metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloro­tris­(tri­phenyl­phosphine)ruthenium(II) di­chloro­methane hemisolvate

CROSSMARK_Color_square_no_text.svg

aUniversity of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: jon.dilworth@chem.ox.ac.uk

(Received 16 May 2005; accepted 20 May 2005; online 31 May 2005)

A third modification of [RuCl2(PPh3)3] has been characterized, this time as the title compound, [RuCl2(C18H15P)3]·0.5CH2Cl2. As seen for the previous modifications, the complex has a distorted square-pyramidal geometry with an ortho-H atom `blocking' the site trans to the apical PPh3 ligand. There is no evidence for a strong C—H⋯Ru inter­action nor any specific directional force in the solid state.

Comment

Two different modifications of [RuCl2(PPh3)3] have been solved in the space groups P21/c (La Placa & Ibers, 1965[La Placa, S. J. & Ibers, J. A. (1965). Inorg. Chem. 4, 778-783.]) and P21/n (Ernst et al., 2003[Ernst, R. D., Basta, R. & Arif, A. M. (2003). Z. Kristallogr. New Cryst. Struct. 218, 49-51.]). Both show a distorted square-pyramidal geometry about Ru, with an ortho-H atom approaching the metal and `blocking' the site trans to the apical PPh3 ligand. As part of our studies on RuII thio­ether complexes, we discovered the title compound, (I)[link], (Fig. 1[link]), also containing the [RuCl2(PPh3)3] complex, as the dichloro­methane hemisolvate in the space group C2/c.

[Scheme 1]

The metal complex in (I)[link] adopts a distorted square-pyramidal geometry with bond lengths, angles and phenyl ring orientations virtually identical to the P21/c modification of [RuCl2(PPh3)3]. In fact, most [RuIIX2(PPh3)3] complexes are distorted square-pyramidal (Anillo et al., 1993[Anillo, A., Barrio, C., García-Granda, S. & Obeso-Rosete, R. (1993). J. Chem. Soc. Dalton Trans. pp. 1125-1130.]; MacFarlane et al., 1996[MacFarlane, K. S., Joshi, A. M., Rettig, S. J. & James, B. R. (1996). Inorg. Chem. 35, 7304-7310.]), due to electronic (vibrational distortions, Jahn–Teller effects) and/or steric reasons.

The shortest Ru⋯H distance in (I)[link] is due to an ortho-H atom located approximately trans to P2 [Ru1⋯H2 = 2.83 (4) Å and P2—Ru1⋯H2 = 168 (2)°]. The shortest Ru⋯C distance in (I)[link] [Ru1⋯C2 3.445 (4) Å] is average for penta-coordinate [RuII(PPh3)3] complexes (Anillo et al., 1993[Anillo, A., Barrio, C., García-Granda, S. & Obeso-Rosete, R. (1993). J. Chem. Soc. Dalton Trans. pp. 1125-1130.]; MacFarlane et al., 1996[MacFarlane, K. S., Joshi, A. M., Rettig, S. J. & James, B. R. (1996). Inorg. Chem. 35, 7304-7310.]) and some 0.2 Å shorter than in [Ru0(CO)2(PPh3)3] (Hiraki et al., 1997[Hiraki, K., Kira, S. & Kawano H. (1997). Bull. Chem. Soc. Jpn, 70, 1583-1592.]). It is 0.1–0.3 Å shorter than the analogous distance in hexa-coordinate [RuII(PPh3)3] complexes (Skapski & Stephens, 1974[Skapski, A. C. & Stephens, F. A. (1974). J. Chem. Soc. Dalton Trans. pp. 390-395.]; Alexander et al., 1988[Alexander, B. D., Gomez-Sal, M. P., Gannon, P. R., Blaine, C. A., Boyle, P. D., Mueting, A. M. & Pignolet, L. H. (1988). Inorg. Chem. 27, 3301-3308.]; Mizuho et al., 1991[Mizuho, Y., Kasuga, N. & Komiya, S. (1991). Chem. Lett. pp. 2127-2130.]; Poulton et al., 1992[Poulton, J. T., Folting, K. & Caulton, K. G. (1992). Organometallics, 11, 1364-1372.]; Junk & Steed, 1999[Junk, P. C. & Steed, J. W. (1999). J. Organomet. Chem. 587, 191-194.]; Jazzar et al., 2001[Jazzar, R. F. R., Mahon, M. F. & Whittlesey, M. K. (2001). Organometallics, 20, 3745-3751.]) and some 0.2 Å longer than in tetra-coordinate [RuII(SC6F5)2(PPh3)2] (Catalá et al., 1987[Catalá, R.-M., Cruz-Garritz, D., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1987). J. Organomet. Chem. 328, C37-C39.], 1989[Catalá, R.-M., Cruz-Garritz, D., Sosa, P., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1989). J. Organomet. Chem. 359, 219-232.]). There is no elongation of the C2—H2 bond in (I)[link] as observed in the P21/n modification of [RuCl2(PPh3)3], so overall there appears to be no strong C2—H2⋯Ru1 inter­action in (I)[link].

[RuCl2(PPh3)3] has been referred to as an agostic complex (Leung et al., 2000[Leung, W.-H., Zheng, H., Chim, J. L. C., Chan, J., Wong, W.-T. & Williams, I. D. (2000). J. Chem. Soc. Dalton Trans. pp. 423-430.]; Perera & Shaw, 1994[Perera, S. D. & Shaw, B. L. (1994). J. Chem. Soc. Chem. Commun. pp. 1201-1202.], 1995[Perera, S. D. & Shaw, B. L. (1995). J. Chem. Soc. Dalton Trans. pp. 3861-3866.]; Catalá et al., 1987[Catalá, R.-M., Cruz-Garritz, D., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1987). J. Organomet. Chem. 328, C37-C39.], 1989[Catalá, R.-M., Cruz-Garritz, D., Sosa, P., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1989). J. Organomet. Chem. 359, 219-232.]), but much shorter and stronger agostic C—H⋯Ru bonds are known (Huang et al., 1999[Huang, D., Streib, W. E., Bollinger, J. C., Caulton, K. G., Winter, R. F. & Scheiring T. (1999). J. Am. Chem. Soc. 121, 8087-8097.], 2000[Huang, D., Bollinger, J. C., Streib, W. E., Folting, K., Young, V. Jr, Eisenstein, O. & Caulton, K. G. (2000). Organometallics, 19, 2281-2290.]; Jiménez Tenorio et al., 2000[Jiménez Tenorio, M., Mereiter, K., Puerta, M. C. & Valerga, P. (2000). J. Am. Chem. Soc. 122, 11230-11231.]). The close approach of the ortho-H atom to Ru and subsequent `blocking' of the site trans to the apical PPh3 ligand may therefore be due to a weak C—H⋯Ru inter­action, steric crowding of the metal centre and/or crystal packing forces in the solid state.

The crystal packing in (I)[link] is unexceptional and gives no indication of any specific directional force being present. The CH2Cl2 solvent mol­ecule lies on a twofold symmetry axis and plays no role in metal coordination.

[Figure 1]
Figure 1
A view of (I)[link], with displacement ellipsoids shown at the 50% probability level. The solvent mol­ecule and most H atoms have been omitted for clarity.

Experimental

[RuCl2(PPh3)3] was synthesized according to the literature method of Hallman et al. (1970[Hallman, P. S., Stephenson T. A. & Wilkinson, G. (1970). Inorg. Synth. 12, 237-240.]) but using only one-quarter the specified volume of methanol. Suitable single crystals of (I)[link] were grown by two-phase dichloro­methane–methanol liquid diffusion.

Crystal data
  • [RuCl2(C18H15P)3]·0.5CH2Cl2

  • Mr = 1001.31

  • Monoclinic, C 2/c

  • a = 22.2083 (2) Å

  • b = 12.84460 (10) Å

  • c = 33.9272 (5) Å

  • β = 107.5681 (5)°

  • V = 9226.57 (18) Å3

  • Z = 8

  • Dx = 1.442 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 17441 reflections

  • θ = 5.0–27.5°

  • μ = 0.66 mm−1

  • T = 150 K

  • Block, purple–brown

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.93, Tmax = 0.94

  • 17441 measured reflections

  • 10441 independent reflections

  • 6083 reflections with I > 3σ(I)

  • Rint = 0.05

  • θmax = 27.5°

  • h = −28 → 28

  • k = −14 → 16

  • l = −44 → 43

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.041

  • S = 1.11

  • 6083 reflections

  • 563 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = [1 − (FoFc)2/36σ(Fo)2]2/0.437T0(x) + 0.0688T1(x) + 0.16T2(x)], where Tn(x) are Chebychev polynomials and x = Fc/Fmax (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.])

  • (Δ/σ)max = 0.001

  • Δρmax = 1.76 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Ru1—P3 2.3557 (9)
Ru1—P2 2.2118 (10)
Ru1—P1 2.4334 (9)
Ru1—Cl2 2.3732 (9)
Ru1—Cl1 2.3916 (9)
C2—H2 0.94 (4)
C50—H50 0.96 (5)
P3—Ru1—P2 98.27 (4)
P3—Ru1—P1 160.12 (4)
P2—Ru1—P1 101.08 (4)
P3—Ru1—Cl2 92.05 (3)
P2—Ru1—Cl2 93.27 (4)
P1—Ru1—Cl2 91.36 (3)
P3—Ru1—Cl1 86.29 (3)
P2—Ru1—Cl1 107.46 (4)
P1—Ru1—Cl1 83.63 (3)
Cl2—Ru1—Cl1 159.24 (4)

Atoms H2 and H50 were located in a difference Fourier map and their coordinates and isotropic displacement parameters were subsequently refined. All other H atoms were positioned geometrically with C—H = 1.00 Å. The most positive and negative residual electron densities are located 1.11 and 1.05 Å from Cl61, respectively, possibly indicating disorder in the CH2Cl2 solvent mol­ecule. No attempt was made to model this disorder.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Dichlorotris(triphenylphosphine)ruthenium(II) dichloromethane hemisolvate top
Crystal data top
[RuCl2(C18H15P)3]·0.5CH2Cl2F(000) = 4104
Mr = 1001.31Dx = 1.442 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 17441 reflections
a = 22.2083 (2) Åθ = 5.0–27.5°
b = 12.8446 (1) ŵ = 0.66 mm1
c = 33.9272 (5) ÅT = 150 K
β = 107.5681 (5)°Block, purple-brown
V = 9226.57 (18) Å30.10 × 0.10 × 0.10 mm
Z = 8
Data collection top
Nonius KappaCCD area-detector
diffractometer
6083 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.05
ω scansθmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
h = 2828
Tmin = 0.93, Tmax = 0.94k = 1416
17441 measured reflectionsl = 4443
10441 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.041H atoms treated by a mixture of independent and constrained refinement
S = 1.11 Method, part 1, Chebychev polynomial (Watkin, 1994; Prince, 1982). [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients 0.437 0.688E-01 0.160 and x = F /Fmax. Method, part 2, Robust Weighting (Prince, 1982). W = [weight]*[1-(deltaF/6*sigmaF)2]2
6083 reflections(Δ/σ)max = 0.001
563 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = 1.04 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.775455 (13)0.12420 (2)0.118831 (8)0.0156
Cl10.82062 (4)0.18547 (8)0.18806 (3)0.0225
Cl20.71825 (4)0.12677 (9)0.04738 (3)0.0286
P10.67803 (4)0.12197 (8)0.13763 (3)0.0170
P20.79616 (5)0.04418 (7)0.11854 (3)0.0183
P30.86747 (4)0.18753 (8)0.10621 (3)0.0185
C10.65610 (18)0.2584 (3)0.14161 (11)0.0215
C20.6878 (2)0.3382 (3)0.12885 (13)0.0251
C30.6658 (2)0.4400 (3)0.12618 (15)0.0327
C40.6119 (2)0.4626 (3)0.13678 (14)0.0318
C50.57960 (19)0.3843 (4)0.15002 (13)0.0299
C60.60135 (19)0.2830 (3)0.15204 (13)0.0262
C70.68439 (18)0.0651 (3)0.18829 (11)0.0220
C80.69975 (19)0.1256 (4)0.22389 (12)0.0283
C90.7116 (3)0.0785 (4)0.26248 (13)0.0428
C100.7082 (2)0.0290 (4)0.26578 (14)0.0423
C110.6924 (2)0.0890 (4)0.23038 (14)0.0328
C120.68043 (19)0.0428 (3)0.19190 (12)0.0255
C130.59868 (17)0.0829 (3)0.10429 (11)0.0193
C140.57985 (18)0.1250 (4)0.06433 (12)0.0301
C150.5188 (2)0.1096 (4)0.03881 (13)0.0405
C160.4751 (2)0.0551 (4)0.05218 (15)0.0420
C170.4931 (2)0.0157 (4)0.09183 (17)0.0414
C180.5553 (2)0.0277 (3)0.11781 (14)0.0301
C190.72758 (17)0.1308 (3)0.10889 (12)0.0222
C200.67111 (19)0.1063 (3)0.07843 (13)0.0270
C210.61850 (19)0.1703 (4)0.07249 (14)0.0324
C220.6206 (2)0.2566 (4)0.09678 (16)0.0393
C230.6755 (2)0.2819 (3)0.12672 (16)0.0363
C240.72886 (19)0.2215 (3)0.13245 (13)0.0277
C250.84676 (17)0.1040 (3)0.16634 (12)0.0217
C260.84022 (18)0.0704 (3)0.20377 (12)0.0250
C270.8708 (2)0.1208 (4)0.24050 (13)0.0345
C280.9091 (2)0.2054 (4)0.24021 (16)0.0442
C290.9165 (2)0.2397 (4)0.20337 (16)0.0416
C300.8852 (2)0.1904 (3)0.16658 (14)0.0303
C310.83186 (18)0.0890 (3)0.07931 (12)0.0214
C320.8972 (2)0.0854 (3)0.08688 (13)0.0295
C330.9245 (2)0.1236 (4)0.05824 (15)0.0394
C340.8874 (2)0.1626 (4)0.02092 (16)0.0416
C350.8222 (2)0.1631 (4)0.01210 (14)0.0376
C360.79494 (19)0.1269 (4)0.04112 (12)0.0282
C370.89276 (18)0.1568 (3)0.06048 (12)0.0224
C380.8486 (2)0.1444 (4)0.02180 (13)0.0323
C390.8675 (2)0.1226 (4)0.01271 (13)0.0359
C400.9296 (2)0.1117 (4)0.00982 (14)0.0417
C410.9740 (2)0.1186 (5)0.02893 (17)0.0552
C420.9561 (2)0.1401 (5)0.06367 (15)0.0440
C430.94259 (17)0.1839 (3)0.14762 (11)0.0209
C440.95713 (18)0.0994 (3)0.17480 (12)0.0235
C451.0165 (2)0.0900 (4)0.20395 (13)0.0297
C461.0612 (2)0.1662 (4)0.20716 (13)0.0350
C471.0473 (2)0.2513 (4)0.18098 (15)0.0386
C480.9888 (2)0.2605 (3)0.15141 (14)0.0318
C490.84951 (18)0.3283 (3)0.10039 (12)0.0223
C500.8574 (2)0.3899 (3)0.13559 (13)0.0267
C510.8413 (2)0.4943 (4)0.13162 (14)0.0331
C520.8165 (2)0.5394 (3)0.09296 (15)0.0363
C530.8078 (2)0.4782 (4)0.05796 (14)0.0378
C540.8242 (2)0.3729 (4)0.06187 (12)0.0306
Cl611.02310 (13)0.51128 (15)0.21487 (8)0.1049
C621.00000.4347 (8)0.25000.0865
H20.725 (2)0.325 (3)0.1222 (13)0.026 (11)*
H500.877 (2)0.359 (4)0.1621 (15)0.032 (12)*
H30.68890.49670.11660.0401*
H40.59610.53590.13490.0375*
H50.54090.40110.15800.0356*
H60.57760.22630.16110.0325*
H80.70230.20310.22180.0345*
H90.72270.12240.28800.0506*
H100.71700.06260.29350.0499*
H110.68970.16640.23250.0400*
H120.66880.08710.16650.0314*
H140.61050.16610.05420.0352*
H150.50620.13860.01010.0469*
H160.43120.04440.03340.0473*
H170.46150.02190.10220.0489*
H180.56820.00360.14610.0363*
H200.66850.04290.06090.0328*
H210.57860.15310.05020.0377*
H220.58220.30090.09260.0487*
H230.67700.34450.14450.0453*
H240.76910.24250.15370.0327*
H260.81290.00870.20420.0282*
H270.86520.09600.26710.0406*
H280.93150.24170.26670.0505*
H290.94460.30040.20330.0487*
H300.89010.21680.14000.0362*
H320.92460.05480.11330.0367*
H330.97150.12290.06460.0502*
H340.90740.19040.00030.0543*
H350.79500.18960.01520.0465*
H360.74790.12790.03460.0346*
H380.80250.15140.01880.0400*
H390.83480.11460.04020.0432*
H400.94300.09920.03500.0540*
H411.01970.10770.03170.0699*
H420.98890.14380.09130.0537*
H440.92440.04480.17330.0283*
H451.02660.02780.22250.0357*
H461.10360.16020.22830.0397*
H471.07980.30680.18340.0436*
H480.97960.32240.13260.0367*
H510.84760.53780.15700.0407*
H520.80510.61490.09030.0439*
H530.78970.50960.02990.0429*
H540.81750.32930.03650.0353*
H621.03620.38980.26540.1098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01569 (13)0.01675 (13)0.01414 (13)0.00115 (14)0.00420 (10)0.00035 (13)
Cl10.0232 (5)0.0269 (5)0.0163 (4)0.0038 (4)0.0042 (3)0.0024 (4)
Cl20.0235 (4)0.0449 (6)0.0155 (4)0.0021 (5)0.0033 (3)0.0034 (5)
P10.0173 (4)0.0189 (4)0.0153 (4)0.0002 (4)0.0056 (3)0.0001 (4)
P20.0174 (5)0.0176 (5)0.0193 (4)0.0008 (4)0.0045 (4)0.0008 (4)
P30.0150 (4)0.0228 (5)0.0170 (4)0.0025 (4)0.0040 (4)0.0012 (4)
C10.0212 (19)0.022 (2)0.0206 (18)0.0025 (15)0.0051 (15)0.0011 (15)
C20.022 (2)0.024 (2)0.031 (2)0.0003 (16)0.0103 (17)0.0049 (16)
C30.037 (3)0.023 (2)0.041 (3)0.0021 (19)0.015 (2)0.0046 (18)
C40.037 (3)0.024 (2)0.032 (2)0.0059 (19)0.0082 (19)0.0007 (18)
C50.024 (2)0.029 (2)0.035 (2)0.0067 (18)0.0078 (17)0.0079 (19)
C60.026 (2)0.024 (2)0.031 (2)0.0011 (17)0.0129 (17)0.0007 (17)
C70.0225 (19)0.030 (2)0.0161 (17)0.0006 (16)0.0093 (15)0.0025 (15)
C80.032 (2)0.031 (2)0.0241 (19)0.003 (2)0.0104 (16)0.0009 (19)
C90.059 (3)0.049 (3)0.018 (2)0.012 (3)0.009 (2)0.004 (2)
C100.041 (3)0.060 (3)0.024 (2)0.001 (2)0.007 (2)0.014 (2)
C110.033 (2)0.033 (2)0.034 (2)0.0033 (19)0.0125 (19)0.0103 (19)
C120.021 (2)0.031 (2)0.027 (2)0.0000 (16)0.0100 (16)0.0031 (17)
C130.0150 (17)0.0209 (18)0.0205 (18)0.0040 (15)0.0028 (14)0.0006 (15)
C140.0226 (19)0.039 (2)0.027 (2)0.000 (2)0.0037 (15)0.004 (2)
C150.032 (2)0.057 (3)0.028 (2)0.002 (2)0.0026 (18)0.003 (2)
C160.026 (2)0.051 (3)0.042 (3)0.006 (2)0.001 (2)0.002 (2)
C170.020 (2)0.038 (3)0.064 (3)0.0036 (19)0.010 (2)0.012 (2)
C180.025 (2)0.030 (2)0.035 (2)0.0011 (18)0.0099 (18)0.0088 (19)
C190.0221 (18)0.0184 (18)0.0272 (19)0.0046 (17)0.0091 (15)0.0095 (17)
C200.026 (2)0.026 (2)0.031 (2)0.0034 (16)0.0097 (17)0.0101 (17)
C210.021 (2)0.039 (3)0.034 (2)0.0070 (18)0.0035 (17)0.017 (2)
C220.027 (2)0.039 (3)0.055 (3)0.018 (2)0.018 (2)0.017 (2)
C230.035 (2)0.026 (2)0.052 (3)0.0131 (19)0.020 (2)0.006 (2)
C240.025 (2)0.0199 (19)0.037 (2)0.0027 (17)0.0073 (17)0.0032 (17)
C250.0172 (18)0.018 (2)0.027 (2)0.0041 (14)0.0031 (15)0.0028 (15)
C260.0187 (19)0.026 (2)0.026 (2)0.0014 (16)0.0001 (15)0.0076 (16)
C270.032 (2)0.037 (2)0.032 (2)0.004 (2)0.0064 (18)0.009 (2)
C280.036 (3)0.046 (3)0.044 (3)0.004 (2)0.003 (2)0.020 (2)
C290.034 (3)0.034 (3)0.054 (3)0.012 (2)0.009 (2)0.018 (2)
C300.025 (2)0.022 (2)0.043 (3)0.0013 (17)0.0100 (19)0.0018 (18)
C310.026 (2)0.0142 (17)0.026 (2)0.0004 (15)0.0099 (16)0.0035 (15)
C320.030 (2)0.031 (2)0.031 (2)0.0048 (18)0.0143 (18)0.0074 (18)
C330.032 (2)0.046 (3)0.048 (3)0.006 (2)0.023 (2)0.015 (2)
C340.047 (3)0.044 (3)0.044 (3)0.002 (2)0.030 (2)0.010 (2)
C350.049 (3)0.041 (3)0.027 (2)0.005 (2)0.017 (2)0.0114 (19)
C360.029 (2)0.030 (2)0.028 (2)0.004 (2)0.0115 (16)0.0039 (19)
C370.0200 (19)0.024 (2)0.026 (2)0.0026 (15)0.0116 (16)0.0005 (15)
C380.029 (2)0.046 (3)0.025 (2)0.0026 (19)0.0129 (17)0.0041 (19)
C390.039 (2)0.045 (3)0.023 (2)0.002 (2)0.0098 (18)0.003 (2)
C400.044 (3)0.056 (3)0.036 (2)0.009 (2)0.027 (2)0.008 (2)
C410.031 (2)0.092 (4)0.052 (3)0.009 (3)0.026 (2)0.021 (3)
C420.027 (2)0.069 (4)0.039 (3)0.014 (2)0.013 (2)0.013 (3)
C430.0154 (18)0.026 (2)0.0197 (18)0.0023 (15)0.0027 (14)0.0026 (16)
C440.0223 (19)0.028 (2)0.0207 (18)0.0007 (15)0.0069 (15)0.0021 (15)
C450.025 (2)0.040 (2)0.024 (2)0.0089 (18)0.0078 (17)0.0039 (18)
C460.021 (2)0.052 (3)0.026 (2)0.003 (2)0.0019 (17)0.006 (2)
C470.025 (2)0.043 (3)0.041 (3)0.010 (2)0.0002 (19)0.009 (2)
C480.023 (2)0.032 (2)0.036 (2)0.0028 (18)0.0039 (17)0.0039 (19)
C490.022 (2)0.022 (2)0.024 (2)0.0010 (16)0.0087 (16)0.0035 (16)
C500.033 (2)0.022 (2)0.026 (2)0.0055 (17)0.0104 (17)0.0015 (17)
C510.035 (2)0.031 (2)0.036 (2)0.0061 (19)0.014 (2)0.0080 (19)
C520.044 (3)0.022 (2)0.044 (3)0.0001 (19)0.015 (2)0.0026 (19)
C530.044 (3)0.031 (2)0.032 (2)0.006 (2)0.002 (2)0.0061 (19)
C540.034 (2)0.032 (2)0.0222 (19)0.000 (2)0.0035 (16)0.001 (2)
Cl610.164 (2)0.0642 (11)0.1330 (19)0.0189 (13)0.1155 (18)0.0077 (11)
C620.144 (11)0.069 (7)0.061 (6)0.00000.053 (7)0.0000
Geometric parameters (Å, º) top
Ru1—P32.3557 (9)C25—C301.399 (5)
Ru1—P22.2118 (10)C25—C261.389 (6)
Ru1—P12.4334 (9)C26—H261.000
Ru1—Cl22.3732 (9)C26—C271.387 (6)
Ru1—Cl12.3916 (9)C27—H271.000
P1—C131.853 (4)C27—C281.382 (7)
P1—C71.834 (4)C28—H281.000
P1—C11.835 (4)C28—C291.381 (7)
P2—C311.836 (4)C29—H291.000
P2—C251.839 (4)C29—C301.385 (6)
P2—C191.834 (4)C30—H301.000
P3—C491.850 (4)C31—C361.395 (6)
P3—C431.829 (4)C31—C321.396 (6)
P3—C371.845 (4)C32—H321.000
C1—C61.401 (5)C32—C331.381 (6)
C1—C21.384 (6)C33—H331.000
C2—H20.94 (4)C33—C341.380 (7)
C2—C31.389 (6)C34—H341.000
C3—H31.000C34—C351.387 (7)
C3—C41.379 (6)C35—H351.000
C4—H41.000C35—C361.383 (6)
C4—C51.387 (6)C36—H361.000
C5—H51.000C37—C421.395 (6)
C5—C61.383 (6)C37—C381.391 (6)
C6—H61.000C38—H381.000
C7—C121.396 (6)C38—C391.387 (6)
C7—C81.389 (6)C39—H391.000
C8—H81.000C39—C401.361 (6)
C8—C91.393 (6)C40—H401.000
C9—H91.000C40—C411.387 (7)
C9—C101.390 (7)C41—H411.000
C10—H101.000C41—C421.380 (6)
C10—C111.380 (7)C42—H421.000
C11—H111.000C43—C481.399 (6)
C11—C121.385 (6)C43—C441.398 (5)
C12—H121.000C44—H441.000
C13—C181.381 (5)C44—C451.395 (5)
C13—C141.401 (5)C45—H451.000
C14—H141.000C45—C461.375 (6)
C14—C151.384 (6)C46—H461.000
C15—H151.000C46—C471.383 (7)
C15—C161.379 (7)C47—H471.000
C16—H161.000C47—C481.386 (6)
C16—C171.379 (7)C48—H481.000
C17—H171.000C49—C541.382 (6)
C17—C181.405 (6)C49—C501.398 (6)
C18—H181.000C50—H500.96 (5)
C19—C241.409 (6)C50—C511.384 (6)
C19—C201.399 (6)C51—H511.000
C20—H201.000C51—C521.387 (7)
C20—C211.392 (6)C52—H521.000
C21—H211.000C52—C531.388 (7)
C21—C221.374 (7)C53—H531.000
C22—H221.000C53—C541.396 (6)
C22—C231.370 (7)C54—H541.000
C23—H231.000Cl61—C621.738 (6)
C23—C241.380 (6)C62—H621.000
C24—H241.000C62—H62i1.000
P3—Ru1—P298.27 (4)H24—C24—C19119.469
P3—Ru1—P1160.12 (4)C23—C24—C19121.1 (4)
P2—Ru1—P1101.08 (4)C30—C25—C26118.2 (4)
P3—Ru1—Cl292.05 (3)C30—C25—P2123.1 (3)
P2—Ru1—Cl293.27 (4)C26—C25—P2118.1 (3)
P1—Ru1—Cl291.36 (3)H26—C26—C27119.394
P3—Ru1—Cl186.29 (3)H26—C26—C25119.394
P2—Ru1—Cl1107.46 (4)C27—C26—C25121.2 (4)
P1—Ru1—Cl183.63 (3)H27—C27—C28120.112
Cl2—Ru1—Cl1159.24 (4)H27—C27—C26120.111
C13—P1—C7104.73 (17)C28—C27—C26119.8 (4)
C13—P1—C194.51 (17)H28—C28—C29120.056
C7—P1—C1104.97 (18)H28—C28—C27120.055
C13—P1—Ru1126.89 (12)C29—C28—C27119.9 (4)
C7—P1—Ru1115.31 (12)H29—C29—C30119.791
C1—P1—Ru1106.55 (13)H29—C29—C28119.791
C31—P2—C25103.05 (18)C30—C29—C28120.4 (4)
C31—P2—C19101.39 (17)H30—C30—C29119.774
C25—P2—C1999.07 (17)H30—C30—C25119.774
C31—P2—Ru1116.49 (13)C29—C30—C25120.5 (4)
C25—P2—Ru1118.48 (13)C36—C31—C32118.0 (4)
C19—P2—Ru1115.55 (13)C36—C31—P2121.4 (3)
C49—P3—C43102.95 (18)C32—C31—P2120.6 (3)
C49—P3—C37103.29 (17)H32—C32—C33119.615
C43—P3—C37101.65 (17)H32—C32—C31119.615
C49—P3—Ru1100.72 (12)C33—C32—C31120.8 (4)
C43—P3—Ru1119.46 (12)H33—C33—C34119.781
C37—P3—Ru1125.45 (13)H33—C33—C32119.781
C6—C1—C2118.3 (4)C34—C33—C32120.4 (4)
C6—C1—P1120.2 (3)H34—C34—C35120.145
C2—C1—P1120.9 (3)H34—C34—C33120.145
H2—C2—C3118 (3)C35—C34—C33119.7 (4)
H2—C2—C1121 (3)H35—C35—C36120.082
C3—C2—C1121.0 (4)H35—C35—C34120.082
H3—C3—C4120.114C36—C35—C34119.8 (4)
H3—C3—C2120.114H36—C36—C35119.419
C4—C3—C2119.8 (4)H36—C36—C31119.419
H4—C4—C5119.779C35—C36—C31121.2 (4)
H4—C4—C3119.780C42—C37—C38117.6 (4)
C5—C4—C3120.4 (4)C42—C37—P3121.6 (3)
H5—C5—C6120.302C38—C37—P3120.7 (3)
H5—C5—C4120.302H38—C38—C39119.586
C6—C5—C4119.4 (4)H38—C38—C37119.586
H6—C6—C5119.462C39—C38—C37120.8 (4)
H6—C6—C1119.463H39—C39—C40119.367
C5—C6—C1121.1 (4)H39—C39—C38119.366
C12—C7—C8119.0 (4)C40—C39—C38121.3 (4)
C12—C7—P1119.2 (3)H40—C40—C41120.771
C8—C7—P1121.4 (3)H40—C40—C39120.770
H8—C8—C9119.976C41—C40—C39118.5 (4)
H8—C8—C7119.976H41—C41—C42119.433
C9—C8—C7120.0 (4)H41—C41—C40119.433
H9—C9—C10119.728C42—C41—C40121.1 (4)
H9—C9—C8119.727H42—C42—C41119.752
C10—C9—C8120.5 (4)H42—C42—C37119.752
H10—C10—C11120.324C41—C42—C37120.5 (4)
H10—C10—C9120.324C48—C43—C44117.9 (3)
C11—C10—C9119.4 (4)C48—C43—P3121.8 (3)
H11—C11—C12119.757C44—C43—P3120.1 (3)
H11—C11—C10119.757H44—C44—C45119.480
C12—C11—C10120.5 (4)H44—C44—C43119.479
H12—C12—C11119.712C45—C44—C43121.0 (4)
H12—C12—C7119.712H45—C45—C46119.991
C11—C12—C7120.6 (4)H45—C45—C44119.991
C18—C13—C14119.0 (4)C46—C45—C44120.0 (4)
C18—C13—P1124.5 (3)H46—C46—C47120.138
C14—C13—P1116.0 (3)H46—C46—C45120.138
H14—C14—C15119.991C47—C46—C45119.7 (4)
H14—C14—C13119.991H47—C47—C48119.636
C15—C14—C13120.0 (4)H47—C47—C46119.637
H15—C15—C16119.345C48—C47—C46120.7 (4)
H15—C15—C14119.345H48—C48—C47119.733
C16—C15—C14121.3 (4)H48—C48—C43119.733
H16—C16—C17120.599C47—C48—C43120.5 (4)
H16—C16—C15120.599C54—C49—C50118.9 (4)
C17—C16—C15118.8 (4)C54—C49—P3121.3 (3)
H17—C17—C18119.599C50—C49—P3119.6 (3)
H17—C17—C16119.599H50—C50—C51121 (3)
C18—C17—C16120.8 (4)H50—C50—C49118 (3)
H18—C18—C13119.998C51—C50—C49120.2 (4)
H18—C18—C17119.997H51—C51—C52119.539
C13—C18—C17120.0 (4)H51—C51—C50119.539
C24—C19—C20117.7 (4)C52—C51—C50120.9 (4)
C24—C19—P2121.8 (3)H52—C52—C53120.460
C20—C19—P2120.4 (3)H52—C52—C51120.460
H20—C20—C21119.976C53—C52—C51119.1 (4)
H20—C20—C19119.976H53—C53—C54119.943
C21—C20—C19120.0 (4)H53—C53—C52119.944
H21—C21—C22119.544C54—C53—C52120.1 (4)
H21—C21—C20119.544H54—C54—C49119.615
C22—C21—C20120.9 (4)H54—C54—C53119.615
H22—C22—C23120.058C49—C54—C53120.8 (4)
H22—C22—C21120.057H62—C62—Cl61i109.069
C23—C22—C21119.9 (4)H62—C62—Cl61109.070
H23—C23—C24119.833Cl61i—C62—Cl61111.1 (6)
H23—C23—C22119.833H62—C62—H62i109.463
C24—C23—C22120.3 (4)Cl61i—C62—H62i109.070
H24—C24—C23119.469Cl61—C62—H62i109.069
Symmetry code: (i) x+2, y, z+1/2.
 

References

First citationAlexander, B. D., Gomez-Sal, M. P., Gannon, P. R., Blaine, C. A., Boyle, P. D., Mueting, A. M. & Pignolet, L. H. (1988). Inorg. Chem. 27, 3301–3308.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnillo, A., Barrio, C., García-Granda, S. & Obeso-Rosete, R. (1993). J. Chem. Soc. Dalton Trans. pp. 1125–1130.  CSD CrossRef Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCatalá, R.-M., Cruz-Garritz, D., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1987). J. Organomet. Chem. 328, C37–C39.  CSD CrossRef CAS Web of Science Google Scholar
First citationCatalá, R.-M., Cruz-Garritz, D., Sosa, P., Terreros, P., Torrens, H., Hills, A., Hughes, D. L. & Richards, R. L. (1989). J. Organomet. Chem. 359, 219–232.  CSD CrossRef CAS Web of Science Google Scholar
First citationErnst, R. D., Basta, R. & Arif, A. M. (2003). Z. Kristallogr. New Cryst. Struct. 218, 49–51.  CAS Google Scholar
First citationHallman, P. S., Stephenson T. A. & Wilkinson, G. (1970). Inorg. Synth. 12, 237–240.  Google Scholar
First citationHiraki, K., Kira, S. & Kawano H. (1997). Bull. Chem. Soc. Jpn, 70, 1583–1592.  CrossRef CAS Web of Science Google Scholar
First citationHuang, D., Bollinger, J. C., Streib, W. E., Folting, K., Young, V. Jr, Eisenstein, O. & Caulton, K. G. (2000). Organometallics, 19, 2281–2290.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, D., Streib, W. E., Bollinger, J. C., Caulton, K. G., Winter, R. F. & Scheiring T. (1999). J. Am. Chem. Soc. 121, 8087–8097.  Web of Science CSD CrossRef CAS Google Scholar
First citationJazzar, R. F. R., Mahon, M. F. & Whittlesey, M. K. (2001). Organometallics, 20, 3745–3751.  Web of Science CSD CrossRef CAS Google Scholar
First citationJiménez Tenorio, M., Mereiter, K., Puerta, M. C. & Valerga, P. (2000). J. Am. Chem. Soc. 122, 11230–11231.  Web of Science CSD CrossRef Google Scholar
First citationJunk, P. C. & Steed, J. W. (1999). J. Organomet. Chem. 587, 191–194.  Web of Science CSD CrossRef CAS Google Scholar
First citationLa Placa, S. J. & Ibers, J. A. (1965). Inorg. Chem. 4, 778–783.  CSD CrossRef CAS Web of Science Google Scholar
First citationLeung, W.-H., Zheng, H., Chim, J. L. C., Chan, J., Wong, W.-T. & Williams, I. D. (2000). J. Chem. Soc. Dalton Trans. pp. 423–430.  Web of Science CSD CrossRef Google Scholar
First citationMacFarlane, K. S., Joshi, A. M., Rettig, S. J. & James, B. R. (1996). Inorg. Chem. 35, 7304–7310.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationMizuho, Y., Kasuga, N. & Komiya, S. (1991). Chem. Lett. pp. 2127–2130.  CrossRef Web of Science Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPerera, S. D. & Shaw, B. L. (1994). J. Chem. Soc. Chem. Commun. pp. 1201–1202.  CrossRef Web of Science Google Scholar
First citationPerera, S. D. & Shaw, B. L. (1995). J. Chem. Soc. Dalton Trans. pp. 3861–3866.  CrossRef Web of Science Google Scholar
First citationPoulton, J. T., Folting, K. & Caulton, K. G. (1992). Organometallics, 11, 1364–1372.  CSD CrossRef CAS Web of Science Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationSkapski, A. C. & Stephens, F. A. (1974). J. Chem. Soc. Dalton Trans. pp. 390–395.  CSD CrossRef Web of Science Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds