metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(cyclo­heptyl­aminium) hydrogenarsenate monohydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 15 April 2005; accepted 22 April 2005; online 7 May 2005)

The title compound, 2C7H16N+·HAsO42−·H2O, contains a network of cyclo­heptyl­aminium cations, hydrogenarsenate anions and water mol­ecules. The crystal packing involves N—H⋯O [average H⋯O = 1.86 Å, N—H⋯O = 172° and N⋯O = 2.756 (2) Å] and O—H⋯O [average H⋯O = 1.91 Å, O—H⋯O = 168° and O⋯O = 2.756 (2) Å] hydrogen bonds, resulting in a layered structure.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing studies of hydrogen-bonding inter­actions in the crystal structures of (protonated) amine phosphates (Demir et al., 2003[Demir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907-o909.]), phosphites (Harrison, 2003[Harrison, W. T. A. (2003). Acta Cryst. E59, o1267-o1269.]), selenites (Ritchie & Harrison, 2003[Ritchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296-o1298.]) and arsenates (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.],b[Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.],c[Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.]; Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]).

[Scheme 1]

The crystal structure of (I)[link] contains two unique C7H15N+ cyclo­heptyl­aminium cations, one unique HAsO42− hydrogen­arsenate anion and one unique water mol­ecule. The geometric parameters for the organic species are unexceptional. One of the C atoms of the C8-containing cation is disordered over two adjacent sites (see Experimental[link]). The conformation of the C atoms of the undisordered (C1-containing) ring is close to a twist–chair (the predicted lowest-energy conformation for a seven-membered ring; Hendrickson, 1967[Hendrickson, D. J. (1967). J. Am. Chem. Soc. 89, 7047-7061.]) with a pseudo-twofold axis passing through C4 and the C1—C7 bond mid-point. The HAsO42− group in (I)[link] shows its standard (Lee & Harrison, 2003[Harrison, W. T. A. (2003). Acta Cryst. E59, o1267-o1269.]) tetra­hedral geometry [average As—O = 1.691 (2) Å], with the protonated As—O4 vertex showing its expected lengthening relative to the other As—O bonds.

As well as electrostatic attractions, the component species in (I)[link] inter­act by means of a network of N—H⋯O and O—H⋯O hydrogen bonds (Table 2[link]). The HAsO42− units and the water mol­ecules (O5/H2/H3) are linked into a polymeric chain in the [010] direction by hydrogen bonds (Fig. 2[link]). Inversion symmetry generates linked pairs of HAsO42− units (by way of two O4—H1⋯O3 bonds), which are in turn bridged by pairs of water mol­ecules into a chain. The same chain motif occurs in bis­(benzyl­aminium) hydrogenarsenate monohydrate (Lee & Harrison, 200c) but is different from that seen in propane-1,2-diaminium hydrogenarsenate monohydrate (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.]).

The organic species inter­act with the hydrogenarsenate/water chains by way of N—H⋯O hydrogen bonds (Table 2[link]). All six of the –NH3+ H atoms are involved in these links [average H⋯O = 1.86 Å, N—H⋯O = 172° and N⋯O = 2.756 (2) Å]. Five of the acceptor O atoms are parts of HAsO42− species and one is part of a water mol­ecule. This hydrogen-bonding scheme results in (101) hydrogenarsenate/water/ammonium layers sandwiched between the cyclo­hept­yl moieties (Fig. 3[link]), which interact in turn by way of van der Waals forces.

[Figure 1]
Figure 1
Asymmetric unit of (I)[link], showing 50% displacement ellipsoids (arbitrary spheres for H atoms; C-bound H atoms have been omitted for clarity). Hydrogen bonds are indicated by dashed lines. Both disorder components are shown.
[Figure 2]
Figure 2
Detail of a hydrogen-bonded hydrogenarsenate/water chain in (I)[link]. Colour key: [HAsO4]2− tetra­hedra: green; O atoms: pink; H atoms: grey. The H⋯O portions of the hydrogen bonds are highlighted in yellow. Symmetry labels as in Table 2[link].
[Figure 3]
Figure 3
[010] projection of the unit cell packing for (I)[link]. Colour key as in Fig. 2[link]; additionally, C atoms: blue; N atoms: orange. C-bound H atoms have been omitted for clarity.

Experimental

A 0.5 M cyclo­heptyl­amine solution (10 ml) in cyclo­hexa­ne was layered on top of a 0.5 M aqueous H3AsO4 solution (10 ml) and covered to prevent solvent evaporation. A mass of block-like crystals of (I)[link] grew at the inter­face of the solvent layers over the course of a few days.

Crystal data
  • 2C7H16N+·HAsO42−·H2O

  • Mr = 386.36

  • Monoclinic, P 21 /n

  • a = 15.5003 (4) Å

  • b = 6.4005 (1) Å

  • c = 20.1552 (5) Å

  • β = 110.0396 (11)°

  • V = 1878.53 (7) Å3

  • Z = 4

  • Dx = 1.366 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4402 reflections

  • θ = 2.9–27.5°

  • μ = 1.83 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.48 × 0.14 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.473, Tmax = 0.810

  • 17 560 measured reflections

  • 4294 independent reflections

  • 3604 reflections with I > 2σ(I)

  • Rint = 0.038

  • θmax = 27.6°

  • h = −15 → 20

  • k = −8 → 7

  • l = −26 → 25

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.068

  • S = 1.04

  • 4294 reflections

  • 202 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0232P)2 + 1.7751P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.41 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0027 (3)

Table 1
Selected interatomic distances (Å)[link]

As1—O2 1.6644 (13)
As1—O3 1.6732 (13)
As1—O1 1.6789 (13)
As1—O4 1.7466 (14)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O3i 0.87 1.77 2.6250 (19) 169
O5—H2⋯O4ii 0.89 2.00 2.865 (2) 165
O5—H3⋯O1 0.83 1.96 2.779 (2) 171
N1—H4⋯O3ii 0.91 1.83 2.735 (2) 175
N1—H5⋯O5iii 0.91 1.90 2.805 (2) 173
N1—H6⋯O1 0.91 1.87 2.762 (2) 166
N2—H20⋯O1 0.91 1.91 2.794 (2) 165
N2—H21⋯O2iv 0.91 1.84 2.744 (2) 177
N2—H22⋯O2ii 0.91 1.79 2.697 (2) 173
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Atom C12 is disordered over two adjacent sites [C12a⋯C12b = 0.606 (5) Å]. The two components were refined isotropically, together with a population ratio of 0.662 (15):0.338 (15). The O-bound H atoms were found in difference maps and refined as riding in their as-found relative positions (Table 2[link]). The H atoms bonded to C and N atoms were placed in idealized positions [C—H = 0.99 and 1.00 Å, and N—H = 0.91 Å] and refined as riding, allowing for free rotation of the rigid –NH3 groups about the C—N bonds. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases.

Data collection: COLLECT (Nonius, 1999[Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307-326. London: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and ATOMS (Shape Software, 1999[Shape Software (1999). ATOMS. 525 Hidden Valley Road, Kingsport, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Enraf-Nonius, 1999); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and ATOMS (Shape Software, 1999); software used to prepare material for publication: SHELXL97.

Bis(cycloheptylaminium) hydrogenarsenate monohydrate top
Crystal data top
2C7H16N+·HAsO42·H2OF(000) = 824
Mr = 386.36Dx = 1.366 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4402 reflections
a = 15.5003 (4) Åθ = 2.9–27.5°
b = 6.4005 (1) ŵ = 1.83 mm1
c = 20.1552 (5) ÅT = 120 K
β = 110.0396 (11)°Block, colourless
V = 1878.53 (7) Å30.48 × 0.14 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
4294 independent reflections
Radiation source: fine-focus sealed tube3604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ω and φ scansθmax = 27.6°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1520
Tmin = 0.473, Tmax = 0.810k = 87
17560 measured reflectionsl = 2625
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (others)
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.068 w = 1/[σ2(Fo2) + (0.0232P)2 + 1.7751P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4294 reflectionsΔρmax = 0.46 e Å3
202 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0027 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
As10.414424 (12)0.04918 (3)0.390334 (10)0.00982 (7)
O10.41630 (9)0.3104 (2)0.38353 (7)0.0144 (3)
O20.34375 (9)0.0597 (2)0.31679 (7)0.0159 (3)
O30.52048 (9)0.0513 (2)0.41707 (7)0.0137 (3)
O40.36561 (9)0.0135 (2)0.45409 (7)0.0151 (3)
H10.40780.00450.49550.018*
O50.31260 (10)0.5555 (2)0.44185 (8)0.0207 (3)
H20.32190.69070.43730.025*
H30.33890.48580.42000.025*
N10.57607 (11)0.5423 (3)0.41955 (9)0.0154 (4)
H40.55490.67590.41610.018*
H50.60820.51240.46560.018*
H60.52780.45280.40310.018*
C10.63747 (13)0.5189 (3)0.37659 (11)0.0152 (4)
H70.60150.55650.32660.018*
C20.66708 (15)0.2909 (3)0.37832 (13)0.0236 (5)
H80.61240.20020.36850.028*
H90.70960.25710.42630.028*
C30.71461 (15)0.2430 (4)0.32452 (13)0.0250 (5)
H100.70240.09540.30960.030*
H110.68660.33130.28230.030*
C40.81885 (15)0.2788 (4)0.35154 (14)0.0291 (5)
H120.84870.15680.38060.035*
H130.83970.28340.31030.035*
C50.85239 (15)0.4751 (4)0.39497 (14)0.0276 (5)
H140.91370.51090.39330.033*
H150.86000.44370.44480.033*
C60.79054 (15)0.6666 (3)0.37201 (12)0.0220 (5)
H160.82880.79410.38520.026*
H170.76160.66530.31990.026*
C70.71543 (14)0.6770 (3)0.40484 (12)0.0211 (5)
H180.68870.81920.39730.025*
H190.74410.65610.45640.025*
N20.33232 (11)0.5513 (3)0.26297 (8)0.0134 (3)
H200.35370.45330.29740.016*
H210.27360.51940.23570.016*
H220.33350.67910.28310.016*
C80.39174 (13)0.5549 (3)0.21807 (10)0.0137 (4)
H230.45340.60880.24780.016*
C90.40445 (17)0.3331 (3)0.19637 (13)0.0275 (5)
H240.34500.28140.16350.033*
H250.42230.24280.23880.033*
C100.47663 (16)0.3127 (4)0.16093 (12)0.0284 (5)
H260.52790.40920.18450.034*
H270.50140.16870.16820.034*
C110.4413 (2)0.3594 (4)0.08213 (13)0.0374 (6)
H280.49540.36980.06680.045*
H290.40550.23640.05790.045*
C12A0.3841 (4)0.5461 (7)0.0554 (2)0.0246 (12)*0.662 (15)
H30A0.31880.50660.04350.029*0.662 (15)
H31A0.39280.59190.01120.029*0.662 (15)
C12B0.4204 (9)0.5906 (14)0.0611 (4)0.026 (3)*0.338 (15)
H30B0.47170.64430.04720.032*0.338 (15)
H31B0.36500.59220.01800.032*0.338 (15)
C130.40528 (17)0.7385 (4)0.10873 (13)0.0287 (5)
H320.47180.74470.13620.034*
H330.38720.87100.08220.034*
C140.35107 (14)0.7092 (3)0.15809 (11)0.0203 (5)
H340.28840.66190.12990.024*
H350.34520.84660.17870.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.00959 (10)0.00863 (10)0.00972 (11)0.00033 (8)0.00137 (7)0.00013 (8)
O10.0172 (7)0.0093 (7)0.0159 (7)0.0002 (6)0.0046 (6)0.0008 (6)
O20.0145 (7)0.0156 (7)0.0134 (7)0.0003 (6)0.0005 (6)0.0060 (6)
O30.0108 (6)0.0147 (7)0.0146 (7)0.0037 (6)0.0029 (5)0.0001 (6)
O40.0121 (6)0.0197 (8)0.0121 (7)0.0018 (6)0.0022 (5)0.0014 (6)
O50.0266 (8)0.0158 (7)0.0227 (8)0.0007 (6)0.0124 (7)0.0009 (6)
N10.0133 (8)0.0136 (8)0.0186 (9)0.0003 (7)0.0047 (7)0.0008 (7)
C10.0134 (9)0.0166 (10)0.0157 (10)0.0008 (8)0.0051 (8)0.0005 (8)
C20.0241 (11)0.0181 (11)0.0335 (13)0.0022 (9)0.0159 (10)0.0024 (10)
C30.0254 (11)0.0218 (12)0.0314 (13)0.0009 (10)0.0142 (10)0.0076 (10)
C40.0254 (12)0.0258 (13)0.0388 (15)0.0053 (10)0.0147 (11)0.0021 (11)
C50.0150 (10)0.0273 (12)0.0416 (15)0.0014 (9)0.0110 (10)0.0024 (11)
C60.0231 (11)0.0164 (11)0.0305 (13)0.0030 (9)0.0145 (10)0.0028 (9)
C70.0203 (10)0.0196 (11)0.0262 (12)0.0039 (9)0.0116 (9)0.0021 (9)
N20.0149 (8)0.0114 (8)0.0118 (8)0.0001 (7)0.0018 (7)0.0001 (7)
C80.0124 (9)0.0143 (10)0.0134 (10)0.0007 (8)0.0030 (8)0.0008 (8)
C90.0410 (14)0.0174 (12)0.0298 (13)0.0060 (10)0.0194 (11)0.0021 (10)
C100.0313 (13)0.0297 (13)0.0243 (13)0.0158 (10)0.0099 (10)0.0021 (10)
C110.0540 (17)0.0346 (14)0.0255 (14)0.0073 (13)0.0161 (12)0.0008 (12)
C130.0346 (13)0.0261 (12)0.0317 (14)0.0064 (11)0.0195 (11)0.0107 (11)
C140.0182 (10)0.0222 (11)0.0208 (11)0.0013 (9)0.0071 (9)0.0058 (9)
Geometric parameters (Å, º) top
As1—O21.6644 (13)C7—H190.9900
As1—O31.6732 (13)N2—C81.496 (3)
As1—O11.6789 (13)N2—H200.9100
As1—O41.7466 (14)N2—H210.9100
O4—H10.8680N2—H220.9100
O5—H20.8874C8—C91.518 (3)
O5—H30.8255C8—C141.521 (3)
N1—C11.498 (3)C8—H231.0000
N1—H40.9100C9—C101.525 (3)
N1—H50.9100C9—H240.9900
N1—H60.9100C9—H250.9900
C1—C21.526 (3)C10—C111.522 (3)
C1—C71.529 (3)C10—H260.9900
C1—H71.0000C10—H270.9900
C2—C31.536 (3)C11—C12A1.476 (4)
C2—H80.9900C11—C12B1.543 (8)
C2—H90.9900C11—H280.9900
C3—C41.535 (3)C11—H290.9900
C3—H100.9900C12A—C131.593 (5)
C3—H110.9900C12A—H30A0.9900
C4—C51.518 (3)C12A—H31A0.9900
C4—H120.9900C12B—C131.424 (8)
C4—H130.9900C12B—H30B0.9900
C5—C61.527 (3)C12B—H31B0.9900
C5—H140.9900C13—C141.518 (3)
C5—H150.9900C13—H320.9900
C6—C71.525 (3)C13—H330.9900
C6—H160.9900C14—H340.9900
C6—H170.9900C14—H350.9900
C7—H180.9900
O2—As1—O3113.58 (7)C8—N2—H22109.5
O2—As1—O1111.64 (7)H20—N2—H22109.5
O3—As1—O1111.51 (7)H21—N2—H22109.5
O2—As1—O4103.90 (7)N2—C8—C9109.12 (16)
O3—As1—O4107.47 (7)N2—C8—C14108.51 (15)
O1—As1—O4108.23 (7)C9—C8—C14115.96 (18)
As1—O4—H1108.6N2—C8—H23107.7
H2—O5—H3110.2C9—C8—H23107.7
C1—N1—H4109.5C14—C8—H23107.7
C1—N1—H5109.5C8—C9—C10113.79 (19)
H4—N1—H5109.5C8—C9—H24108.8
C1—N1—H6109.5C10—C9—H24108.8
H4—N1—H6109.5C8—C9—H25108.8
H5—N1—H6109.5C10—C9—H25108.8
N1—C1—C2109.17 (16)H24—C9—H25107.7
N1—C1—C7107.23 (16)C11—C10—C9114.4 (2)
C2—C1—C7115.55 (17)C11—C10—H26108.7
N1—C1—H7108.2C9—C10—H26108.7
C2—C1—H7108.2C11—C10—H27108.7
C7—C1—H7108.2C9—C10—H27108.7
C1—C2—C3112.84 (19)H26—C10—H27107.6
C1—C2—H8109.0C12A—C11—C10119.8 (2)
C3—C2—H8109.0C12A—C11—C12B23.0 (3)
C1—C2—H9109.0C10—C11—C12B116.2 (3)
C3—C2—H9109.0C12A—C11—H28107.4
H8—C2—H9107.8C10—C11—H28107.4
C4—C3—C2114.9 (2)C12B—C11—H2888.3
C4—C3—H10108.5C12A—C11—H29107.4
C2—C3—H10108.5C10—C11—H29107.4
C4—C3—H11108.5C12B—C11—H29126.7
C2—C3—H11108.5H28—C11—H29106.9
H10—C3—H11107.5C11—C12A—C13114.9 (3)
C5—C4—C3116.05 (19)C11—C12A—H30A108.6
C5—C4—H12108.3C13—C12A—H30A108.6
C3—C4—H12108.3C11—C12A—H31A108.6
C5—C4—H13108.3C13—C12A—H31A108.6
C3—C4—H13108.3H30A—C12A—H31A107.5
H12—C4—H13107.4C13—C12B—C11121.3 (5)
C4—C5—C6115.7 (2)C13—C12B—H30B107.1
C4—C5—H14108.3C11—C12B—H30B107.3
C6—C5—H14108.3C13—C12B—H31B106.8
C4—C5—H15108.3C11—C12B—H31B106.8
C6—C5—H15108.3H30B—C12B—H31B106.7
H14—C5—H15107.4C12B—C13—C14128.0 (5)
C7—C6—C5113.38 (19)C12B—C13—C12A22.3 (4)
C7—C6—H16108.9C14—C13—C12A108.3 (3)
C5—C6—H16108.9C12B—C13—H3291.3
C7—C6—H17108.9C14—C13—H32110.0
C5—C6—H17108.9C12A—C13—H32110.0
H16—C6—H17107.7C12B—C13—H33106.6
C6—C7—C1115.67 (18)C14—C13—H33110.0
C6—C7—H18108.4C12A—C13—H33110.0
C1—C7—H18108.4H32—C13—H33108.4
C6—C7—H19108.4C13—C14—C8115.45 (18)
C1—C7—H19108.4C13—C14—H34108.4
H18—C7—H19107.4C8—C14—H34108.4
C8—N2—H20109.5C13—C14—H35108.4
C8—N2—H21109.5C8—C14—H35108.4
H20—N2—H21109.5H34—C14—H35107.5
N1—C1—C2—C3168.86 (17)C9—C10—C11—C12B71.9 (6)
C7—C1—C2—C370.2 (2)C10—C11—C12A—C1330.6 (6)
C1—C2—C3—C488.2 (2)C12B—C11—C12A—C1356.9 (9)
C2—C3—C4—C542.1 (3)C12A—C11—C12B—C1384.6 (12)
C3—C4—C5—C636.1 (3)C10—C11—C12B—C1320.2 (12)
C4—C5—C6—C786.7 (3)C11—C12B—C13—C1441.0 (12)
C5—C6—C7—C171.9 (3)C11—C12B—C13—C12A72.1 (12)
N1—C1—C7—C6175.18 (17)C11—C12A—C13—C12B69.5 (9)
C2—C1—C7—C653.2 (3)C11—C12A—C13—C1485.1 (4)
N2—C8—C9—C10170.24 (17)C12B—C13—C14—C866.8 (6)
C14—C8—C9—C1066.9 (3)C12A—C13—C14—C878.8 (3)
C8—C9—C10—C1184.1 (3)N2—C8—C14—C13177.73 (18)
C9—C10—C11—C12A46.1 (4)C9—C8—C14—C1359.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O3i0.871.772.6250 (19)169
O5—H2···O4ii0.892.002.865 (2)165
O5—H3···O10.831.962.779 (2)171
N1—H4···O3ii0.911.832.735 (2)175
N1—H5···O5iii0.911.902.805 (2)173
N1—H6···O10.911.872.762 (2)166
N2—H20···O10.911.912.794 (2)165
N2—H21···O2iv0.911.842.744 (2)177
N2—H22···O2ii0.911.792.697 (2)173
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the EPSRC National Crystallography Service (University of Southampton, England) for the data collection.

References

First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemir, S., Yilmaz, V. T. & Harrison, W. T. A. (2003). Acta Cryst. E59, o907–o909.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarrison, W. T. A. (2003). Acta Cryst. E59, o1267–o1269.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHendrickson, D. J. (1967). J. Am. Chem. Soc. 89, 7047–7061.  CrossRef CAS Web of Science Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739–m741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959–m960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151–m1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNonius (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. London: Academic Press.  Google Scholar
First citationRitchie, L. K. & Harrison, W. T. A. (2003). Acta Cryst. E59, o1296–o1298.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationShape Software (1999). ATOMS. 525 Hidden Valley Road, Kingsport, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359–m1361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds