organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Carbamazepine furfural hemisolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bWestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 21 April 2005; accepted 10 May 2005; online 21 May 2005)

In the title compound, C15H12N2O·0.5C5H4O2, carbamazepine mol­ecules retain the R22(8) N—H⋯O hydrogen-bonded dimer arrangement observed in the crystal structures of each of the four known an­hydro­us polymorphs. The furfural mol­ecule is located between adjacent carbamazepine dimers and is hydrogen bonded to only one of the anti-oriented NH groups available on the dimer.

Comment

The antiepileptic compound carbamazepine (CBZ) is known to crystallize in at least four an­hydro­us polymorphic forms (Grzesiak et al., 2003[Grzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260-2271.]) and the crystal structures of several solvates and co-crystals have also been reported (Fleischman et al., 2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]). The title compound, (I[link]), was produced during an automated parallel crystallization polymorph screen on CBZ. The sample was identified as a novel form using multisample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated furfural solution by slow evaporation at 278 K yielded samples of the carbamazepine furfural hemisolvate suitable for synchrotron-based single-crystal X-ray analysis (Cernik et al., 1997[Cernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279-286.]).[link]

[Scheme 1]

The asymmetric unit of (I[link]) contains two mol­ecules of CBZ and one of furfural (Fig. 1[link]). Pairs of CBZ mol­ecules are connected by two N—H⋯O hydrogen bonds (contacts 1 and 2, Fig. 2[link]) to form the R22(8) dimer motif. This motif is observed in all of the known polymorphs and the majority of CBZ solvate crystal structures (Fleischman et al., 2003[Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909-919.]). In all other CBZ solvate crystal structures, each of the NH donor groups is involved in hydrogen-bonding interactions; the syn-oriented NH group of CBZ forms the dimer motif and the anti-oriented NH donors connect to mol­ecules of solvent. In (I[link]), however, only one of the anti-oriented NH groups is utilized in a hydrogen bond between CBZ and solvent (contact 3, Fig. 2[link]). The structure also contains four C—H⋯O interactions: contacts 4, 6 and 7 connect CBZ and furfural mol­ecules, and contact 5 connects mol­ecules of CBZ. The mol­ecules pack such that the polar groups (furfural and CBZ carbox­amide moiety) and hydro­phobic azepine rings are segregated into alternating polar and non-polar layers in the ac plane, which are stacked in the direction of the b axis.

[Figure 1]
Figure 1
View of the asymmetric unit of (I[link]), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
A packing diagram of (I[link]). Dashed lines indicate hydrogen bonds, which produce the two ring motifs, viz. A [the R22(8) CBZ dimer] and B [an R32(9) motif linking one solvent mol­ecule to the dimer].

Experimental

A single-crystal sample of the title compound was recrystallized from a furfural solution of carbamazepine (used as supplied from Sigma–Aldrich) by slow evaporation at 278 K.

Crystal data
  • C15H12N20.5C5H4O2

  • Mr = 284.31

  • Monoclinic, P21/n

  • a = 5.1815 (4) Å

  • b = 26.0450 (19) Å

  • c = 20.5735 (15) Å

  • β = 91.302 (2)°

  • V = 2775.7 (4) Å3

  • Z = 8

  • Dx = 1.361 Mg m−3

  • Synchrotron radiation, λ = 0.6902 Å

  • Cell parameters from 4821 reflections

  • θ = 2.5–29.5°

  • μ = 0.11 mm−1

  • T = 120 (2) K

  • Plate, brown

  • 0.04 × 0.04 × 0.01 mm

Data collection
  • Bruker SMART APEX2 CCD diffractometer

  • Fine-slice ω scans

  • Absorption correction: none

  • 28844 measured reflections

  • 8144 independent reflections

  • 5329 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 29.5°

  • h = −7 → 7

  • k = −37 → 35

  • l = −29 → 28

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.151

  • S = 1.01

  • 8144 reflections

  • 424 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0702P)2 + 0.8667P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bonding geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N⋯O1Ai 0.91 (2) 1.91 (2) 2.817 (2) 175 (2)
N2A—H3N⋯O1ii 0.93 (2) 1.95 (2) 2.876 (2) 175 (2)
N2A—H4N⋯O3 0.89 (2) 2.13 (2) 2.961 (2) 156 (2)
C3A—H3A⋯O3i 0.95 2.45 3.250 (2) 142
C13—H13⋯O1ii 0.95 2.55 3.449 (2) 159
C16—H16⋯O1Aiii 0.95 2.48 3.108 (2) 124
C18—H18⋯O1 0.95 2.56 3.283 (2) 133
Symmetry codes: (i) 1+x,y,z; (ii) x-1,y,z; (iii) [{\script{1\over 2}}+x,{\script{1\over 2}}-y,z-{\script{1\over 2}}].

The H atoms of the six- and five-membered rings of carbamazepine and furfural were positioned geometrically at distances of 0.95 Å (CH) from the parent C atoms; a riding model was used during the refinement process. The Uiso(H) values were constrained to be 1.2 times Ueq of the carrier atom. The remaining H atoms were located in a difference synthesis and were refined isotropically [C—H = 0.95 (2)–1.01 (2) Å and N—H = 0.85 (3)–0.93 (2) Å].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 (Version 1.14) and SAINT (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 (Version 1.14) and SAINT (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

[5H-dibenz[b,f]azepine-5-carboxamide]2-furan carboxaldehyde hemisolvate top
Crystal data top
C15H12N2O·0.5C5H4O2F(000) = 1192
Mr = 284.31Dx = 1.361 Mg m3
Monoclinic, P21/nSynchrotron radiation, λ = 0.6902 Å
Hall symbol: -P 2ynCell parameters from 4821 reflections
a = 5.1815 (4) Åθ = 2.5–29.5°
b = 26.0450 (19) ŵ = 0.11 mm1
c = 20.5735 (15) ÅT = 120 K
β = 91.302 (2)°Plate, brown
V = 2775.7 (4) Å30.04 × 0.04 × 0.01 mm
Z = 8
Data collection top
Bruker SMART APEX2 CCD
diffractometer
5329 reflections with I > 2σ(I)
Radiation source: Daresbury SRS station 9.8Rint = 0.053
Silicon 111 monochromatorθmax = 29.5°, θmin = 2.1°
fine–slice ω scansh = 77
28844 measured reflectionsk = 3735
8144 independent reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0702P)2 + 0.8667P]
where P = (Fo2 + 2Fc2)/3
8144 reflections(Δ/σ)max < 0.001
424 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Experimental. Collected by EPSRC service at Daresbury 9.8 (ref ssd1023) SADABS used to correct for beam decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8341 (2)0.29362 (5)0.68441 (6)0.0284 (3)
O1A0.1984 (2)0.20877 (5)0.79316 (5)0.0287 (3)
O20.5168 (3)0.25216 (5)0.43464 (6)0.0410 (3)
O30.1510 (3)0.18030 (5)0.54430 (6)0.0377 (3)
N10.5971 (3)0.35107 (5)0.74100 (6)0.0224 (3)
N1A0.4025 (3)0.14454 (5)0.74050 (6)0.0222 (3)
N20.8039 (3)0.28321 (6)0.79348 (7)0.0284 (3)
N2A0.1982 (3)0.21031 (6)0.68288 (7)0.0276 (3)
C10.5522 (3)0.37620 (6)0.80166 (7)0.0224 (3)
C1A0.4439 (3)0.11601 (6)0.68189 (7)0.0219 (3)
C20.3588 (3)0.35789 (7)0.84140 (8)0.0271 (3)
H20.24930.33080.82670.033*
C2A0.6352 (3)0.13177 (6)0.64038 (8)0.0253 (3)
H2A0.74490.15960.65250.030*
C30.3258 (3)0.37906 (7)0.90246 (8)0.0300 (4)
H30.19320.36670.92950.036*
C3A0.6674 (3)0.10730 (7)0.58146 (8)0.0269 (3)
H3A0.79840.11820.55300.032*
C40.4870 (4)0.41831 (7)0.92385 (8)0.0304 (4)
H40.46790.43230.96610.037*
C4A0.5065 (3)0.06660 (7)0.56428 (8)0.0283 (4)
H4A0.52600.04990.52370.034*
C50.6762 (3)0.43717 (7)0.88372 (8)0.0285 (4)
H50.78450.46430.89880.034*
C5A0.3177 (3)0.05037 (6)0.60622 (8)0.0263 (3)
H5A0.20850.02260.59380.032*
C60.7110 (3)0.41707 (6)0.82125 (7)0.0232 (3)
C6A0.2846 (3)0.07406 (6)0.66663 (7)0.0227 (3)
C70.9094 (3)0.43923 (6)0.78026 (8)0.0256 (3)
H71.052 (4)0.4576 (8)0.8050 (9)0.038 (5)*
C7A0.0888 (3)0.05455 (6)0.71016 (8)0.0252 (3)
H7A0.058 (4)0.0351 (8)0.6888 (9)0.035 (5)*
C80.9121 (3)0.44108 (7)0.71528 (8)0.0259 (3)
H81.051 (4)0.4588 (8)0.6966 (10)0.041 (6)*
C8A0.0889 (3)0.05654 (6)0.77536 (8)0.0251 (3)
H8A0.053 (4)0.0388 (7)0.7964 (9)0.030 (5)*
C90.7168 (3)0.42180 (6)0.66916 (7)0.0226 (3)
C9A0.2869 (3)0.07840 (6)0.81901 (7)0.0226 (3)
C100.6857 (3)0.44599 (6)0.60853 (8)0.0262 (3)
H100.79690.47350.59750.031*
C10A0.3206 (3)0.05800 (6)0.88163 (8)0.0263 (3)
H10A0.20960.03130.89560.032*
C110.4949 (3)0.43036 (7)0.56454 (8)0.0278 (3)
H110.47760.44680.52350.033*
C11A0.5132 (3)0.07599 (7)0.92360 (8)0.0279 (3)
H11A0.53220.06180.96600.033*
C120.3294 (3)0.39068 (7)0.58046 (8)0.0292 (4)
H120.19510.38070.55090.035*
C12A0.6784 (3)0.11470 (7)0.90386 (8)0.0276 (3)
H12A0.81320.12640.93220.033*
C130.3597 (3)0.36551 (7)0.63944 (8)0.0269 (3)
H130.24680.33820.65030.032*
C13A0.6456 (3)0.13617 (6)0.84264 (8)0.0250 (3)
H13A0.75810.16270.82890.030*
C140.5553 (3)0.38026 (6)0.68259 (7)0.0220 (3)
C14A0.4479 (3)0.11897 (6)0.80119 (7)0.0214 (3)
C150.7513 (3)0.30780 (6)0.73729 (7)0.0223 (3)
C15A0.2605 (3)0.18943 (6)0.74074 (8)0.0230 (3)
C160.7073 (4)0.28693 (8)0.44417 (10)0.0423 (5)
H160.79510.30410.41050.051*
C170.7552 (4)0.29377 (9)0.50783 (11)0.0458 (5)
H170.87960.31640.52670.055*
C180.5852 (4)0.26083 (7)0.54221 (9)0.0336 (4)
H180.57300.25700.58800.040*
C190.4454 (3)0.23638 (7)0.49529 (8)0.0278 (3)
C200.2413 (4)0.19912 (8)0.49603 (9)0.0371 (4)
H200.185 (4)0.1879 (9)0.4519 (11)0.046 (6)*
H1N0.924 (4)0.2579 (8)0.7947 (10)0.040 (6)*
H2N0.738 (5)0.2933 (10)0.8288 (12)0.058 (8)*
H3N0.088 (4)0.2386 (9)0.6825 (11)0.044 (6)*
H4N0.226 (4)0.1963 (9)0.6442 (11)0.043 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0326 (6)0.0281 (6)0.0245 (6)0.0052 (5)0.0000 (5)0.0007 (5)
O1A0.0343 (7)0.0291 (6)0.0227 (6)0.0073 (5)0.0001 (5)0.0017 (5)
O20.0488 (8)0.0477 (8)0.0267 (7)0.0142 (7)0.0030 (6)0.0017 (6)
O30.0380 (7)0.0422 (8)0.0328 (7)0.0091 (6)0.0011 (5)0.0041 (6)
N10.0256 (7)0.0222 (7)0.0193 (6)0.0012 (5)0.0006 (5)0.0010 (5)
N1A0.0259 (7)0.0219 (7)0.0187 (6)0.0012 (5)0.0010 (5)0.0000 (5)
N20.0315 (8)0.0286 (8)0.0250 (8)0.0061 (6)0.0002 (6)0.0027 (6)
N2A0.0337 (8)0.0258 (7)0.0231 (7)0.0053 (6)0.0007 (6)0.0011 (5)
C10.0213 (7)0.0259 (8)0.0202 (7)0.0036 (6)0.0010 (6)0.0016 (6)
C1A0.0223 (7)0.0220 (7)0.0214 (7)0.0027 (6)0.0018 (6)0.0001 (6)
C20.0227 (8)0.0321 (9)0.0266 (8)0.0005 (6)0.0017 (6)0.0047 (6)
C2A0.0234 (8)0.0283 (8)0.0240 (8)0.0007 (6)0.0001 (6)0.0015 (6)
C30.0256 (8)0.0401 (10)0.0245 (8)0.0046 (7)0.0033 (6)0.0056 (7)
C3A0.0245 (8)0.0322 (9)0.0243 (8)0.0014 (6)0.0038 (6)0.0025 (6)
C40.0368 (10)0.0332 (9)0.0214 (8)0.0100 (7)0.0024 (6)0.0015 (6)
C4A0.0324 (9)0.0312 (9)0.0213 (8)0.0037 (7)0.0016 (6)0.0028 (6)
C50.0350 (9)0.0266 (8)0.0238 (8)0.0038 (7)0.0037 (6)0.0022 (6)
C5A0.0272 (8)0.0261 (8)0.0254 (8)0.0014 (6)0.0026 (6)0.0024 (6)
C60.0235 (8)0.0239 (8)0.0222 (7)0.0036 (6)0.0023 (6)0.0005 (6)
C6A0.0212 (8)0.0246 (8)0.0223 (7)0.0023 (6)0.0007 (6)0.0011 (6)
C70.0244 (8)0.0254 (8)0.0269 (8)0.0016 (6)0.0022 (6)0.0008 (6)
C7A0.0219 (8)0.0255 (8)0.0280 (8)0.0013 (6)0.0011 (6)0.0006 (6)
C80.0229 (8)0.0271 (8)0.0275 (8)0.0030 (6)0.0008 (6)0.0022 (6)
C8A0.0217 (8)0.0268 (8)0.0270 (8)0.0006 (6)0.0021 (6)0.0016 (6)
C90.0223 (8)0.0233 (8)0.0221 (7)0.0012 (6)0.0007 (6)0.0000 (6)
C9A0.0212 (8)0.0242 (8)0.0226 (7)0.0022 (6)0.0019 (6)0.0007 (6)
C100.0276 (8)0.0262 (8)0.0249 (8)0.0007 (6)0.0016 (6)0.0031 (6)
C10A0.0293 (9)0.0265 (8)0.0233 (8)0.0014 (6)0.0027 (6)0.0025 (6)
C110.0330 (9)0.0302 (9)0.0202 (8)0.0021 (7)0.0004 (6)0.0038 (6)
C11A0.0321 (9)0.0304 (9)0.0212 (8)0.0053 (7)0.0012 (6)0.0011 (6)
C120.0289 (9)0.0352 (9)0.0233 (8)0.0009 (7)0.0052 (6)0.0010 (7)
C12A0.0257 (8)0.0329 (9)0.0239 (8)0.0016 (7)0.0038 (6)0.0033 (7)
C130.0274 (8)0.0281 (8)0.0250 (8)0.0026 (6)0.0010 (6)0.0007 (6)
C13A0.0233 (8)0.0271 (8)0.0246 (8)0.0007 (6)0.0017 (6)0.0031 (6)
C140.0232 (8)0.0224 (7)0.0204 (7)0.0018 (6)0.0004 (6)0.0001 (6)
C14A0.0219 (7)0.0220 (7)0.0204 (7)0.0031 (6)0.0012 (5)0.0000 (6)
C150.0203 (7)0.0218 (7)0.0246 (8)0.0022 (6)0.0014 (6)0.0002 (6)
C15A0.0225 (8)0.0222 (8)0.0242 (8)0.0008 (6)0.0003 (6)0.0008 (6)
C160.0411 (11)0.0443 (12)0.0415 (11)0.0113 (9)0.0027 (9)0.0062 (9)
C170.0447 (12)0.0409 (12)0.0514 (13)0.0177 (9)0.0092 (9)0.0000 (9)
C180.0391 (10)0.0353 (10)0.0262 (9)0.0026 (8)0.0054 (7)0.0027 (7)
C190.0316 (9)0.0313 (9)0.0205 (8)0.0038 (7)0.0009 (6)0.0002 (6)
C200.0417 (11)0.0441 (11)0.0253 (9)0.0127 (9)0.0039 (7)0.0011 (8)
Geometric parameters (Å, º) top
O1—C151.2351 (19)C6A—C7A1.459 (2)
O1A—C15A1.2395 (19)C7—C81.338 (2)
O2—C161.351 (2)C7—H71.01 (2)
O2—C191.372 (2)C7A—C8A1.342 (2)
O3—C201.211 (2)C7A—H7A1.01 (2)
N1—C151.385 (2)C8—C91.460 (2)
N1—C11.433 (2)C8—H80.95 (2)
N1—C141.4342 (19)C8A—C9A1.463 (2)
N1A—C15A1.382 (2)C8A—H8A0.977 (19)
N1A—C14A1.4298 (19)C9—C141.399 (2)
N1A—C1A1.4366 (19)C9—C101.404 (2)
N2—C151.344 (2)C9A—C14A1.400 (2)
N2—H1N0.91 (2)C9A—C10A1.401 (2)
N2—H2N0.85 (3)C10—C111.386 (2)
N2A—C15A1.342 (2)C10—H100.9500
N2A—H4N0.89 (2)C10A—C11A1.386 (2)
N2A—H3N0.93 (2)C10A—H10A0.9500
C1—C21.392 (2)C11—C121.387 (2)
C1—C61.399 (2)C11—H110.9500
C1A—C2A1.385 (2)C11A—C12A1.389 (2)
C1A—C6A1.401 (2)C11A—H11A0.9500
C2—C31.386 (2)C12—C131.385 (2)
C2—H20.9500C12—H120.9500
C2A—C3A1.383 (2)C12A—C13A1.385 (2)
C2A—H2A0.9500C12A—H12A0.9500
C3—C41.386 (3)C13—C141.386 (2)
C3—H30.9500C13—H130.9500
C3A—C4A1.389 (2)C13A—C14A1.392 (2)
C3A—H3A0.9500C13A—H13A0.9500
C4—C51.386 (2)C16—C171.339 (3)
C4—H40.9500C16—H160.9500
C4A—C5A1.385 (2)C17—C181.428 (3)
C4A—H4A0.9500C17—H170.9500
C5—C61.403 (2)C18—C191.353 (2)
C5—H50.9500C18—H180.9500
C5A—C6A1.402 (2)C19—C201.436 (2)
C5A—H5A0.9500C20—H200.99 (2)
C6—C71.463 (2)
C16—O2—C19106.27 (14)C7A—C8A—H8A116.2 (11)
C15—N1—C1121.68 (13)C9A—C8A—H8A115.9 (11)
C15—N1—C14117.50 (13)C14—C9—C10117.74 (14)
C1—N1—C14117.59 (13)C14—C9—C8123.11 (14)
C15A—N1A—C14A117.90 (13)C10—C9—C8119.15 (15)
C15A—N1A—C1A122.05 (13)C14A—C9A—C10A117.68 (14)
C14A—N1A—C1A117.86 (12)C14A—C9A—C8A123.12 (14)
C15—N2—H1N119.7 (13)C10A—C9A—C8A119.20 (15)
C15—N2—H2N120.6 (17)C11—C10—C9120.96 (15)
H1N—N2—H2N119 (2)C11—C10—H10119.5
C15A—N2A—H4N125.9 (14)C9—C10—H10119.5
C15A—N2A—H3N117.6 (14)C11A—C10A—C9A121.17 (16)
H4N—N2A—H3N115.4 (19)C11A—C10A—H10A119.4
C2—C1—C6121.19 (15)C9A—C10A—H10A119.4
C2—C1—N1119.25 (14)C10—C11—C12120.01 (15)
C6—C1—N1119.49 (14)C10—C11—H11120.0
C2A—C1A—C6A121.29 (14)C12—C11—H11120.0
C2A—C1A—N1A119.14 (14)C10A—C11A—C12A120.18 (15)
C6A—C1A—N1A119.53 (14)C10A—C11A—H11A119.9
C3—C2—C1120.11 (16)C12A—C11A—H11A119.9
C3—C2—H2119.9C13—C12—C11120.09 (15)
C1—C2—H2119.9C13—C12—H12120.0
C3A—C2A—C1A120.42 (15)C11—C12—H12120.0
C3A—C2A—H2A119.8C13A—C12A—C11A119.69 (15)
C1A—C2A—H2A119.8C13A—C12A—H12A120.2
C4—C3—C2119.69 (16)C11A—C12A—H12A120.2
C4—C3—H3120.2C12—C13—C14119.77 (16)
C2—C3—H3120.2C12—C13—H13120.1
C2A—C3A—C4A119.39 (15)C14—C13—H13120.1
C2A—C3A—H3A120.3C12A—C13A—C14A120.03 (15)
C4A—C3A—H3A120.3C12A—C13A—H13A120.0
C3—C4—C5120.11 (16)C14A—C13A—H13A120.0
C3—C4—H4119.9C13—C14—C9121.31 (14)
C5—C4—H4119.9C13—C14—N1118.95 (14)
C5A—C4A—C3A120.17 (15)C9—C14—N1119.71 (14)
C5A—C4A—H4A119.9C13A—C14A—C9A121.13 (14)
C3A—C4A—H4A119.9C13A—C14A—N1A119.29 (14)
C4—C5—C6121.40 (16)C9A—C14A—N1A119.53 (14)
C4—C5—H5119.3O1—C15—N2123.20 (15)
C6—C5—H5119.3O1—C15—N1120.29 (14)
C4A—C5A—C6A121.38 (15)N2—C15—N1116.51 (14)
C4A—C5A—H5A119.3O1A—C15A—N2A123.05 (15)
C6A—C5A—H5A119.3O1A—C15A—N1A119.74 (14)
C1—C6—C5117.42 (15)N2A—C15A—N1A117.20 (14)
C1—C6—C7123.40 (14)C17—C16—O2110.46 (18)
C5—C6—C7119.18 (15)C17—C16—H16124.8
C1A—C6A—C5A117.28 (15)O2—C16—H16124.8
C1A—C6A—C7A123.25 (14)C16—C17—C18107.56 (17)
C5A—C6A—C7A119.47 (15)C16—C17—H17126.2
C8—C7—C6127.84 (15)C18—C17—H17126.2
C8—C7—H7117.6 (11)C19—C18—C17104.81 (16)
C6—C7—H7114.4 (11)C19—C18—H18127.6
C8A—C7A—C6A127.99 (15)C17—C18—H18127.6
C8A—C7A—H7A116.0 (11)C18—C19—O2110.89 (15)
C6A—C7A—H7A115.9 (11)C18—C19—C20133.89 (17)
C7—C8—C9127.88 (16)O2—C19—C20115.21 (15)
C7—C8—H8116.7 (13)O3—C20—C19125.49 (17)
C9—C8—H8115.3 (12)O3—C20—H20121.4 (13)
C7A—C8A—C9A127.76 (15)C19—C20—H20113.0 (13)
C15—N1—C1—C283.90 (19)C9—C10—C11—C120.8 (3)
C14—N1—C1—C2116.94 (16)C9A—C10A—C11A—C12A0.4 (3)
C15—N1—C1—C693.10 (18)C10—C11—C12—C132.1 (3)
C14—N1—C1—C666.05 (19)C10A—C11A—C12A—C13A1.7 (3)
C15A—N1A—C1A—C2A80.79 (19)C11—C12—C13—C140.3 (3)
C14A—N1A—C1A—C2A116.38 (16)C11A—C12A—C13A—C14A0.0 (2)
C15A—N1A—C1A—C6A96.86 (18)C12—C13—C14—C92.9 (3)
C14A—N1A—C1A—C6A65.96 (19)C12—C13—C14—N1174.91 (15)
C6—C1—C2—C32.0 (2)C10—C9—C14—C134.2 (2)
N1—C1—C2—C3174.91 (15)C8—C9—C14—C13175.20 (16)
C6A—C1A—C2A—C3A2.2 (2)C10—C9—C14—N1173.66 (14)
N1A—C1A—C2A—C3A175.40 (15)C8—C9—C14—N17.0 (2)
C1—C2—C3—C40.4 (2)C15—N1—C14—C1384.83 (18)
C1A—C2A—C3A—C4A0.2 (2)C1—N1—C14—C13115.13 (17)
C2—C3—C4—C51.6 (3)C15—N1—C14—C993.05 (18)
C2A—C3A—C4A—C5A0.8 (3)C1—N1—C14—C966.99 (19)
C3—C4—C5—C60.5 (3)C12A—C13A—C14A—C9A3.0 (2)
C3A—C4A—C5A—C6A0.3 (3)C12A—C13A—C14A—N1A174.56 (14)
C2—C1—C6—C53.1 (2)C10A—C9A—C14A—C13A4.1 (2)
N1—C1—C6—C5173.89 (14)C8A—C9A—C14A—C13A175.45 (15)
C2—C1—C6—C7177.24 (15)C10A—C9A—C14A—N1A173.41 (14)
N1—C1—C6—C75.8 (2)C8A—C9A—C14A—N1A7.0 (2)
C4—C5—C6—C11.8 (2)C15A—N1A—C14A—C13A81.11 (19)
C4—C5—C6—C7178.51 (15)C1A—N1A—C14A—C13A115.34 (16)
C2A—C1A—C6A—C5A3.2 (2)C15A—N1A—C14A—C9A96.46 (17)
N1A—C1A—C6A—C5A174.42 (14)C1A—N1A—C14A—C9A67.08 (19)
C2A—C1A—C6A—C7A177.01 (15)C1—N1—C15—O1163.76 (14)
N1A—C1A—C6A—C7A5.4 (2)C14—N1—C15—O14.6 (2)
C4A—C5A—C6A—C1A2.2 (2)C1—N1—C15—N216.0 (2)
C4A—C5A—C6A—C7A177.95 (15)C14—N1—C15—N2175.16 (14)
C1—C6—C7—C828.6 (3)C14A—N1A—C15A—O1A6.8 (2)
C5—C6—C7—C8151.69 (18)C1A—N1A—C15A—O1A169.65 (14)
C1A—C6A—C7A—C8A28.7 (3)C14A—N1A—C15A—N2A173.72 (14)
C5A—C6A—C7A—C8A151.50 (17)C1A—N1A—C15A—N2A10.9 (2)
C6—C7—C8—C90.5 (3)C19—O2—C16—C170.6 (2)
C6A—C7A—C8A—C9A0.6 (3)O2—C16—C17—C180.5 (3)
C7—C8—C9—C1428.6 (3)C16—C17—C18—C190.1 (2)
C7—C8—C9—C10150.75 (18)C17—C18—C19—O20.3 (2)
C7A—C8A—C9A—C14A28.7 (3)C17—C18—C19—C20179.1 (2)
C7A—C8A—C9A—C10A150.86 (17)C16—O2—C19—C180.6 (2)
C14—C9—C10—C112.3 (2)C16—O2—C19—C20179.61 (17)
C8—C9—C10—C11177.09 (16)C18—C19—C20—O31.4 (4)
C14A—C9A—C10A—C11A2.4 (2)O2—C19—C20—O3179.8 (2)
C8A—C9A—C10A—C11A177.16 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O1Ai0.91 (2)1.91 (2)2.817 (2)175 (2)
N2A—H3N···O1ii0.93 (2)1.95 (2)2.876 (2)175 (2)
N2A—H4N···O30.89 (2)2.13 (2)2.961 (2)156 (2)
C3A—H3A···O3i0.952.453.250 (2)142
C13—H13···O1ii0.952.553.449 (2)159
C16—H16···O1Aiii0.952.483.108 (2)124
C18—H18···O10.952.563.283 (2)133
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

We thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk). Thanks are also due to Professor W. Clegg and the EPSRC National Crystallography Service for data collection.

References

First citationBruker (2004). APEX2 (Version 1.14) and SAINT (Version 7.06a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCernik, R. J., Clegg, W., Catlow, C. R. A., Bushnell-Wye, G., Flaherty, J. V., Greaves, G. N., Burrows, I., Taylor, D. J., Teat, S. J. & Hamichi, M. (1997). J. Synchrotron Rad. 4, 279–286.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N. & Zaworotko, M. J. (2003). Cryst. Growth Des. 3, 909–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGrzesiak, A. L., Lang, M., Kim, K. & Matzger, A. J. (2003). J. Pharm. Sci. 92, 2260–2271.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds