)0.028 (5)*
H90.578 (2)0.372 (2)0.3334 (16)0.029 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (6)0.0237 (6)0.0275 (7)0.0010 (5)0.0002 (5)0.0107 (5)
O20.0570 (9)0.0264 (7)0.0524 (9)0.0058 (6)0.0159 (7)0.0148 (6)
N10.0256 (7)0.0214 (7)0.0211 (7)0.0033 (6)0.0005 (6)0.0075 (6)
N20.0263 (8)0.0251 (8)0.0233 (8)0.0017 (6)0.0007 (6)0.0107 (6)
N30.0253 (7)0.0242 (7)0.0313 (8)0.0032 (6)0.0038 (6)0.0091 (6)
C10.0224 (8)0.0233 (8)0.0222 (9)0.0064 (7)0.0066 (7)0.0063 (7)
C20.0263 (9)0.0218 (8)0.0189 (8)0.0016 (7)0.0010 (7)0.0086 (6)
C30.0317 (10)0.0290 (9)0.0243 (9)0.0073 (7)0.0040 (7)0.0087 (7)
C40.0436 (11)0.0257 (9)0.0222 (9)0.0042 (8)0.0024 (8)0.0043 (7)
C50.0334 (10)0.0304 (9)0.0224 (9)0.0028 (8)0.0031 (7)0.0094 (7)
C60.0252 (9)0.0319 (9)0.0258 (9)0.0020 (7)0.0014 (7)0.0115 (7)
C70.0298 (9)0.0252 (9)0.0184 (8)0.0041 (7)0.0035 (7)0.0100 (7)
C80.0256 (9)0.0327 (10)0.0231 (9)0.0077 (8)0.0063 (7)0.0093 (7)
C90.0315 (9)0.0270 (9)0.0215 (9)0.0100 (8)0.0052 (7)0.0055 (7)
C100.0284 (9)0.0254 (9)0.0171 (8)0.0036 (7)0.0009 (7)0.0051 (7)
C110.0262 (9)0.0229 (8)0.0184 (8)0.0025 (7)0.0011 (7)0.0073 (7)
C120.0270 (9)0.0287 (9)0.0235 (9)0.0054 (7)0.0032 (7)0.0089 (7)
C130.0274 (9)0.0329 (9)0.0283 (9)0.0004 (7)0.0039 (7)0.0126 (8)
C140.0363 (10)0.0231 (9)0.0273 (10)0.0007 (7)0.0004 (8)0.0096 (7)
C150.0333 (10)0.0232 (8)0.0234 (9)0.0063 (7)0.0001 (7)0.0046 (7)
C160.0366 (11)0.0315 (10)0.0260 (10)0.0053 (8)0.0045 (8)0.0108 (8)
C170.0455 (12)0.0310 (10)0.0434 (12)0.0129 (9)0.0173 (9)0.0151 (9)
C180.0340 (12)0.0440 (12)0.0823 (17)0.0133 (10)0.0153 (11)0.0227 (12)
Geometric parameters (Å, º) top
O1—C11.2379 (18)C8—C91.341 (2)
O2—C161.228 (2)C8—H80.964 (18)
N1—C11.388 (2)C9—C101.464 (2)
N1—C21.437 (2)C9—H90.960 (18)
N1—C111.4395 (19)C10—C111.400 (2)
N2—C11.343 (2)C10—C151.404 (2)
N2—H2B0.884 (19)C11—C121.390 (2)
N2—H2A0.92 (2)C12—C131.388 (2)
N3—C161.327 (2)C12—H120.9500
N3—C171.444 (2)C13—C141.385 (2)
N3—C181.449 (2)C13—H130.9500
C2—C31.387 (2)C14—C151.378 (2)
C2—C71.398 (2)C14—H140.9500
C3—C41.384 (2)C15—H150.9500
C3—H30.9500C16—H161.01 (2)
C4—C51.385 (3)C17—H17A0.9800
C4—H40.9500C17—H17B0.9800
C5—C61.376 (2)C17—H17C0.9800
C5—H50.9500C18—H18A0.9800
C6—C71.408 (2)C18—H18B0.9800
C6—H60.9500C18—H18C0.9800
C7—C81.461 (2)
C1—N1—C2118.24 (13)C10—C9—H9114.5 (10)
C1—N1—C11122.93 (13)C11—C10—C15117.76 (15)
C2—N1—C11117.16 (12)C11—C10—C9122.68 (14)
C1—N2—H2B115.4 (11)C15—C10—C9119.48 (15)
C1—N2—H2A123.1 (12)C12—C11—C10120.85 (14)
H2B—N2—H2A116.9 (16)C12—C11—N1119.50 (14)
C16—N3—C17121.52 (16)C10—C11—N1119.64 (14)
C16—N3—C18120.79 (16)C13—C12—C11119.94 (16)
C17—N3—C18117.69 (15)C13—C12—H12120.0
O1—C1—N2123.12 (15)C11—C12—H12120.0
O1—C1—N1119.92 (14)C14—C13—C12120.07 (16)
N2—C1—N1116.94 (14)C14—C13—H13120.0
C3—C2—C7121.07 (15)C12—C13—H13120.0
C3—C2—N1119.42 (15)C15—C14—C13119.90 (15)
C7—C2—N1119.49 (14)C15—C14—H14120.0
C4—C3—C2120.15 (16)C13—C14—H14120.0
C4—C3—H3119.9C14—C15—C10121.41 (16)
C2—C3—H3119.9C14—C15—H15119.3
C3—C4—C5119.93 (16)C10—C15—H15119.3
C3—C4—H4120.0O2—C16—N3124.8 (2)
C5—C4—H4120.0O2—C16—H16121.5 (11)
C6—C5—C4119.87 (16)N3—C16—H16113.7 (11)
C6—C5—H5120.1N3—C17—H17A109.5
C4—C5—H5120.1N3—C17—H17B109.5
C5—C6—C7121.62 (16)H17A—C17—H17B109.5
C5—C6—H6119.2N3—C17—H17C109.5
C7—C6—H6119.2H17A—C17—H17C109.5
C2—C7—C6117.35 (15)H17B—C17—H17C109.5
C2—C7—C8123.25 (15)N3—C18—H18A109.5
C6—C7—C8119.39 (15)N3—C18—H18B109.5
C9—C8—C7127.99 (16)H18A—C18—H18B109.5
C9—C8—H8117.3 (10)N3—C18—H18C109.5
C7—C8—H8114.5 (10)H18A—C18—H18C109.5
C8—C9—C10126.91 (16)H18B—C18—H18C109.5
C8—C9—H9118.1 (10)
C2—N1—C1—O15.9 (2)C7—C8—C9—C102.6 (3)
C11—N1—C1—O1170.75 (14)C8—C9—C10—C1131.2 (3)
C2—N1—C1—N2175.61 (14)C8—C9—C10—C15145.31 (18)
C11—N1—C1—N210.8 (2)C15—C10—C11—C122.8 (2)
C1—N1—C2—C376.47 (19)C9—C10—C11—C12173.83 (15)
C11—N1—C2—C3117.80 (16)C15—C10—C11—N1176.11 (14)
C1—N1—C2—C7101.90 (17)C9—C10—C11—N17.3 (2)
C11—N1—C2—C763.84 (19)C1—N1—C11—C1282.2 (2)
C7—C2—C3—C40.7 (2)C2—N1—C11—C12112.76 (17)
N1—C2—C3—C4177.63 (14)C1—N1—C11—C1096.67 (18)
C2—C3—C4—C50.2 (2)C2—N1—C11—C1068.34 (19)
C3—C4—C5—C60.1 (2)C10—C11—C12—C131.3 (2)
C4—C5—C6—C70.1 (2)N1—C11—C12—C13177.57 (15)
C3—C2—C7—C60.9 (2)C11—C12—C13—C140.8 (2)
N1—C2—C7—C6177.44 (13)C12—C13—C14—C151.3 (3)
C3—C2—C7—C8179.64 (15)C13—C14—C15—C100.2 (2)
N1—C2—C7—C81.3 (2)C11—C10—C15—C142.3 (2)
C5—C6—C7—C20.6 (2)C9—C10—C15—C14174.47 (15)
C5—C6—C7—C8179.39 (15)C17—N3—C16—O2178.25 (17)
C2—C7—C8—C931.3 (3)C18—N3—C16—O20.8 (3)
C6—C7—C8—C9150.03 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O2i0.921 (18)1.963 (19)2.822 (2)154.5 (18)
N2—H2B···O1ii0.884 (19)2.103 (19)2.9719 (19)167.4 (15)
C17—H17C···O1ii0.982.513.373 (3)147
C18—H18B···O1iii0.982.433.259 (2)142
C18—H18C···O2iv0.982.493.435 (3)163
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

We thank the Basic Technology programme of The Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk).

References

First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260–2271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1988). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds