organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Eth­yl (E)-4-(2-formyl­phen­­oxy)but-2-enoate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 21 April 2005; accepted 26 April 2005; online 7 May 2005)

The mol­ecule of the title compound, C13H14O4, possesses normal geometric parameters. Its approximately planar conformation could be influenced by two intra­molecular C—H⋯O inter­actions.

Comment

The title compound, (I)[link], was prepared as a test substrate for an investigation into potential catalysts for the intra­molecular Stetter reaction. The compound is well known and has been previously used in this context (Kerr et al., 2002[Kerr, M. S., Read de Alaniz, J. & Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298-10299.]). In the present work, the synthesis used was that of Gong et al. (1998[Gong, Y., Najdi, S., Olmstead, M. M. & Kurth, M. J. (1998). J. Org. Chem. 63, 3081-3086.]).

[Scheme 1]

The mol­ecule of compound (I)[link] possesses normal geometric parameters (Table 1[link]). The complete mol­ecule is approximately planar (for the non-H atoms, the r.m.s deviation from the least-squares plane is 0.100 Å). This conformation might be stabilized by two intra­molecular C—H⋯O inter­actions (Fig. 1[link], Table 2[link]). The acute O—H⋯O bond angles are consistent with the intra­molecular nature of these putative bonds. The r.m.s. deviation from the mean plane for atoms C1, C2, C7, C8, C9, C10 and O2 is 0.043 Å [maximum deviation 0.1005 (11) Å for O2].

There are no ππ stacking or other weak inter­molecular inter­actions in (I)[link] and the crystal packing (Fig. 2[link]) is controlled by van der Waals forces.

[Figure 1]
Figure 1
A view of (I)[link], showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as small spheres of arbitrary radi. The possible C—H⋯O inter­actions are indicated by dashed lines.
[Figure 2]
Figure 2
The unit-cell packing in (I)[link], viewed down [010]. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Experimental

A dry two-necked flask was charged with NaH (15 mmol, 360.4 mg). Dry dimethyl­formamide (40 ml) was added and the resulting suspension cooled to 273 K. Salicylaldehyde (10 mmol, 1.220 g, 1.06 ml) was added and the solution stirred for 20 min. Eth­yl 4-bromocrotonate (11 mmol, 2.82 g, 2.01 ml) was added in one portion. The solution was then allowed to warm to room temperature and stirred for 1 h. Water (60 ml) was added, followed by extraction with Et2O (3 × 50 ml). The combined organic phases were washed with saturated brine (75 ml), dried (MgSO4) and the solvent removed. Chromatography of the resulting solid in 10% EtOAc in hexa­ne allowed collection of the desired product (1.809 g, 77.2%), which was recrystallized from ethanol as colourless blocks or plates; m.p 342–344 K. Analysis, C13H14O4 requires: C 66.66, H 6.02%; found: C 66.53, H 6.00%. Spectroscopic analysis: IR (KBr, νmax, cm−1): 2975.6 (Ar), 2902.4 (CH), 2859.5 (CHO), 1709.4 (CO2Et), 1671 (CHO); 1H NMR (250 MHz, CDCl3, δ, p.p.m.); 10.5 (1H, s, CHO), 7.8 (1H, d, J = 8 Hz, Ph), 7.6 (1H, t, J = 8 Hz, Ph), 7.0 (3H, m), 6.2 (1H, d, J = 15 Hz, CH—CO2Et), 4.8 (2H, s, CH2), 4.2 (2H, q, J = 7 Hz, CH2), 1.3 (3H, t, J = 8 Hz, Me); 13C NMR (250 MHz, CDCl3, δ, p.p.m.) 189.3 (CHO), 165.8 (CO2Et), 160.2, 141.2, 135.9, 128.8, 125.1, 122.5, 121.4, 112.5, 66.8 (CH2), 60.7 (CH2), 14.2 (Me); MS (ESI+): calculated: m/z 252.1230; found: 252.1232 [M+NH4+].

Crystal data
  • C13H14O4

  • Mr = 234.24

  • Monoclinic, P 21 /c

  • a = 10.6759 (6) Å

  • b = 6.9487 (4) Å

  • c = 16.4346 (6) Å

  • β = 102.164 (3)°

  • V = 1191.81 (11) Å3

  • Z = 4

  • Dx = 1.305 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2702 reflections

  • θ = 2.9–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.46 × 0.27 × 0.09 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.957, Tmax = 0.993

  • 10 415 measured reflections

  • 2712 independent reflections

  • 1830 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 27.5°

  • h = −13 → 13

  • k = −8 → 8

  • l = −17 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.02

  • 2712 reflections

  • 156 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.059P)2 + 0.2428P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

  • Extinction correction: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.])

  • Extinction coefficient: 0.036 (5)

Table 1
Selected torsion angles (°)[link]

O1—C1—C2—C7 179.50 (15)
C1—C2—C7—O2 −1.2 (2)
O2—C8—C9—C10 5.2 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.95 2.39 2.7353 (17) 101
C10—H10⋯O2 0.95 2.38 2.7221 (19) 101

All H atoms were placed in calculated positions, with C—H distances in the range 0.95–0.99 Å, and refined as riding on their carrier atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(meth­yl C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO (Otwinowski & Minor 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Ethyl (E)-4-(2-formylphenoxy)but-2-enoate top
Crystal data top
C13H14O4F(000) = 496
Mr = 234.24Dx = 1.305 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2702 reflections
a = 10.6759 (6) Åθ = 2.9–27.5°
b = 6.9487 (4) ŵ = 0.10 mm1
c = 16.4346 (6) ÅT = 120 K
β = 102.164 (3)°Plate, colourless
V = 1191.81 (11) Å30.46 × 0.27 × 0.09 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2712 independent reflections
Radiation source: fine-focus sealed tube1830 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω and φ scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1313
Tmin = 0.957, Tmax = 0.993k = 88
10415 measured reflectionsl = 1721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2428P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2712 reflectionsΔρmax = 0.20 e Å3
156 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00191 (16)0.2643 (2)0.41727 (9)0.0290 (4)
H10.07760.21470.45200.035*
C20.10653 (15)0.3112 (2)0.45585 (9)0.0241 (4)
C30.21906 (16)0.3879 (2)0.40804 (10)0.0323 (4)
H30.22530.40800.35010.039*
C40.32119 (17)0.4351 (3)0.44321 (11)0.0381 (5)
H40.39730.48750.41010.046*
C50.31130 (17)0.4051 (3)0.52753 (11)0.0362 (4)
H50.38170.43670.55200.043*
C60.20042 (16)0.3297 (2)0.57726 (10)0.0305 (4)
H60.19470.31120.63520.037*
C70.09813 (14)0.2818 (2)0.54104 (9)0.0236 (4)
C80.03522 (15)0.1948 (3)0.67211 (8)0.0283 (4)
H8A0.02710.10520.68860.034*
H8B0.02360.32340.69530.034*
C90.16789 (16)0.1254 (2)0.70449 (9)0.0283 (4)
H90.19220.10120.76260.034*
C100.25501 (16)0.0942 (2)0.65988 (9)0.0288 (4)
H100.23320.11420.60140.035*
C110.38551 (17)0.0292 (2)0.69836 (10)0.0311 (4)
C120.59362 (17)0.0211 (3)0.67090 (12)0.0457 (5)
H12A0.60300.11770.71610.055*
H12B0.64410.09430.69260.055*
C130.63992 (19)0.1017 (3)0.59849 (14)0.0503 (5)
H13A0.73130.13280.61540.075*
H13B0.62730.00660.55350.075*
H13C0.59170.21880.57900.075*
O10.00079 (12)0.28500 (18)0.34378 (6)0.0387 (4)
O20.01446 (10)0.20508 (16)0.58333 (6)0.0282 (3)
O30.45966 (11)0.02940 (18)0.64209 (7)0.0357 (3)
O40.42190 (13)0.01633 (19)0.77059 (7)0.0443 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0347 (9)0.0324 (10)0.0205 (7)0.0045 (7)0.0075 (7)0.0014 (7)
C20.0274 (8)0.0226 (8)0.0223 (7)0.0051 (7)0.0053 (6)0.0022 (7)
C30.0352 (10)0.0300 (10)0.0291 (8)0.0030 (8)0.0009 (7)0.0018 (7)
C40.0293 (10)0.0337 (11)0.0481 (10)0.0018 (8)0.0010 (8)0.0012 (8)
C50.0289 (9)0.0320 (10)0.0499 (11)0.0005 (8)0.0135 (8)0.0059 (8)
C60.0344 (9)0.0309 (10)0.0287 (8)0.0063 (8)0.0120 (7)0.0061 (7)
C70.0236 (8)0.0224 (9)0.0247 (8)0.0033 (6)0.0047 (6)0.0022 (6)
C80.0361 (9)0.0341 (10)0.0157 (7)0.0016 (7)0.0076 (6)0.0009 (7)
C90.0373 (10)0.0280 (9)0.0185 (7)0.0023 (7)0.0033 (7)0.0008 (7)
C100.0355 (9)0.0287 (9)0.0203 (7)0.0017 (7)0.0017 (7)0.0002 (7)
C110.0362 (9)0.0262 (9)0.0291 (8)0.0007 (8)0.0030 (7)0.0000 (7)
C120.0294 (10)0.0546 (13)0.0514 (11)0.0102 (9)0.0046 (8)0.0161 (10)
C130.0383 (11)0.0352 (11)0.0798 (14)0.0004 (9)0.0179 (10)0.0046 (11)
O10.0498 (8)0.0489 (8)0.0196 (6)0.0085 (6)0.0123 (5)0.0011 (5)
O20.0291 (6)0.0408 (7)0.0150 (5)0.0039 (5)0.0055 (4)0.0008 (5)
O30.0308 (7)0.0403 (8)0.0353 (6)0.0053 (5)0.0052 (5)0.0068 (5)
O40.0456 (8)0.0540 (9)0.0292 (7)0.0084 (6)0.0010 (5)0.0094 (6)
Geometric parameters (Å, º) top
C1—O11.2138 (18)C8—H8A0.99
C1—C21.469 (2)C8—H8B0.99
C1—H10.95C9—C101.318 (2)
C2—C31.395 (2)C9—H90.95
C2—C71.399 (2)C10—C111.474 (2)
C3—C41.377 (2)C10—H100.95
C3—H30.95C11—O41.2107 (19)
C4—C51.383 (3)C11—O31.338 (2)
C4—H40.95C12—O31.452 (2)
C5—C61.391 (2)C12—C131.491 (3)
C5—H50.95C12—H12A0.99
C6—C71.390 (2)C12—H12B0.99
C6—H60.95C13—H13A0.98
C7—O21.3639 (18)C13—H13B0.98
C8—O21.4305 (16)C13—H13C0.98
C8—C91.485 (2)
O1—C1—C2124.04 (16)C9—C8—H8B110.1
O1—C1—H1118.0H8A—C8—H8B108.4
C2—C1—H1118.0C10—C9—C8125.85 (14)
C3—C2—C7119.04 (14)C10—C9—H9117.1
C3—C2—C1120.33 (14)C8—C9—H9117.1
C7—C2—C1120.63 (14)C9—C10—C11121.70 (14)
C4—C3—C2121.23 (15)C9—C10—H10119.1
C4—C3—H3119.4C11—C10—H10119.1
C2—C3—H3119.4O4—C11—O3124.30 (16)
C3—C4—C5118.99 (16)O4—C11—C10125.43 (17)
C3—C4—H4120.5O3—C11—C10110.26 (13)
C5—C4—H4120.5O3—C12—C13107.47 (15)
C4—C5—C6121.41 (16)O3—C12—H12A110.2
C4—C5—H5119.3C13—C12—H12A110.2
C6—C5—H5119.3O3—C12—H12B110.2
C7—C6—C5119.11 (15)C13—C12—H12B110.2
C7—C6—H6120.4H12A—C12—H12B108.5
C5—C6—H6120.4C12—C13—H13A109.5
O2—C7—C6124.26 (14)C12—C13—H13B109.5
O2—C7—C2115.53 (13)H13A—C13—H13B109.5
C6—C7—C2120.22 (15)C12—C13—H13C109.5
O2—C8—C9108.23 (12)H13A—C13—H13C109.5
O2—C8—H8A110.1H13B—C13—H13C109.5
C9—C8—H8A110.1C7—O2—C8118.02 (12)
O2—C8—H8B110.1C11—O3—C12117.39 (13)
O1—C1—C2—C31.2 (3)C1—C2—C7—C6178.90 (15)
O1—C1—C2—C7179.50 (15)O2—C8—C9—C105.2 (2)
C7—C2—C3—C40.1 (2)C8—C9—C10—C11178.58 (15)
C1—C2—C3—C4179.18 (16)C9—C10—C11—O46.4 (3)
C2—C3—C4—C50.1 (3)C9—C10—C11—O3172.88 (16)
C3—C4—C5—C60.4 (3)C6—C7—O2—C88.0 (2)
C4—C5—C6—C70.7 (3)C2—C7—O2—C8172.08 (13)
C5—C6—C7—O2179.24 (15)C9—C8—O2—C7174.39 (13)
C5—C6—C7—C20.7 (2)O4—C11—O3—C122.6 (3)
C3—C2—C7—O2179.52 (14)C10—C11—O3—C12176.75 (15)
C1—C2—C7—O21.2 (2)C13—C12—O3—C11153.40 (15)
C3—C2—C7—C60.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O20.952.392.7353 (17)101
C10—H10···O20.952.382.7221 (19)101
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (University of Southampton) for the data collection and the EPSRC National Mass Spectrometry Service Centre (University of Swansea) for the high resolution mass spectroscopy data.

References

First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGong, Y., Najdi, S., Olmstead, M. M. & Kurth, M. J. (1998). J. Org. Chem. 63, 3081–3086.  Web of Science CSD CrossRef CAS Google Scholar
First citationKerr, M. S., Read de Alaniz, J. & Rovis, T. (2002). J. Am. Chem. Soc. 124, 10298–10299.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds