organic compounds
Ethyl (E)-4-(2-formylphenoxy)but-2-enoate
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk
The molecule of the title compound, C13H14O4, possesses normal geometric parameters. Its approximately planar conformation could be influenced by two intramolecular C—H⋯O interactions.
Comment
The title compound, (I), was prepared as a test substrate for an investigation into potential catalysts for the intramolecular Stetter reaction. The compound is well known and has been previously used in this context (Kerr et al., 2002). In the present work, the synthesis used was that of Gong et al. (1998).
The molecule of compound (I) possesses normal geometric parameters (Table 1). The complete molecule is approximately planar (for the non-H atoms, the r.m.s deviation from the least-squares plane is 0.100 Å). This conformation might be stabilized by two intramolecular C—H⋯O interactions (Fig. 1, Table 2). The acute O—H⋯O bond angles are consistent with the intramolecular nature of these putative bonds. The r.m.s. deviation from the mean plane for atoms C1, C2, C7, C8, C9, C10 and O2 is 0.043 Å [maximum deviation 0.1005 (11) Å for O2].
There are no π–π stacking or other weak intermolecular interactions in (I) and the crystal packing (Fig. 2) is controlled by van der Waals forces.
Experimental
A dry two-necked flask was charged with NaH (15 mmol, 360.4 mg). Dry dimethylformamide (40 ml) was added and the resulting suspension cooled to 273 K. Salicylaldehyde (10 mmol, 1.220 g, 1.06 ml) was added and the solution stirred for 20 min. Ethyl 4-bromocrotonate (11 mmol, 2.82 g, 2.01 ml) was added in one portion. The solution was then allowed to warm to room temperature and stirred for 1 h. Water (60 ml) was added, followed by extraction with Et2O (3 × 50 ml). The combined organic phases were washed with saturated brine (75 ml), dried (MgSO4) and the solvent removed. of the resulting solid in 10% EtOAc in hexane allowed collection of the desired product (1.809 g, 77.2%), which was recrystallized from ethanol as colourless blocks or plates; m.p 342–344 K. Analysis, C13H14O4 requires: C 66.66, H 6.02%; found: C 66.53, H 6.00%. Spectroscopic analysis: IR (KBr, νmax, cm−1): 2975.6 (Ar), 2902.4 (CH), 2859.5 (CHO), 1709.4 (CO2Et), 1671 (CHO); 1H NMR (250 MHz, CDCl3, δ, p.p.m.); 10.5 (1H, s, CHO), 7.8 (1H, d, J = 8 Hz, Ph), 7.6 (1H, t, J = 8 Hz, Ph), 7.0 (3H, m), 6.2 (1H, d, J = 15 Hz, CH—CO2Et), 4.8 (2H, s, CH2), 4.2 (2H, q, J = 7 Hz, CH2), 1.3 (3H, t, J = 8 Hz, Me); 13C NMR (250 MHz, CDCl3, δ, p.p.m.) 189.3 (CHO), 165.8 (CO2Et), 160.2, 141.2, 135.9, 128.8, 125.1, 122.5, 121.4, 112.5, 66.8 (CH2), 60.7 (CH2), 14.2 (Me); MS (ESI+): calculated: m/z 252.1230; found: 252.1232 [M+NH4+].
Crystal data
|
Refinement
|
|
|
All H atoms were placed in calculated positions, with C—H distances in the range 0.95–0.99 Å, and refined as riding on their carrier atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
Data collection: COLLECT (Nonius, 1998); cell SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536805013164/ci6571sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805013164/ci6571Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.C13H14O4 | F(000) = 496 |
Mr = 234.24 | Dx = 1.305 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2702 reflections |
a = 10.6759 (6) Å | θ = 2.9–27.5° |
b = 6.9487 (4) Å | µ = 0.10 mm−1 |
c = 16.4346 (6) Å | T = 120 K |
β = 102.164 (3)° | Plate, colourless |
V = 1191.81 (11) Å3 | 0.46 × 0.27 × 0.09 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 2712 independent reflections |
Radiation source: fine-focus sealed tube | 1830 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
ω and φ scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −13→13 |
Tmin = 0.957, Tmax = 0.993 | k = −8→8 |
10415 measured reflections | l = −17→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.048 | H-atom parameters constrained |
wR(F2) = 0.126 | w = 1/[σ2(Fo2) + (0.059P)2 + 0.2428P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.002 |
2712 reflections | Δρmax = 0.20 e Å−3 |
156 parameters | Δρmin = −0.21 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.036 (5) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.00191 (16) | 0.2643 (2) | 0.41727 (9) | 0.0290 (4) | |
H1 | 0.0776 | 0.2147 | 0.4520 | 0.035* | |
C2 | −0.10653 (15) | 0.3112 (2) | 0.45585 (9) | 0.0241 (4) | |
C3 | −0.21906 (16) | 0.3879 (2) | 0.40804 (10) | 0.0323 (4) | |
H3 | −0.2253 | 0.4080 | 0.3501 | 0.039* | |
C4 | −0.32119 (17) | 0.4351 (3) | 0.44321 (11) | 0.0381 (5) | |
H4 | −0.3973 | 0.4875 | 0.4101 | 0.046* | |
C5 | −0.31130 (17) | 0.4051 (3) | 0.52753 (11) | 0.0362 (4) | |
H5 | −0.3817 | 0.4367 | 0.5520 | 0.043* | |
C6 | −0.20042 (16) | 0.3297 (2) | 0.57726 (10) | 0.0305 (4) | |
H6 | −0.1947 | 0.3112 | 0.6352 | 0.037* | |
C7 | −0.09813 (14) | 0.2818 (2) | 0.54104 (9) | 0.0236 (4) | |
C8 | 0.03522 (15) | 0.1948 (3) | 0.67211 (8) | 0.0283 (4) | |
H8A | −0.0271 | 0.1052 | 0.6886 | 0.034* | |
H8B | 0.0236 | 0.3234 | 0.6953 | 0.034* | |
C9 | 0.16789 (16) | 0.1254 (2) | 0.70449 (9) | 0.0283 (4) | |
H9 | 0.1922 | 0.1012 | 0.7626 | 0.034* | |
C10 | 0.25501 (16) | 0.0942 (2) | 0.65988 (9) | 0.0288 (4) | |
H10 | 0.2332 | 0.1142 | 0.6014 | 0.035* | |
C11 | 0.38551 (17) | 0.0292 (2) | 0.69836 (10) | 0.0311 (4) | |
C12 | 0.59362 (17) | −0.0211 (3) | 0.67090 (12) | 0.0457 (5) | |
H12A | 0.6030 | −0.1177 | 0.7161 | 0.055* | |
H12B | 0.6441 | 0.0943 | 0.6926 | 0.055* | |
C13 | 0.63992 (19) | −0.1017 (3) | 0.59849 (14) | 0.0503 (5) | |
H13A | 0.7313 | −0.1328 | 0.6154 | 0.075* | |
H13B | 0.6273 | −0.0066 | 0.5535 | 0.075* | |
H13C | 0.5917 | −0.2188 | 0.5790 | 0.075* | |
O1 | 0.00079 (12) | 0.28500 (18) | 0.34378 (6) | 0.0387 (4) | |
O2 | 0.01446 (10) | 0.20508 (16) | 0.58333 (6) | 0.0282 (3) | |
O3 | 0.45966 (11) | 0.02940 (18) | 0.64209 (7) | 0.0357 (3) | |
O4 | 0.42190 (13) | −0.01633 (19) | 0.77059 (7) | 0.0443 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0347 (9) | 0.0324 (10) | 0.0205 (7) | −0.0045 (7) | 0.0075 (7) | −0.0014 (7) |
C2 | 0.0274 (8) | 0.0226 (8) | 0.0223 (7) | −0.0051 (7) | 0.0053 (6) | −0.0022 (7) |
C3 | 0.0352 (10) | 0.0300 (10) | 0.0291 (8) | −0.0030 (8) | 0.0009 (7) | 0.0018 (7) |
C4 | 0.0293 (10) | 0.0337 (11) | 0.0481 (10) | 0.0018 (8) | 0.0010 (8) | 0.0012 (8) |
C5 | 0.0289 (9) | 0.0320 (10) | 0.0499 (11) | −0.0005 (8) | 0.0135 (8) | −0.0059 (8) |
C6 | 0.0344 (9) | 0.0309 (10) | 0.0287 (8) | −0.0063 (8) | 0.0120 (7) | −0.0061 (7) |
C7 | 0.0236 (8) | 0.0224 (9) | 0.0247 (8) | −0.0033 (6) | 0.0047 (6) | −0.0022 (6) |
C8 | 0.0361 (9) | 0.0341 (10) | 0.0157 (7) | −0.0016 (7) | 0.0076 (6) | −0.0009 (7) |
C9 | 0.0373 (10) | 0.0280 (9) | 0.0185 (7) | −0.0023 (7) | 0.0033 (7) | 0.0008 (7) |
C10 | 0.0355 (9) | 0.0287 (9) | 0.0203 (7) | −0.0017 (7) | 0.0017 (7) | −0.0002 (7) |
C11 | 0.0362 (9) | 0.0262 (9) | 0.0291 (8) | −0.0007 (8) | 0.0030 (7) | 0.0000 (7) |
C12 | 0.0294 (10) | 0.0546 (13) | 0.0514 (11) | 0.0102 (9) | 0.0046 (8) | 0.0161 (10) |
C13 | 0.0383 (11) | 0.0352 (11) | 0.0798 (14) | 0.0004 (9) | 0.0179 (10) | −0.0046 (11) |
O1 | 0.0498 (8) | 0.0489 (8) | 0.0196 (6) | −0.0085 (6) | 0.0123 (5) | −0.0011 (5) |
O2 | 0.0291 (6) | 0.0408 (7) | 0.0150 (5) | 0.0039 (5) | 0.0055 (4) | 0.0008 (5) |
O3 | 0.0308 (7) | 0.0403 (8) | 0.0353 (6) | 0.0053 (5) | 0.0052 (5) | 0.0068 (5) |
O4 | 0.0456 (8) | 0.0540 (9) | 0.0292 (7) | 0.0084 (6) | −0.0010 (5) | 0.0094 (6) |
C1—O1 | 1.2138 (18) | C8—H8A | 0.99 |
C1—C2 | 1.469 (2) | C8—H8B | 0.99 |
C1—H1 | 0.95 | C9—C10 | 1.318 (2) |
C2—C3 | 1.395 (2) | C9—H9 | 0.95 |
C2—C7 | 1.399 (2) | C10—C11 | 1.474 (2) |
C3—C4 | 1.377 (2) | C10—H10 | 0.95 |
C3—H3 | 0.95 | C11—O4 | 1.2107 (19) |
C4—C5 | 1.383 (3) | C11—O3 | 1.338 (2) |
C4—H4 | 0.95 | C12—O3 | 1.452 (2) |
C5—C6 | 1.391 (2) | C12—C13 | 1.491 (3) |
C5—H5 | 0.95 | C12—H12A | 0.99 |
C6—C7 | 1.390 (2) | C12—H12B | 0.99 |
C6—H6 | 0.95 | C13—H13A | 0.98 |
C7—O2 | 1.3639 (18) | C13—H13B | 0.98 |
C8—O2 | 1.4305 (16) | C13—H13C | 0.98 |
C8—C9 | 1.485 (2) | ||
O1—C1—C2 | 124.04 (16) | C9—C8—H8B | 110.1 |
O1—C1—H1 | 118.0 | H8A—C8—H8B | 108.4 |
C2—C1—H1 | 118.0 | C10—C9—C8 | 125.85 (14) |
C3—C2—C7 | 119.04 (14) | C10—C9—H9 | 117.1 |
C3—C2—C1 | 120.33 (14) | C8—C9—H9 | 117.1 |
C7—C2—C1 | 120.63 (14) | C9—C10—C11 | 121.70 (14) |
C4—C3—C2 | 121.23 (15) | C9—C10—H10 | 119.1 |
C4—C3—H3 | 119.4 | C11—C10—H10 | 119.1 |
C2—C3—H3 | 119.4 | O4—C11—O3 | 124.30 (16) |
C3—C4—C5 | 118.99 (16) | O4—C11—C10 | 125.43 (17) |
C3—C4—H4 | 120.5 | O3—C11—C10 | 110.26 (13) |
C5—C4—H4 | 120.5 | O3—C12—C13 | 107.47 (15) |
C4—C5—C6 | 121.41 (16) | O3—C12—H12A | 110.2 |
C4—C5—H5 | 119.3 | C13—C12—H12A | 110.2 |
C6—C5—H5 | 119.3 | O3—C12—H12B | 110.2 |
C7—C6—C5 | 119.11 (15) | C13—C12—H12B | 110.2 |
C7—C6—H6 | 120.4 | H12A—C12—H12B | 108.5 |
C5—C6—H6 | 120.4 | C12—C13—H13A | 109.5 |
O2—C7—C6 | 124.26 (14) | C12—C13—H13B | 109.5 |
O2—C7—C2 | 115.53 (13) | H13A—C13—H13B | 109.5 |
C6—C7—C2 | 120.22 (15) | C12—C13—H13C | 109.5 |
O2—C8—C9 | 108.23 (12) | H13A—C13—H13C | 109.5 |
O2—C8—H8A | 110.1 | H13B—C13—H13C | 109.5 |
C9—C8—H8A | 110.1 | C7—O2—C8 | 118.02 (12) |
O2—C8—H8B | 110.1 | C11—O3—C12 | 117.39 (13) |
O1—C1—C2—C3 | −1.2 (3) | C1—C2—C7—C6 | 178.90 (15) |
O1—C1—C2—C7 | 179.50 (15) | O2—C8—C9—C10 | 5.2 (2) |
C7—C2—C3—C4 | 0.1 (2) | C8—C9—C10—C11 | 178.58 (15) |
C1—C2—C3—C4 | −179.18 (16) | C9—C10—C11—O4 | 6.4 (3) |
C2—C3—C4—C5 | −0.1 (3) | C9—C10—C11—O3 | −172.88 (16) |
C3—C4—C5—C6 | 0.4 (3) | C6—C7—O2—C8 | −8.0 (2) |
C4—C5—C6—C7 | −0.7 (3) | C2—C7—O2—C8 | 172.08 (13) |
C5—C6—C7—O2 | −179.24 (15) | C9—C8—O2—C7 | −174.39 (13) |
C5—C6—C7—C2 | 0.7 (2) | O4—C11—O3—C12 | −2.6 (3) |
C3—C2—C7—O2 | 179.52 (14) | C10—C11—O3—C12 | 176.75 (15) |
C1—C2—C7—O2 | −1.2 (2) | C13—C12—O3—C11 | 153.40 (15) |
C3—C2—C7—C6 | −0.4 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1···O2 | 0.95 | 2.39 | 2.7353 (17) | 101 |
C10—H10···O2 | 0.95 | 2.38 | 2.7221 (19) | 101 |
Acknowledgements
The authors thank the EPSRC National Crystallography Service (University of Southampton) for the data collection and the EPSRC National
Service Centre (University of Swansea) for the high resolution data.References
Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gong, Y., Najdi, S., Olmstead, M. M. & Kurth, M. J. (1998). J. Org. Chem. 63, 3081–3086. Web of Science CSD CrossRef CAS Google Scholar
Kerr, M. S., Read de Alaniz, J. & Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298–10299. Web of Science CrossRef PubMed CAS Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.