metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-N-(2,6-di­methyl­phen­yl)acetamidato]bis­­(di­methyl­aluminium)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, England
*Correspondence e-mail: jxf@leicester.ac.uk

(Received 16 May 2005; accepted 19 May 2005; online 28 May 2005)

The structure of the title compound, [Al2(CH3)4(C10H12NO)2] or [Me2Al{μ-(2,6-Me2C6H3)NCMeO}]2, consists of a four-coordinate dimeric centrosymmetric eight-membered ring Al-containing species.

Comment

The synthesis and structural characterization of alkyl­aluminium complexes containing N,O-amidate ligands, [RINCR(=O)] (R = alk­yl or ar­yl), has recently received attention due, in part, to the rich variety of bonding modes that are accessible. For example, the ligand can bridge, chelate or act as a monodentate ligand to a single metal centre, the precise bonding mode being dependent on the acidity and the steric bulk of the amide precursor employed (Huang et al., 2002[Huang, B.-H., Yu, T.-C., Huang, Y.-L., Ko, B.-T. & Lin, C.-C. (2002). Inorg. Chem. 41, 2987-2994.]). Furthermore, the reactions of amides with R3Al have allowed access to aluminium diketimates, some of which are not obtainable by more conventional synthetic routes (Huang et al., 2001[Huang, Y.-C., Huang, B.-H., Ko, B.-T. & Lin, C.-C. (2001). Dalton Trans. pp. 1359-1365.]).

[Scheme 1]

We report here the synthesis and the crystal structure of [Me2Al{μ-(2,6-Me2C6H3)NCMeO}]2, (I)[link]. The 1H NMR spectrum gives meth­yl resonances in a ratio of 12:6:12, corresponding to the aromatic (δ 2.40), acetamide (δ 1.70) and aluminium methyls (δ −0.15), respectively. The X-ray analysis of (I)[link] reveals a dimeric structure based on a centrosymmetric eight-membered ring. The bridging amidate ligand coordinates to the two Al atoms through both the N and the O atoms. The geometry at each Al atom can be best described as distorted tetra­hedral, with two meth­yl C atoms, an N atom and an O atom occupying the coordination sites. The C3—O1 [1.296 (4) Å] and C3—N1A [1.298 (4) Å] bond lengths suggest some delocalization within the OCN moiety. The Al1—O1 [1.800 (3) Å], Al1—N1 [1.961 (3) Å], Al1—C1 [1.968 (5) Å] and Al1—C2 [1.961 (4) Å] bond distances in (I)[link] are comparable with the corresponding distances observed in the related structures [Me2Al{μ-(C6H5)NCPhO}]2 (Kai et al., 1971[Kai, Y., Yasuoka, N. & Kakudo, M. (1971). J. Organomet. Chem. 32, 165-179.]) and [Me2Al{μ-(2,6-Pr2iC6H3)NCPhO}]2 (Huang et al., 2002[Huang, B.-H., Yu, T.-C., Huang, Y.-L., Ko, B.-T. & Lin, C.-C. (2002). Inorg. Chem. 41, 2987-2994.]). The benzene rings are arranged orthogonal to the puckered eight-membered ring. There are no inter­molecular packing inter­actions of note.

[Figure 1]
Figure 1
Mol­ecular structure of (I)[link], showing the atom-numbering scheme and 50% probability displacement ellipsoids. The mol­ecule is located on a centre of symmetry [primed atoms are generated by (1 − x, 2 − y, 2 − z)]. H atoms have been omitted for clarity.

Experimental

Under an atmosphere of nitro­gen, trimethyl­aluminium (3.07 ml, 6.13 mmol, 2M solution in toluene) was added to a solution of N-(2,6-dimethyl­phen­yl)acetamide (0.50 g, 3.06 mmol) in toluene (30 ml), and the reaction mixture was heated to reflux for 12 h. On cooling to room temperature, the volatiles were removed under reduced pressure and the residue dried overnight. Slow cooling of a hot aceto­nitrile (40 ml) solution containing the complex gave pale-yellow crystals of the title compound suitable for single-crystal X-ray diffraction analysis (yield 0.50 g, 75%). Analysis found: C 65.89, H 8.31, N 6.57%; calculated for C24H36Al2N2O2: C 65.75, H 8.22, N 6.39%. 1H NMR (C6D6): δ 7.20–7.05 (m, 6H, Ar—H), 2.40 (s, 12H, Ar—Me), 1.70 [s, 6H, MeC(O)] and −0.15 (s, 12H, Al—CH3).

Crystal data
  • [Al2(CH3)4(C10H12NO)2]

  • Mr = 438.51

  • Monoclinic, P 21 /n

  • a = 11.028 (2) Å

  • b = 10.4955 (9) Å

  • c = 11.116 (5) Å

  • β = 90.37 (3)°

  • V = 1286.6 (6) Å3

  • Z = 2

  • Dx = 1.132 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 27 reflections

  • θ = 4.7–12.5°

  • μ = 0.13 mm−1

  • T = 200 (2) K

  • Block, pale yellow

  • 0.53 × 0.41 × 0.41 mm

Data collection
  • Bruker P4 diffractometer

  • ω scans

  • Absorption correction: none

  • 2650 measured reflections

  • 2257 independent reflections

  • 1598 reflections with I > 2s(I)

  • Rint = 0.029

  • θmax = 25.0°

  • h = 0 → 13

  • k = −1 → 12

  • l = −13 → 13

  • 2 standard reflections every 1000 reflections intensity decay: <1%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.190

  • S = 1.07

  • 2257 reflections

  • 137 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.065P)2 + 3.0349P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.54 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.023 (4)

Table 1
Selected geometric parameters (Å, °)[link]

Al1—O1 1.800 (3)
Al1—N1 1.961 (3)
Al1—C2 1.961 (4)
Al1—C1 1.968 (5)
O1—Al1—N1 103.37 (13)
O1—Al1—C2 107.46 (17)
N1—Al1—C2 105.81 (18)
O1—Al1—C1 109.21 (16)
N1—Al1—C1 110.47 (17)
C2—Al1—C1 119.3 (2)

All H atoms were included in calculated positions and treated as riding on the bonded atom (C—H = 0.93 and 0.96 Å). Uiso(H) was set to 1.5Ueq(C) for meth­yl H atoms and 1.2Ueq(C) for all other H atoms.

Data collection: XSCANS (Fait, 1991[Fait, J. (1991). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990[Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

bis[µ-N-(2,6-dimethylphenyl)acetamidato]bis[dimethylaluminium top
Crystal data top
[Al2(CH3)4(C10H12NO)2]F(000) = 472
Mr = 438.51Dx = 1.132 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 27 reflections
a = 11.028 (2) Åθ = 4.7–12.5°
b = 10.4955 (9) ŵ = 0.13 mm1
c = 11.116 (5) ÅT = 200 K
β = 90.37 (3)°Block, pale yellow
V = 1286.6 (6) Å30.53 × 0.41 × 0.41 mm
Z = 2
Data collection top
Bruker P4
diffractometer
Rint = 0.029
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.6°
Graphite monochromatorh = 013
ω scansk = 112
2650 measured reflectionsl = 1313
2257 independent reflections2 standard reflections every 1000 reflections
1598 reflections with I > 2s(I) intensity decay: <1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.190 w = 1/[σ2(Fo2) + (0.065P)2 + 3.0349P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2257 reflectionsΔρmax = 0.54 e Å3
137 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Al10.56700 (10)1.01577 (11)0.83404 (10)0.0346 (4)
O10.6307 (2)1.0135 (2)0.9835 (2)0.0328 (6)
N10.4303 (3)0.8969 (3)0.8447 (2)0.0305 (7)
C10.5088 (4)1.1888 (4)0.7972 (4)0.0541 (12)
H1A0.45111.21490.85670.081*
H1B0.47081.18910.71930.081*
H1C0.57611.24670.79740.081*
C20.6846 (4)0.9348 (5)0.7268 (4)0.0571 (12)
H2A0.70420.85140.75660.086*
H2B0.75690.98560.72370.086*
H2C0.65020.92770.64750.086*
C30.6447 (3)1.0996 (3)1.0659 (3)0.0295 (8)
C40.7501 (4)1.1884 (4)1.0544 (4)0.0422 (10)
H4A0.74971.24851.11950.063*
H4B0.74431.23310.97930.063*
H4C0.82411.14021.05680.063*
C50.4160 (3)0.8022 (3)0.7517 (3)0.0307 (8)
C60.4677 (3)0.6807 (4)0.7681 (3)0.0371 (9)
C70.4593 (4)0.5944 (4)0.6738 (4)0.0465 (11)
H7A0.49300.51370.68250.056*
C80.4015 (4)0.6264 (4)0.5674 (4)0.0501 (11)
H8A0.39630.56730.50530.060*
C90.3515 (4)0.7460 (4)0.5530 (4)0.0478 (11)
H9A0.31370.76690.48060.057*
C100.3567 (3)0.8355 (4)0.6445 (3)0.0381 (9)
C6A0.5284 (4)0.6454 (4)0.8838 (4)0.0518 (11)
H6D0.55650.55890.87990.078*
H6E0.47240.65410.94900.078*
H6F0.59620.70130.89680.078*
C10A0.3007 (5)0.9660 (4)0.6288 (4)0.0565 (12)
H10D0.26380.97200.55060.085*
H10E0.36251.03000.63670.085*
H10F0.24020.97890.68930.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0355 (7)0.0404 (7)0.0280 (6)0.0045 (5)0.0018 (4)0.0007 (5)
O10.0343 (14)0.0327 (13)0.0314 (13)0.0004 (11)0.0006 (10)0.0060 (11)
N10.0320 (16)0.0324 (16)0.0270 (14)0.0010 (13)0.0022 (12)0.0049 (12)
C10.063 (3)0.048 (3)0.051 (3)0.008 (2)0.011 (2)0.011 (2)
C20.049 (3)0.078 (3)0.045 (2)0.003 (2)0.014 (2)0.009 (2)
C30.0275 (18)0.0294 (18)0.0316 (18)0.0031 (15)0.0027 (14)0.0008 (15)
C40.038 (2)0.039 (2)0.049 (2)0.0064 (18)0.0086 (18)0.0060 (18)
C50.0284 (19)0.0312 (18)0.0325 (18)0.0006 (15)0.0005 (14)0.0055 (15)
C60.033 (2)0.038 (2)0.040 (2)0.0002 (16)0.0039 (16)0.0028 (17)
C70.043 (2)0.037 (2)0.060 (3)0.0024 (18)0.010 (2)0.011 (2)
C80.049 (3)0.054 (3)0.047 (2)0.000 (2)0.006 (2)0.023 (2)
C90.043 (2)0.061 (3)0.039 (2)0.001 (2)0.0021 (18)0.014 (2)
C100.036 (2)0.041 (2)0.037 (2)0.0018 (17)0.0050 (16)0.0058 (17)
C6A0.057 (3)0.047 (2)0.051 (2)0.015 (2)0.003 (2)0.000 (2)
C10A0.069 (3)0.058 (3)0.042 (2)0.018 (2)0.018 (2)0.007 (2)
Geometric parameters (Å, º) top
Al1—O11.800 (3)C5—C101.400 (5)
Al1—N11.961 (3)C5—C61.408 (5)
Al1—C21.961 (4)C6—C71.387 (5)
Al1—C11.968 (5)C6—C6A1.494 (6)
O1—C31.296 (4)C7—C81.382 (6)
N1—C3i1.298 (4)C7—H7A0.9300
N1—C51.443 (4)C8—C91.379 (6)
C1—H1A0.9600C8—H8A0.9300
C1—H1B0.9600C9—C101.386 (5)
C1—H1C0.9600C9—H9A0.9300
C2—H2A0.9600C10—C10A1.512 (6)
C2—H2B0.9600C6A—H6D0.9600
C2—H2C0.9600C6A—H6E0.9600
C3—N1i1.298 (4)C6A—H6F0.9600
C3—C41.496 (5)C10A—H10D0.9600
C4—H4A0.9600C10A—H10E0.9600
C4—H4B0.9600C10A—H10F0.9600
C4—H4C0.9600
O1—Al1—N1103.37 (13)C10—C5—C6121.6 (3)
O1—Al1—C2107.46 (17)C10—C5—N1119.1 (3)
N1—Al1—C2105.81 (18)C6—C5—N1119.3 (3)
O1—Al1—C1109.21 (16)C7—C6—C5117.9 (4)
N1—Al1—C1110.47 (17)C7—C6—C6A121.1 (4)
C2—Al1—C1119.3 (2)C5—C6—C6A121.0 (3)
C3—O1—Al1133.4 (2)C8—C7—C6121.1 (4)
C3i—N1—C5120.0 (3)C8—C7—H7A119.5
C3i—N1—Al1121.5 (2)C6—C7—H7A119.5
C5—N1—Al1118.4 (2)C9—C8—C7120.2 (4)
Al1—C1—H1A109.7C9—C8—H8A119.9
Al1—C1—H1B109.3C7—C8—H8A119.9
H1A—C1—H1B109.5C8—C9—C10121.1 (4)
Al1—C1—H1C109.4C8—C9—H9A119.4
H1A—C1—H1C109.5C10—C9—H9A119.4
H1B—C1—H1C109.5C9—C10—C5118.2 (4)
Al1—C2—H2A109.5C9—C10—C10A121.0 (4)
Al1—C2—H2B109.5C5—C10—C10A120.9 (3)
H2A—C2—H2B109.5C6—C6A—H6D109.8
Al1—C2—H2C109.5C6—C6A—H6E109.8
H2A—C2—H2C109.5H6D—C6A—H6E109.5
H2B—C2—H2C109.5C6—C6A—H6F108.8
O1—C3—N1i119.1 (3)H6D—C6A—H6F109.5
O1—C3—C4117.6 (3)H6E—C6A—H6F109.5
N1i—C3—C4123.2 (3)C10—C10A—H10D109.5
C3—C4—H4A109.7C10—C10A—H10E109.5
C3—C4—H4B109.4H10D—C10A—H10E109.5
H4A—C4—H4B109.5C10—C10A—H10F109.4
C3—C4—H4C109.3H10D—C10A—H10F109.5
H4A—C4—H4C109.5H10E—C10A—H10F109.5
H4B—C4—H4C109.5
N1—Al1—O1—C3117.9 (3)C10—C5—C6—C70.6 (5)
C2—Al1—O1—C3130.5 (3)N1—C5—C6—C7175.8 (3)
C1—Al1—O1—C30.3 (4)C10—C5—C6—C6A178.7 (4)
O1—Al1—N1—C3i45.6 (3)N1—C5—C6—C6A4.9 (5)
C2—Al1—N1—C3i158.4 (3)C5—C6—C7—C80.3 (6)
C1—Al1—N1—C3i71.1 (3)C6A—C6—C7—C8179.1 (4)
O1—Al1—N1—C5132.9 (2)C6—C7—C8—C90.3 (6)
C2—Al1—N1—C520.1 (3)C7—C8—C9—C100.7 (7)
C1—Al1—N1—C5110.3 (3)C8—C9—C10—C51.1 (6)
Al1—O1—C3—N1i101.3 (4)C8—C9—C10—C10A179.4 (4)
Al1—O1—C3—C480.4 (4)C6—C5—C10—C91.0 (6)
C3i—N1—C5—C1097.9 (4)N1—C5—C10—C9175.4 (3)
Al1—N1—C5—C1083.5 (4)C6—C5—C10—C10A179.4 (4)
C3i—N1—C5—C685.5 (4)N1—C5—C10—C10A4.1 (6)
Al1—N1—C5—C693.0 (4)
Symmetry code: (i) x+1, y+2, z+2.
 

Acknowledgements

We thank the University of Leicester for financial support.

References

First citationFait, J. (1991). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, B.-H., Yu, T.-C., Huang, Y.-L., Ko, B.-T. & Lin, C.-C. (2002). Inorg. Chem. 41, 2987–2994.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHuang, Y.-C., Huang, B.-H., Ko, B.-T. & Lin, C.-C. (2001). Dalton Trans. pp. 1359–1365.  CrossRef Google Scholar
First citationKai, Y., Yasuoka, N. & Kakudo, M. (1971). J. Organomet. Chem. 32, 165–179.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1990). Acta Cryst. A46, 467–473.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds