organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(10,11-Di­hydro­dibenz­[b,f]­azepin-5-yl)­ethano­ne

CROSSMARK_Color_square_no_text.svg

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bSchool of Science and the Environment, Coventry University, Coventry CV1 5FB, England
*Correspondence e-mail: apx106@coventry.ac.uk

(Received 20 April 2005; accepted 25 April 2005; online 14 May 2005)

The asymmetric unit of the title compound, C16H15NO, comprises two independent mol­ecules (A and B), both adopting a half-boat conformation, or butterfly shape. The intramolecular dihedral angles between the benzene rings in A and B are 64.40 (4) and 65.24 (5)°, respectively.

Comment

The title compound, (I[link]), is used as an intermediate for the synthesis of carbamazepine and oxcarbazepine (Kricka & Ledwith, 1974[Kricka, L. J. & Ledwith, A. (1974). Chem. Rev. 74, 101-123.]), two anticonvulsant drugs whose structures have been reported [Grzesiak et al., 2003[Grzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260-2271.] (most recent form); Hempel et al., 2005[Hempel, A., Camerman, N., Camerman, A. & Mastropaolo, D. (2005). Acta Cryst. E61, o1313-o1315.]]. As part of a series of studies into the structural aspects of imino­stilbene analogues, the structure of (I[link]) was determined and is reported here. A search of the Cambridge Structural Database (November 2004 version; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) reveals that there are 27 compounds reported that contain a 10,11-di­hydro­dibenz­[b,f]­azepine moiety with only two containing an additional N-acetyl group, viz. the N-acetyl­dibenz­[b,f]­azepine dimer (Harding, 1983[Harding, M. M. (1983). Acta Cryst. C39, 397-399.]) and its hydrate structure (Taga et al., 1986[Taga, T., Yamamoto, N., Ashikaga, K. & Nishijima, Y. (1986). Acta Cryst. C42, 840-843.]). The structure of (I[link]) (Fig. 1[link]) comprises two independent mol­ecules, A and B, in the asymmetric unit, both of which adopt a half-boat conformation (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) or butterfly shape. The intramolecular dihedral angles between the benzene rings in A and B are 64.40 (4) and 65.24 (5)°, respectively.[link]

[Scheme 1]
[Figure 1]
Figure 1
The molecular configuration and atom-numbering scheme for both independent molecules of (I[link]). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius. The molecules are shown with similar view directions and not in their true relative orientations.

Experimental

The title compound was prepared by refluxing 10,11-di­hydro-5H-dibenz­[b,f]­azepine (1.95 g, 10 mmol) in acetic anhydride (5 ml) for 6 h. Crystals were grown from methanol.

Crystal data
  • C16H15NO

  • Mr = 237.29

  • Orthorhombic, P212121

  • a = 9.5674 (2) Å

  • b = 11.7020 (3) Å

  • c = 22.2785 (4) Å

  • V = 2494.25 (9) Å3

  • Z = 8

  • Dx = 1.264 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3179 reflections

  • θ = 2.9–27.5°

  • μ = 0.08 mm−1

  • T = 150 (2) K

  • Prism, colourless

  • 0.60 × 0.40 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, USA.]) Tmin = 0.954, Tmax = 0.992

  • 19 122 measured reflections

  • 2778 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.037

  • θmax = 26.0°

  • h = −11 → 11

  • k = −14 → 14

  • l = −27 → 27

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.076

  • S = 1.02

  • 2778 reflections

  • 328 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.04P)2 + 0.3098P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0285 (14)

All H atoms were included in the refinement at calculated positions, in the riding-model approximation, with C—H distances of 0.95 (ArH), 0.98 (CH3) and 0.99 Å (CH2). The isotropic displacement parameters for all H atoms were set equal to 1.25Ueq of the carrier atom. The absolute configuration could not be accurately determined from the diffraction data, thus 1600 Friedel opposites were merged and the configuration arbitrarily assigned. The number of Friedel pairs is 1660.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

1-(10,11-Dihydrodibenz[b,f]azepin-5-yl)ethanone top
Crystal data top
C16H15NOF(000) = 1008
Mr = 237.29Dx = 1.264 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3179 reflections
a = 9.5674 (2) Åθ = 2.9–27.5°
b = 11.7020 (3) ŵ = 0.08 mm1
c = 22.2785 (4) ÅT = 150 K
V = 2494.25 (9) Å3Prism, colourless
Z = 80.60 × 0.40 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
2778 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2540 reflections with I > 2σ(I)
10 cm confocal mirrors monochromatorRint = 0.037
Detector resolution: 9.091 pixels mm-1θmax = 26.0°, θmin = 3.3°
φ and ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1414
Tmin = 0.954, Tmax = 0.992l = 2727
19122 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.04P)2 + 0.3098P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2778 reflectionsΔρmax = 0.26 e Å3
328 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0285 (14)
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL97 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.800837.

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

2.9908 (0.0055) x + 5.0064 (0.0065) y + 18.8940 (0.0072) z = 7.7832 (0.0024)

* 0.0017 (0.0011) C1A * 0.0033 (0.0011) C2A * -0.0055 (0.0010) C3A * 0.0026 (0.0010) C4A * 0.0024 (0.0010) C13A * -0.0045 (0.0010) C12A

Rms deviation of fitted atoms = 0.0036

6.8470 (0.0036) x - 2.5291 (0.0063) y - 14.7967 (0.0088) z = 0.8469 (0.0065)

Angle to previous plane (with approximate e.s.d.) = 64.40 (0.04)

* -0.0036 (0.0009) C6A * 0.0049 (0.0010) C7A * -0.0019 (0.0010) C8A * -0.0023 (0.0009) C9A * 0.0035 (0.0009) C15A * -0.0006 (0.0009) C14A

Rms deviation of fitted atoms = 0.0031

7.3973 (0.0036) x - 3.9017 (0.0064) y - 12.0187 (0.0111) z = 5.2566 (0.0031)

Angle to previous plane (with approximate e.s.d.) = 10.36 (0.08)

* -0.0087 (0.0010) C6B * 0.0061 (0.0010) C7B * 0.0017 (0.0011) C8B * -0.0067 (0.0010) C9B * 0.0039 (0.0009) C15B * 0.0038 (0.0009) C14B

Rms deviation of fitted atoms = 0.0056

3.4314 (0.0053) x - 10.3952 (0.0032) y + 6.3889 (0.0124) z = 2.8116 (0.0024)

Angle to previous plane (with approximate e.s.d.) = 65.24 (0.05)

* 0.0055 (0.0010) C1B * -0.0076 (0.0010) C2B * 0.0014 (0.0010) C3B * 0.0069 (0.0010) C4B * -0.0091 (0.0010) C13B * 0.0028 (0.0010) C12B

Rms deviation of fitted atoms = 0.0062

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O51A0.82550 (11)0.28256 (9)0.15509 (5)0.0286 (3)
N5A0.68701 (11)0.42139 (10)0.19408 (5)0.0200 (3)
C1A0.40748 (16)0.63632 (14)0.17892 (7)0.0303 (4)
H1A0.39350.70980.16180.038*
C2A0.29936 (16)0.58411 (14)0.20995 (7)0.0322 (4)
H2A0.21220.62230.21400.040*
C3A0.31716 (15)0.47727 (13)0.23498 (7)0.0273 (3)
H3A0.24240.44130.25570.034*
C4A0.44473 (14)0.42304 (12)0.22959 (6)0.0218 (3)
H4A0.45840.34990.24710.027*
C6A0.85940 (14)0.39654 (13)0.27291 (6)0.0228 (3)
H6A0.83290.31840.27450.029*
C7A0.95983 (15)0.43693 (14)0.31190 (7)0.0269 (3)
H7A1.00310.38680.33980.034*
C8A0.99707 (15)0.55152 (14)0.31001 (7)0.0277 (4)
H8A1.06530.58070.33690.035*
C9A0.93397 (15)0.62276 (13)0.26866 (7)0.0253 (3)
H9A0.96020.70100.26770.032*
C10A0.77174 (16)0.67239 (12)0.18546 (7)0.0262 (3)
H10A0.85000.70520.16200.033*
H11A0.73240.73500.21010.033*
C11A0.65919 (16)0.63516 (13)0.14111 (7)0.0270 (3)
H12A0.62740.70230.11780.034*
H13A0.69940.57910.11260.034*
C12A0.53623 (15)0.58235 (12)0.17251 (6)0.0231 (3)
C13A0.55270 (14)0.47529 (12)0.19864 (6)0.0195 (3)
C14A0.79621 (13)0.46853 (12)0.23116 (6)0.0191 (3)
C15A0.83272 (14)0.58400 (12)0.22804 (6)0.0210 (3)
C51A0.71104 (15)0.32820 (12)0.15771 (6)0.0223 (3)
C52A0.58861 (16)0.28645 (14)0.12150 (7)0.0307 (4)
H51A0.62230.23880.08830.038*
H52A0.53720.35200.10530.038*
H53A0.52660.24130.14720.038*
O51B0.84508 (11)0.15032 (9)0.07124 (4)0.0285 (2)
N5B0.73882 (12)0.00453 (10)0.02391 (5)0.0204 (3)
C1B0.38389 (15)0.12928 (13)0.02440 (6)0.0252 (3)
H1B0.32250.16720.00250.031*
C2B0.34099 (16)0.10637 (13)0.08267 (7)0.0265 (3)
H2B0.24960.12740.09520.033*
C3B0.43030 (16)0.05315 (13)0.12269 (7)0.0272 (3)
H3B0.40060.03860.16270.034*
C4B0.56308 (16)0.02100 (12)0.10457 (6)0.0242 (3)
H4B0.62520.01490.13190.030*
C6B0.81569 (15)0.18997 (12)0.00373 (6)0.0235 (3)
H6B0.86930.18610.03960.029*
C7B0.81555 (16)0.28942 (13)0.02988 (7)0.0278 (3)
H7B0.87050.35310.01780.035*
C8B0.73456 (16)0.29516 (14)0.08122 (7)0.0287 (4)
H8B0.73300.36320.10450.036*
C9B0.65584 (16)0.20186 (13)0.09869 (7)0.0271 (3)
H9B0.60000.20760.13380.034*
C10B0.56362 (16)0.00460 (13)0.09084 (6)0.0265 (3)
H10B0.59080.00890.13310.033*
H11B0.46610.03280.09110.033*
C11B0.56505 (15)0.11070 (12)0.05849 (6)0.0243 (3)
H12B0.50280.16490.07970.030*
H13B0.66090.14250.05900.030*
C12B0.51687 (14)0.09688 (12)0.00527 (6)0.0214 (3)
C13B0.60392 (14)0.04200 (12)0.04596 (6)0.0204 (3)
C14B0.73789 (14)0.09537 (12)0.01449 (6)0.0200 (3)
C15B0.65551 (14)0.09932 (12)0.06648 (6)0.0217 (3)
C51B0.85326 (15)0.06939 (13)0.03633 (6)0.0224 (3)
C52B0.98762 (15)0.04118 (15)0.00479 (7)0.0317 (4)
H51B1.03850.01690.02780.040*
H52B0.96710.01170.03540.040*
H53B1.04500.11030.00150.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O51A0.0244 (6)0.0261 (6)0.0353 (6)0.0062 (5)0.0005 (4)0.0072 (5)
N5A0.0178 (5)0.0166 (6)0.0257 (6)0.0004 (5)0.0001 (5)0.0018 (5)
C1A0.0297 (8)0.0201 (8)0.0410 (9)0.0054 (7)0.0050 (7)0.0027 (7)
C2A0.0228 (7)0.0267 (9)0.0471 (9)0.0059 (7)0.0010 (7)0.0040 (7)
C3A0.0211 (7)0.0259 (9)0.0348 (8)0.0013 (6)0.0045 (6)0.0032 (7)
C4A0.0229 (7)0.0176 (8)0.0247 (7)0.0001 (6)0.0002 (6)0.0002 (6)
C6A0.0192 (7)0.0220 (8)0.0273 (7)0.0028 (6)0.0039 (6)0.0014 (6)
C7A0.0203 (7)0.0335 (9)0.0268 (7)0.0047 (7)0.0024 (6)0.0009 (6)
C8A0.0186 (7)0.0361 (9)0.0284 (8)0.0026 (7)0.0021 (6)0.0104 (7)
C9A0.0238 (7)0.0231 (8)0.0290 (7)0.0057 (6)0.0090 (6)0.0087 (6)
C10A0.0302 (8)0.0179 (8)0.0304 (8)0.0020 (6)0.0074 (7)0.0017 (6)
C11A0.0323 (8)0.0215 (8)0.0274 (8)0.0003 (7)0.0027 (6)0.0060 (6)
C12A0.0260 (7)0.0204 (8)0.0229 (7)0.0015 (6)0.0013 (6)0.0004 (6)
C13A0.0184 (7)0.0182 (8)0.0220 (7)0.0015 (6)0.0005 (6)0.0040 (6)
C14A0.0156 (6)0.0198 (7)0.0219 (6)0.0002 (6)0.0037 (6)0.0043 (6)
C15A0.0200 (7)0.0206 (7)0.0224 (7)0.0014 (6)0.0079 (6)0.0038 (6)
C51A0.0237 (8)0.0187 (8)0.0245 (7)0.0003 (6)0.0019 (6)0.0002 (6)
C52A0.0279 (8)0.0268 (9)0.0373 (9)0.0014 (7)0.0027 (7)0.0098 (7)
O51B0.0315 (6)0.0245 (6)0.0295 (5)0.0037 (5)0.0040 (5)0.0058 (4)
N5B0.0189 (6)0.0197 (6)0.0225 (6)0.0005 (5)0.0011 (5)0.0039 (5)
C1B0.0246 (7)0.0203 (8)0.0306 (8)0.0001 (6)0.0011 (6)0.0038 (6)
C2B0.0237 (7)0.0249 (8)0.0310 (8)0.0025 (7)0.0040 (6)0.0079 (6)
C3B0.0323 (8)0.0253 (8)0.0240 (7)0.0071 (7)0.0072 (7)0.0063 (6)
C4B0.0303 (8)0.0211 (8)0.0212 (7)0.0017 (7)0.0017 (6)0.0039 (6)
C6B0.0198 (7)0.0255 (8)0.0253 (7)0.0005 (6)0.0010 (6)0.0015 (6)
C7B0.0269 (8)0.0219 (8)0.0347 (8)0.0041 (7)0.0064 (7)0.0012 (6)
C8B0.0272 (8)0.0231 (8)0.0359 (8)0.0001 (7)0.0045 (7)0.0096 (6)
C9B0.0242 (8)0.0301 (9)0.0271 (7)0.0010 (7)0.0005 (6)0.0073 (6)
C10B0.0291 (8)0.0292 (8)0.0214 (7)0.0045 (7)0.0015 (6)0.0015 (6)
C11B0.0245 (7)0.0235 (8)0.0250 (7)0.0032 (6)0.0005 (6)0.0029 (6)
C12B0.0236 (7)0.0155 (7)0.0251 (7)0.0012 (6)0.0002 (6)0.0029 (6)
C13B0.0216 (7)0.0160 (7)0.0237 (7)0.0026 (6)0.0002 (6)0.0050 (6)
C14B0.0200 (6)0.0194 (7)0.0206 (7)0.0020 (6)0.0034 (5)0.0021 (5)
C15B0.0204 (7)0.0232 (8)0.0215 (7)0.0013 (6)0.0033 (6)0.0016 (6)
C51B0.0245 (7)0.0222 (8)0.0206 (7)0.0003 (6)0.0035 (6)0.0029 (6)
C52B0.0238 (7)0.0336 (9)0.0377 (9)0.0044 (7)0.0010 (7)0.0029 (7)
Geometric parameters (Å, º) top
O51A—C51A1.2198 (17)O51B—C51B1.2279 (17)
N5A—C51A1.3780 (18)N5B—C51B1.3607 (18)
N5A—C13A1.4350 (17)N5B—C13B1.4489 (17)
N5A—C14A1.4416 (17)N5B—C14B1.4486 (17)
C1A—C2A1.386 (2)C9B—C8B1.382 (2)
C1A—C12A1.392 (2)C9B—C15B1.398 (2)
C1A—H1A0.95C9B—H9B0.95
C2A—C3A1.379 (2)C8B—C7B1.383 (2)
C2A—H2A0.95C8B—H8B0.95
C3A—C4A1.381 (2)C7B—C6B1.384 (2)
C3A—H3A0.95C7B—H7B0.95
C4A—C13A1.3844 (19)C6B—C14B1.394 (2)
C4A—H4A0.95C6B—H6B0.95
C6A—C7A1.379 (2)C4B—C13B1.385 (2)
C6A—C14A1.393 (2)C4B—C3B1.385 (2)
C6A—H6A0.95C4B—H4B0.95
C7A—C8A1.388 (2)C3B—C2B1.383 (2)
C7A—H7A0.95C3B—H3B0.95
C8A—C9A1.381 (2)C2B—C1B1.388 (2)
C8A—H8A0.95C2B—H2B0.95
C9A—C15A1.401 (2)C1B—C12B1.394 (2)
C9A—H9A0.95C1B—H1B0.95
C10A—C15A1.520 (2)C11B—C12B1.502 (2)
C10A—C11A1.525 (2)C11B—C10B1.530 (2)
C10A—H10A0.99C11B—H12B0.99
C10A—H11A0.99C11B—H13B0.99
C11A—C12A1.502 (2)C10B—C15B1.515 (2)
C11A—H12A0.99C10B—H10B0.99
C11A—H13A0.99C10B—H11B0.99
C12A—C13A1.390 (2)C15B—C14B1.4017 (19)
C14A—C15A1.397 (2)C13B—C12B1.388 (2)
C51A—C52A1.504 (2)C51B—C52B1.502 (2)
C52A—H51A0.98C52B—H51B0.98
C52A—H52A0.98C52B—H52B0.98
C52A—H53A0.98C52B—H53B0.98
C51A—N5A—C13A122.60 (11)C51B—N5B—C13B118.62 (11)
C51A—N5A—C14A121.26 (11)C51B—N5B—C14B125.12 (11)
C13A—N5A—C14A116.12 (10)C13B—N5B—C14B116.04 (11)
C2A—C1A—C12A120.78 (14)C8B—C9B—C15B122.31 (14)
C2A—C1A—H1A119.6C8B—C9B—H9B118.8
C12A—C1A—H1A119.6C15B—C9B—H9B118.8
C3A—C2A—C1A120.59 (14)C9B—C8B—C7B119.98 (14)
C3A—C2A—H2A119.7C9B—C8B—H8B120.0
C1A—C2A—H2A119.7C7B—C8B—H8B120.0
C4A—C3A—C2A119.37 (14)C6B—C7B—C8B119.26 (14)
C4A—C3A—H3A120.3C6B—C7B—H7B120.4
C2A—C3A—H3A120.3C8B—C7B—H7B120.4
C3A—C4A—C13A119.99 (13)C7B—C6B—C14B120.64 (14)
C3A—C4A—H4A120.0C7B—C6B—H6B119.7
C13A—C4A—H4A120.0C14B—C6B—H6B119.7
C7A—C6A—C14A121.05 (14)C13B—C4B—C3B119.04 (14)
C7A—C6A—H6A119.5C13B—C4B—H4B120.5
C14A—C6A—H6A119.5C3B—C4B—H4B120.5
C6A—C7A—C8A119.40 (14)C2B—C3B—C4B120.07 (13)
C6A—C7A—H7A120.3C2B—C3B—H3B120.0
C8A—C7A—H7A120.3C4B—C3B—H3B120.0
C9A—C8A—C7A119.41 (14)C3B—C2B—C1B120.49 (14)
C9A—C8A—H8A120.3C3B—C2B—H2B119.8
C7A—C8A—H8A120.3C1B—C2B—H2B119.8
C8A—C9A—C15A122.52 (14)C2B—C1B—C12B120.22 (14)
C8A—C9A—H9A118.7C2B—C1B—H1B119.9
C15A—C9A—H9A118.7C12B—C1B—H1B119.9
C15A—C10A—C11A118.75 (12)C12B—C11B—C10B110.36 (12)
C15A—C10A—H10A107.6C12B—C11B—H12B109.6
C11A—C10A—H10A107.6C10B—C11B—H13B109.6
C15A—C10A—H11A107.6C12B—C11B—H13B109.6
C11A—C10A—H11A107.6C10B—C11B—H12B109.6
H10A—C10A—H11A107.1H12B—C11B—H13B108.1
C12A—C11A—C10A111.64 (12)C15B—C10B—C11B118.11 (12)
C12A—C11A—H12A109.3C15B—C10B—H10B107.8
C10A—C11A—H12A109.3C11B—C10B—H11B107.8
C12A—C11A—H13A109.3C15B—C10B—H11B107.8
C10A—C11A—H13A109.3C11B—C10B—H10B107.8
H12A—C11A—H13A108.0H10B—C10B—H11B107.1
C13A—C12A—C1A117.80 (13)C9B—C15B—C14B116.82 (13)
C13A—C12A—C11A118.49 (13)C9B—C15B—C10B116.44 (12)
C1A—C12A—C11A123.67 (13)C14B—C15B—C10B126.73 (13)
C4A—C13A—C12A121.46 (13)C6B—C14B—C15B120.96 (13)
C4A—C13A—N5A120.62 (12)C6B—C14B—N5B117.74 (12)
C12A—C13A—N5A117.90 (13)C15B—C14B—N5B121.20 (12)
C6A—C14A—C15A120.63 (13)C4B—C13B—C12B121.89 (13)
C6A—C14A—N5A117.76 (12)C4B—C13B—N5B121.15 (13)
C15A—C14A—N5A121.51 (12)C12B—C13B—N5B116.94 (12)
C14A—C15A—C9A116.98 (13)C13B—C12B—C1B118.27 (13)
C14A—C15A—C10A126.38 (13)C13B—C12B—C11B118.89 (12)
C9A—C15A—C10A116.63 (13)C1B—C12B—C11B122.67 (13)
O51A—C51A—N5A121.63 (13)O51B—C51B—N5B120.51 (13)
O51A—C51A—C52A122.10 (13)O51B—C51B—C52B121.37 (13)
N5A—C51A—C52A116.27 (12)N5B—C51B—C52B118.10 (12)
C51A—C52A—H51A109.5C51B—C52B—H51B109.5
C51A—C52A—H52A109.5C51B—C52B—H52B109.5
H51A—C52A—H52A109.5H51B—C52B—H52B109.5
C51A—C52A—H53A109.5C51B—C52B—H53B109.5
H51A—C52A—H53A109.5H51B—C52B—H53B109.5
H52A—C52A—H53A109.5H52B—C52B—H53B109.5
C12A—C1A—C2A—C3A0.2 (2)C15B—C9B—C8B—C7B0.7 (2)
C1A—C2A—C3A—C4A0.9 (2)C9B—C8B—C7B—C6B0.5 (2)
C2A—C3A—C4A—C13A0.8 (2)C8B—C7B—C6B—C14B1.5 (2)
C14A—C6A—C7A—C8A0.9 (2)C13B—C4B—C3B—C2B0.6 (2)
C6A—C7A—C8A—C9A0.7 (2)C4B—C3B—C2B—C1B0.8 (2)
C7A—C8A—C9A—C15A0.0 (2)C3B—C2B—C1B—C12B1.2 (2)
C15A—C10A—C11A—C12A56.69 (17)C12B—C11B—C10B—C15B60.81 (17)
C2A—C1A—C12A—C13A0.5 (2)C8B—C9B—C15B—C14B0.9 (2)
C2A—C1A—C12A—C11A178.13 (14)C8B—C9B—C15B—C10B179.74 (14)
C10A—C11A—C12A—C13A70.72 (17)C11B—C10B—C15B—C9B177.41 (13)
C10A—C11A—C12A—C1A106.87 (16)C11B—C10B—C15B—C14B3.9 (2)
C3A—C4A—C13A—C12A0.1 (2)C7B—C6B—C14B—C15B1.3 (2)
C3A—C4A—C13A—N5A178.27 (13)C7B—C6B—C14B—N5B177.85 (12)
C1A—C12A—C13A—C4A0.6 (2)C9B—C15B—C14B—C6B0.12 (19)
C11A—C12A—C13A—C4A178.33 (13)C10B—C15B—C14B—C6B178.58 (13)
C1A—C12A—C13A—N5A177.65 (12)C9B—C15B—C14B—N5B176.52 (12)
C11A—C12A—C13A—N5A0.09 (19)C10B—C15B—C14B—N5B2.2 (2)
C51A—N5A—C13A—C4A73.45 (18)C51B—N5B—C14B—C6B64.33 (18)
C14A—N5A—C13A—C4A105.01 (14)C13B—N5B—C14B—C6B121.27 (14)
C51A—N5A—C13A—C12A108.30 (15)C51B—N5B—C14B—C15B119.16 (15)
C14A—N5A—C13A—C12A73.24 (16)C13B—N5B—C14B—C15B55.25 (17)
C7A—C6A—C14A—C15A0.4 (2)C3B—C4B—C13B—C12B1.6 (2)
C7A—C6A—C14A—N5A176.84 (12)C3B—C4B—C13B—N5B176.65 (12)
C51A—N5A—C14A—C6A58.07 (17)C51B—N5B—C13B—C4B81.31 (17)
C13A—N5A—C14A—C6A120.41 (13)C14B—N5B—C13B—C4B103.90 (15)
C51A—N5A—C14A—C15A125.49 (14)C51B—N5B—C13B—C12B100.34 (15)
C13A—N5A—C14A—C15A56.03 (17)C14B—N5B—C13B—C12B74.45 (16)
C6A—C14A—C15A—C9A0.31 (19)C4B—C13B—C12B—C1B1.2 (2)
N5A—C14A—C15A—C9A176.03 (11)N5B—C13B—C12B—C1B177.12 (12)
C6A—C14A—C15A—C10A179.32 (13)C4B—C13B—C12B—C11B176.53 (13)
N5A—C14A—C15A—C10A3.0 (2)N5B—C13B—C12B—C11B1.81 (19)
C8A—C9A—C15A—C14A0.48 (19)C2B—C1B—C12B—C13B0.2 (2)
C8A—C9A—C15A—C10A179.58 (13)C2B—C1B—C12B—C11B174.92 (13)
C11A—C10A—C15A—C14A0.1 (2)C10B—C11B—C12B—C13B71.31 (16)
C11A—C10A—C15A—C9A178.89 (12)C10B—C11B—C12B—C1B103.78 (15)
C13A—N5A—C51A—O51A178.94 (13)C13B—N5B—C51B—O51B8.42 (19)
C14A—N5A—C51A—O51A0.6 (2)C14B—N5B—C51B—O51B177.31 (12)
C13A—N5A—C51A—C52A1.20 (19)C13B—N5B—C51B—C52B169.77 (13)
C14A—N5A—C51A—C52A179.58 (13)C14B—N5B—C51B—C52B4.5 (2)
 

Acknowledgements

The authors thank the EPSRC National Crystallography Service (Southampton, England) and acknowledge the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationGrzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260–2271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHarding, M. M. (1983). Acta Cryst. C39, 397–399.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHempel, A., Camerman, N., Camerman, A. & Mastropaolo, D. (2005). Acta Cryst. E61, o1313–o1315.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKricka, L. J. & Ledwith, A. (1974). Chem. Rev. 74, 101–123.  CrossRef CAS Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaga, T., Yamamoto, N., Ashikaga, K. & Nishijima, Y. (1986). Acta Cryst. C42, 840–843.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds