organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(5-Chloro-3-meth­yl-1-phenyl­pyrazol-4-yl)-1,5-di-2-thienylpenta­ne-1,5-dione: centrosymmetric dimers formed by C—H⋯π(thio­phene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aGrupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad de Valle, AA 25360 Cali, Colombia, bDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, cDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and dSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 17 May 2005; accepted 18 May 2005; online 28 May 2005)

Mol­ecules of the title compound, C23H19ClN2O2S2, are linked into cyclic centrosymmetric dimers by paired C—H⋯π(thiophene) hydrogen bonds.

Comment

The title compound, (I)[link], was obtained adventitiously during the attempted synthesis of the inter­mediate 3-(5-chloro-3-meth­yl-1-phen­yl-4,5-dihydro-1H-pyrazol-4-yl)-1-thio­phen-2-yl-propenone, (II), by base-catalysed condensation of 5-chloro-3-meth­yl-1-phen­yl-1H-pyrazole-4-carbaldehyde with 2-aceylthio­phene. Evidently, the expected product, (II)[link], has undergone a Michael-type reaction with a further mole of 2-acetyl­thio­phene to form the observed product, (I)[link].

[Scheme 1]

Within the mol­ecule of (I)[link], the thio­phene ring containing S9 exhibits orientational disorder about the C9—C91 bond, with occupancies of 0.623 (3) and 0.377 (3): all bond distances and angles show normal values.

The supramolecular aggregation is determined by C—H⋯π(thio­phene) hydrogen bonds (Table 1[link]). Atom C8 in the mol­ecule at (x, y, z) acts as a hydrogen-bond donor to the disordered thio­phene ring of the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric dimer (Fig. 2[link]) whose formation is independent of the orientation of the thio­phene acceptor (Table 1[link]). The only other possible inter­molecular inter­action is a fairly short contact between atom Cl5 in the mol­ecule at (x, y, z) and ar­yl atom C14 in the mol­ecule at ([{1\over 2}] + x, y, [3\over2] − z), with a Cl⋯C distance of 3.137 (2) Å and a C—Cl⋯C angle of 153.5 (2)°; this distance is not particularly short in terms of the polar flattening model for van der Waals contacts (Nyburg & Faerman, 1985[Nyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274-279.]) and is probably not structurally significant.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only the major orientation of the disordered thio­phene ring is shown.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of a hydrogen-bonded dimer. For clarity, H atoms bonded to C atoms that are not involved in the motif shown have been omitted, and only the major orientation of the disordered thio­phene ring is shown. Hydrogen bonds are shown as dashed lines. The atom marked with an asterisk (*) is at the symmetry position (1 − x, 1 − y, 1 − z).

Experimental

To a solution of 5-chloro-4-form­yl-3-meth­yl-1-phenyl­pyrazole (0.5 mmol) and 2-acetyl­thio­phene (1 mmol) in absolute ethanol (10 ml), a catalytic amount of sodium hydroxide (1 pellet) was added and the reaction mixture was stirred at room temperature for 2 h. The resulting precipitate was isolated by filtration, washed with ethanol, dried and finally recrystallized from dimethyl­formamide to give yellow crystals suitable for single-crystal X-ray diffraction. M.p. 573 K, yield 45%; MS (70 eV) m/z (%): 455 (2.6) (M+), 329 (42), 293 (20), 111 (100).

Crystal data
  • C23H19ClN2O2S2

  • Mr = 454.99

  • Orthorhombic, P b c a

  • a = 14.6729 (5) Å

  • b = 17.8962 (6) Å

  • c = 16.2619 (3) Å

  • V = 4270.2 (2) Å3

  • Z = 8

  • Dx = 1.416 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4887 reflections

  • θ = 3.0–27.5°

  • μ = 0.40 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.42 × 0.22 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.851, Tmax = 0.969

  • 35379 measured reflections

  • 4887 independent reflections

  • 3231 reflections with I > 2σ(I)

  • Rint = 0.067

  • θmax = 27.5°

  • h = −19 → 16

  • k = −23 → 23

  • l = −17 → 21

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.117

  • S = 1.03

  • 4887 reflections

  • 279 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0583P)2 + 0.8758P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

Cg1 and Cg2 are the centroids for the major and minor orientations of the disordered thiophene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8ACg1i 0.99 2.67 3.628 (3) 162
C8—H8ACg2i 0.99 2.67 3.614 (3) 159
Symmetry code: (i) -x+1, -y+1, -z+1.

All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å (aromatic), 0.98 Å (CH3), 0.99 Å (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for the meth­yl group.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: WinGX (Farrugia, 1999) and SIR92 (Altomare et al., 1993); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

3-(5-Chloro-3-methyl-1-phenylpyrazol-4-yl)-1,5-di-2-thienylpentane-1,5-dione top
Crystal data top
C23H19ClN2O2S2F(000) = 1888
Mr = 454.99Dx = 1.416 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4887 reflections
a = 14.6729 (5) Åθ = 3.0–27.5°
b = 17.8962 (6) ŵ = 0.40 mm1
c = 16.2619 (3) ÅT = 120 K
V = 4270.2 (2) Å3Lath, colourless
Z = 80.42 × 0.22 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4887 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode3231 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1916
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2323
Tmin = 0.851, Tmax = 0.969l = 1721
35379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.8758P]
where P = (Fo2 + 2Fc2)/3
4887 reflections(Δ/σ)max = 0.001
279 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.45 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl50.23343 (4)0.58885 (3)0.71087 (3)0.03435 (17)
S70.33570 (5)0.23047 (3)0.90153 (4)0.04035 (19)
S90.36235 (11)0.54448 (8)0.36403 (6)0.0250 (4)0.623 (3)
S9A0.4290 (3)0.62233 (19)0.5091 (2)0.0371 (6)0.377 (3)
O70.30212 (12)0.28150 (9)0.73188 (9)0.0442 (4)
O90.31145 (11)0.42731 (9)0.48101 (8)0.0381 (4)
N10.08746 (12)0.50767 (10)0.66660 (10)0.0258 (4)
N20.06214 (12)0.43928 (10)0.63595 (10)0.0266 (4)
C30.13963 (14)0.40086 (12)0.62814 (11)0.0240 (5)
C40.21663 (13)0.44299 (11)0.65326 (11)0.0216 (4)
C50.17983 (14)0.51027 (12)0.67661 (11)0.0235 (5)
C60.35290 (15)0.40827 (11)0.74088 (12)0.0258 (5)
C70.32864 (15)0.33246 (12)0.77585 (13)0.0277 (5)
C80.37538 (14)0.47503 (12)0.60526 (11)0.0257 (5)
C90.35033 (14)0.47895 (12)0.51536 (12)0.0248 (5)
C110.02046 (14)0.56419 (12)0.67820 (12)0.0264 (5)
C120.02307 (15)0.61060 (12)0.74644 (13)0.0318 (5)
C130.04214 (16)0.66648 (13)0.75425 (14)0.0360 (6)
C140.11037 (16)0.67407 (13)0.69671 (14)0.0348 (6)
C150.11362 (16)0.62629 (13)0.62992 (14)0.0352 (6)
C160.04802 (15)0.57217 (13)0.61962 (13)0.0306 (5)
C310.13661 (15)0.32257 (13)0.59625 (13)0.0307 (5)
C410.31553 (14)0.42040 (12)0.65328 (11)0.0238 (5)
C710.34196 (14)0.32007 (12)0.86398 (12)0.0266 (5)
C720.35368 (17)0.26093 (16)0.99922 (15)0.0432 (7)
C730.36350 (17)0.33575 (16)1.00332 (14)0.0453 (7)
C740.35713 (15)0.37124 (14)0.92627 (13)0.0329 (6)
C910.37737 (13)0.54557 (12)0.46840 (11)0.0238 (5)
C920.40182 (16)0.62996 (13)0.35551 (13)0.0362 (6)
C930.42986 (18)0.66418 (13)0.42573 (15)0.0426 (6)
C940.4101 (7)0.6097 (5)0.4957 (6)0.0371 (6)0.623 (3)
C94A0.3664 (8)0.5558 (7)0.3839 (6)0.0250 (4)0.377 (3)
H6A0.42010.41350.73990.031*
H6B0.32830.44760.77750.031*
H8A0.43990.45950.61030.031*
H8B0.36950.52540.62980.031*
H120.06880.60430.78720.038*
H130.03960.69980.79970.043*
H140.15510.71200.70290.042*
H150.16150.63090.59090.042*
H160.04940.54040.57280.037*
H31A0.07360.30940.58250.046*
H31B0.15960.28830.63840.046*
H31C0.17470.31870.54690.046*
H410.31940.37120.62440.029*
H720.35650.22881.04570.052*
H730.37370.36191.05330.054*
H740.36260.42360.91810.039*
H94A0.33960.51980.34840.030*0.377 (3)
H920.40490.65440.30380.043*
H930.45650.71240.43030.051*
H940.42020.62060.55220.044*0.623 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl50.0311 (3)0.0303 (3)0.0417 (3)0.0071 (2)0.0016 (2)0.0110 (2)
S70.0467 (4)0.0321 (4)0.0422 (4)0.0021 (3)0.0082 (3)0.0117 (3)
S90.0278 (5)0.0314 (7)0.0157 (7)0.0035 (4)0.0035 (5)0.0017 (5)
S9A0.0480 (19)0.0264 (14)0.0368 (15)0.0057 (10)0.0015 (10)0.0003 (9)
O70.0690 (13)0.0272 (9)0.0365 (9)0.0060 (8)0.0146 (9)0.0009 (7)
O90.0521 (11)0.0372 (10)0.0249 (8)0.0152 (8)0.0008 (7)0.0042 (7)
N10.0236 (11)0.0268 (10)0.0269 (9)0.0019 (8)0.0012 (7)0.0022 (7)
N20.0270 (11)0.0264 (10)0.0264 (9)0.0057 (8)0.0012 (7)0.0029 (7)
C30.0262 (13)0.0273 (12)0.0185 (10)0.0042 (9)0.0010 (8)0.0003 (8)
C40.0227 (12)0.0256 (11)0.0163 (9)0.0031 (9)0.0005 (8)0.0008 (8)
C50.0231 (12)0.0282 (12)0.0192 (10)0.0060 (9)0.0021 (8)0.0021 (8)
C60.0221 (12)0.0300 (12)0.0252 (10)0.0034 (9)0.0008 (9)0.0020 (9)
C70.0265 (13)0.0261 (12)0.0305 (11)0.0005 (10)0.0027 (9)0.0006 (9)
C80.0228 (12)0.0320 (13)0.0223 (10)0.0025 (9)0.0009 (8)0.0018 (9)
C90.0219 (12)0.0297 (13)0.0229 (10)0.0009 (9)0.0033 (8)0.0053 (9)
C110.0229 (12)0.0272 (12)0.0293 (11)0.0012 (9)0.0044 (9)0.0048 (9)
C120.0305 (14)0.0348 (13)0.0302 (12)0.0002 (10)0.0012 (10)0.0002 (10)
C130.0384 (14)0.0307 (13)0.0389 (13)0.0012 (11)0.0088 (11)0.0014 (10)
C140.0295 (14)0.0264 (13)0.0484 (14)0.0016 (10)0.0074 (11)0.0141 (11)
C150.0269 (13)0.0374 (14)0.0414 (13)0.0012 (11)0.0004 (10)0.0167 (11)
C160.0298 (13)0.0322 (13)0.0298 (11)0.0047 (10)0.0003 (10)0.0056 (9)
C310.0315 (14)0.0298 (13)0.0310 (12)0.0062 (10)0.0012 (10)0.0038 (9)
C410.0242 (12)0.0261 (12)0.0209 (10)0.0012 (9)0.0006 (8)0.0012 (8)
C710.0227 (12)0.0277 (12)0.0295 (11)0.0037 (9)0.0015 (9)0.0058 (9)
C720.0357 (15)0.0562 (18)0.0377 (13)0.0107 (13)0.0104 (11)0.0240 (12)
C730.0475 (17)0.062 (2)0.0264 (12)0.0181 (14)0.0055 (11)0.0043 (12)
C740.0323 (14)0.0343 (14)0.0319 (12)0.0100 (10)0.0008 (10)0.0059 (10)
C910.0224 (12)0.0275 (12)0.0216 (10)0.0038 (9)0.0005 (8)0.0024 (9)
C920.0404 (15)0.0390 (14)0.0292 (12)0.0102 (12)0.0003 (10)0.0082 (10)
C930.0568 (18)0.0261 (13)0.0448 (15)0.0002 (12)0.0087 (12)0.0017 (11)
C940.0480 (19)0.0264 (14)0.0368 (15)0.0057 (10)0.0015 (10)0.0003 (9)
C94A0.0278 (5)0.0314 (7)0.0157 (7)0.0035 (4)0.0035 (5)0.0017 (5)
Geometric parameters (Å, º) top
N1—C51.366 (3)C7—O71.222 (2)
N1—N21.373 (2)C7—C711.463 (3)
N1—C111.423 (3)C71—C741.384 (3)
C11—C121.387 (3)C71—S71.718 (2)
C11—C161.392 (3)S7—C721.700 (3)
C12—C131.390 (3)C72—C731.348 (4)
C12—H120.95C72—H720.95
C13—C141.377 (3)C73—C741.408 (3)
C13—H130.95C73—H730.95
C14—C151.383 (3)C74—H740.95
C14—H140.95C8—C91.509 (3)
C15—C161.376 (3)C8—H8A0.99
C15—H150.95C8—H8B0.99
C16—H160.95C9—O91.221 (3)
N2—C31.335 (3)C9—C911.470 (3)
C3—C41.418 (3)C91—C941.321 (8)
C3—C311.495 (3)C91—C94A1.396 (10)
C31—H31A0.98C91—S9A1.703 (3)
C31—H31B0.98C91—S91.712 (2)
C31—H31C0.98S9—C921.642 (3)
C4—C51.373 (3)C94A—C921.498 (13)
C4—C411.506 (3)C94A—H94A0.95
C41—C81.529 (3)C92—C931.360 (3)
C41—C61.542 (3)C92—H920.95
C41—H411.00C93—C941.526 (11)
C5—Cl51.705 (2)C93—S9A1.549 (5)
C6—C71.514 (3)C93—H930.95
C6—H6A0.99C94—H940.95
C6—H6B0.99
C5—N1—N2110.01 (16)O7—C7—C71120.2 (2)
C5—N1—C11130.20 (18)O7—C7—C6121.59 (19)
N2—N1—C11119.66 (17)C71—C7—C6118.19 (18)
C12—C11—C16120.4 (2)C74—C71—C7129.7 (2)
C12—C11—N1120.85 (19)C74—C71—S7111.47 (16)
C16—C11—N1118.74 (19)C7—C71—S7118.84 (16)
C11—C12—C13119.0 (2)C72—S7—C7191.41 (12)
C11—C12—H12120.5C73—C72—S7112.41 (18)
C13—C12—H12120.5C73—C72—H72123.8
C14—C13—C12120.6 (2)S7—C72—H72123.8
C14—C13—H13119.7C72—C73—C74113.4 (2)
C12—C13—H13119.7C72—C73—H73123.3
C13—C14—C15119.8 (2)C74—C73—H73123.3
C13—C14—H14120.1C71—C74—C73111.3 (2)
C15—C14—H14120.1C71—C74—H74124.3
C16—C15—C14120.4 (2)C73—C74—H74124.3
C16—C15—H15119.8C9—C8—C41112.62 (17)
C14—C15—H15119.8C9—C8—H8A109.1
C15—C16—C11119.6 (2)C41—C8—H8A109.1
C15—C16—H16120.2C9—C8—H8B109.1
C11—C16—H16120.2C41—C8—H8B109.1
C3—N2—N1105.27 (16)H8A—C8—H8B107.8
N2—C3—C4112.16 (18)O9—C9—C91120.14 (18)
N2—C3—C31119.38 (18)O9—C9—C8121.45 (19)
C4—C3—C31128.46 (19)C91—C9—C8118.37 (18)
C3—C31—H31A109.5C94—C91—C9128.9 (5)
C3—C31—H31B109.5C94A—C91—C9125.9 (5)
H31A—C31—H31B109.5C94A—C91—S9A109.2 (5)
C3—C31—H31C109.5C9—C91—S9A124.91 (19)
H31A—C31—H31C109.5C94—C91—S9113.0 (5)
H31B—C31—H31C109.5C9—C91—S9118.10 (16)
C5—C4—C3103.45 (18)C92—S9—C9191.59 (11)
C5—C4—C41127.89 (18)C91—C94A—C92112.3 (7)
C3—C4—C41128.66 (18)C91—C94A—H94A123.9
C4—C41—C8112.44 (17)C92—C94A—H94A123.9
C4—C41—C6112.38 (16)C93—C92—C94A104.2 (4)
C8—C41—C6110.96 (17)C93—C92—S9117.10 (18)
C4—C41—H41106.9C93—C92—H92121.4
C8—C41—H41106.9C94A—C92—H92134.3
C6—C41—H41106.9S9—C92—H92121.4
N1—C5—C4109.11 (17)C92—C93—C94106.3 (3)
N1—C5—Cl5121.65 (16)C92—C93—S9A121.0 (2)
C4—C5—Cl5129.22 (16)C92—C93—H93126.8
C7—C6—C41112.93 (17)C94—C93—H93126.8
C7—C6—H6A109.0S9A—C93—H93112.0
C41—C6—H6A109.0C91—C94—C93111.9 (7)
C7—C6—H6B109.0C91—C94—H94124.0
C41—C6—H6B109.0C93—C94—H94124.0
H6A—C6—H6B107.8C93—S9A—C9193.06 (18)
C5—N1—C11—C1243.7 (3)C7—C71—C74—C73178.2 (2)
N2—N1—C11—C12140.8 (2)S7—C71—C74—C730.1 (2)
C5—N1—C11—C16136.3 (2)C72—C73—C74—C710.1 (3)
N2—N1—C11—C1639.2 (3)C4—C41—C8—C962.5 (2)
C16—C11—C12—C131.8 (3)C6—C41—C8—C9170.71 (17)
N1—C11—C12—C13178.18 (19)C41—C8—C9—O924.0 (3)
C11—C12—C13—C142.3 (3)C41—C8—C9—C91158.58 (18)
C12—C13—C14—C150.8 (3)O9—C9—C91—C94171.5 (7)
C13—C14—C15—C161.4 (3)C8—C9—C91—C9411.0 (7)
C14—C15—C16—C111.9 (3)O9—C9—C91—C94A3.0 (7)
C12—C11—C16—C150.3 (3)C8—C9—C91—C94A174.5 (6)
N1—C11—C16—C15179.73 (19)O9—C9—C91—S9A178.1 (2)
C5—N1—N2—C30.4 (2)C8—C9—C91—S9A4.5 (3)
C11—N1—N2—C3176.69 (16)O9—C9—C91—S95.9 (3)
N1—N2—C3—C40.0 (2)C8—C9—C91—S9171.50 (16)
N1—N2—C3—C31179.65 (17)C94—C91—S9—C921.0 (6)
N2—C3—C4—C50.3 (2)C94A—C91—S9—C9216 (4)
C31—C3—C4—C5179.93 (19)C9—C91—S9—C92178.87 (17)
N2—C3—C4—C41179.39 (17)S9A—C91—S9—C924.8 (2)
C31—C3—C4—C411.0 (3)C94—C91—C94A—C924.7 (10)
C5—C4—C41—C854.1 (3)C9—C91—C94A—C92179.7 (4)
C3—C4—C41—C8124.8 (2)S9A—C91—C94A—C920.6 (9)
C5—C4—C41—C672.0 (3)S9—C91—C94A—C92161 (4)
C3—C4—C41—C6109.1 (2)C91—C94A—C92—C932.6 (9)
N2—N1—C5—C40.6 (2)C91—C94A—C92—S9168 (3)
C11—N1—C5—C4176.38 (18)C91—S9—C92—C931.3 (2)
N2—N1—C5—Cl5178.01 (13)C91—S9—C92—C94A9 (2)
C11—N1—C5—Cl52.2 (3)C94A—C92—C93—C940.4 (7)
C3—C4—C5—N10.5 (2)S9—C92—C93—C942.8 (5)
C41—C4—C5—N1179.61 (17)C94A—C92—C93—S9A5.5 (6)
C3—C4—C5—Cl5177.93 (15)S9—C92—C93—S9A3.1 (4)
C41—C4—C5—Cl51.2 (3)C94A—C91—C94—C934.9 (10)
C4—C41—C6—C780.9 (2)C9—C91—C94—C93179.7 (3)
C8—C41—C6—C7152.22 (18)S9A—C91—C94—C93125 (6)
C41—C6—C7—O716.3 (3)S9—C91—C94—C932.7 (9)
C41—C6—C7—C71166.61 (18)C92—C93—C94—C913.5 (9)
O7—C7—C71—C74168.6 (2)S9A—C93—C94—C91157 (3)
C6—C7—C71—C7414.3 (3)C92—C93—S9A—C915.5 (3)
O7—C7—C71—S79.3 (3)C94—C93—S9A—C9116 (2)
C6—C7—C71—S7167.84 (16)C94—C91—S9A—C9349 (6)
C74—C71—S7—C720.27 (18)C94A—C91—S9A—C933.1 (6)
C7—C71—S7—C72178.53 (18)C9—C91—S9A—C93177.8 (2)
C71—S7—C72—C730.3 (2)S9—C91—S9A—C936.2 (3)
S7—C72—C73—C740.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···Cg1i0.992.673.628 (3)162
C8—H8A···Cg2i0.992.673.614 (3)159
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. JC thanks the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. JQ and JT thank COLCIENCIAS and UNIVALLE (Universidad del Valle, Colombia) for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNyburg, S. C. & Faerman, C. H. (1985). Acta Cryst. B41, 274–279.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds