organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Saccharin, redetermined at 120 K: a three-dimensional hydrogen-bonded framework

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 20 May 2005; accepted 24 May 2005; online 31 May 2005)

Mol­ecules of the title compound, C7H5NO3S, are linked by paired N—H⋯O=C hydrogen bonds into R22(8) dimers and these dimers are linked into a three-dimensional framework structure by a combination of three independent C—H⋯O hydrogen bonds.

Comment

The structure of saccharin, (I)[link], was determined some years ago (Bart, 1968[Bart, J. C. J. (1968). J. Chem. Soc. B, pp. 376-382.]; Okaya, 1969[Okaya, Y. (1969). Acta Cryst. B25, 2257-2263.]) using diffraction data collected at ambient temperature, and accordingly the precision of some of the inter­atomic distances is fairly modest. While in one report (Bart, 1968[Bart, J. C. J. (1968). J. Chem. Soc. B, pp. 376-382.]) the precision on the bond angles is satisfactory, in the other (Okaya, 1969[Okaya, Y. (1969). Acta Cryst. B25, 2257-2263.]) no s.u. values were quoted for the inter­bond angles. The mol­ecules were reported to form centrosymmetric dimers constructed from paired N—H⋯O=C hydrogen bonds.

[Scheme 1]

We have now taken the opportunity to redetermine this structure using diffraction data collected at 120 (2) K; this has permitted refinement to a rather lower R factor and has provided inter­atomic distances of significantly higher precision (Fig. 1[link] and Table 1[link]). The cell dimensions and space group indicate that the same phase is present at 120 K as at ambient temperature.

The mol­ecules are linked by a combination of N—H⋯O and C—H⋯O hydrogen bonds in which all three O atoms act as acceptors (Table 2[link]). The N—H⋯O hydrogen bond, which utilizes a carbon­yl O atom as acceptor, generates a centrosymmetric R22(8) dimer (Fig. 2[link]), exactly as reported previously; for the sake of convenience, the reference mol­ecule has been selected so that this dimer lies across ([{1\over 2}], [{1\over 2}], [{1\over 2}]). These dimers are linked into a single three-dimensional framework by three independent C—H⋯O hydrogen bonds, each utilizing a different O atom as acceptor (Table 2[link]). The hydrogen bond involving C2 as donor links the R22(8) dimer centred at ([{1\over 2}], [{1\over 2}], [{1\over 2}]) to those centred at (−[{1\over 2}], 0, 0), (−[{1\over 2}], 1, 0), ([{3\over 2}], 0, 1) and ([{3\over 2}], 1, 1), thereby generating a (−102) sheet. The hydrogen bond involving C4 as the donor links the ([{1\over 2}], [{1\over 2}], [{1\over 2}]) dimer to those centred at ([{1\over 2}], −1, 0), ([{1\over 2}], −1, 1), ([{1\over 2}], 2, 0) and ([{1\over 2}], 2, 1), so forming a (100) sheet. This sheet is reinforced by the third, rather weak, C—H⋯O hydrogen bond where C5 is the donor; this inter­action links the ([{1\over 2}], [{1\over 2}], [{1\over 2}]) dimer to those centred at ([{1\over 2}], 0, 0), ([{1\over 2}], 1, 0), ([{1\over 2}], 0, 1) and ([{1\over 2}], 1, 1), so that the (100) sheet is of considerable complexity. The combination of the (100) and ([\overline 1]02) sheets suffices to link all of the mol­ecules into a single framework.

The original reports on the structure of (I)[link] (Bart, 1968[Bart, J. C. J. (1968). J. Chem. Soc. B, pp. 376-382.]; Okaya, 1969[Okaya, Y. (1969). Acta Cryst. B25, 2257-2263.]) made no mention of the C—H⋯O hydrogen bonds; at the time of those reports, the notion that such inter­actions could be of structural significance was not widely recognized and certainly not widely accepted.

[Figure 1]
Figure 1
The mol­ecule of (I)[link], showing the atom-labelling scheme. Displacement ellipsoid are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of an R22(8) dimer. For clarity, H atoms bonded to C atoms have been omitted. Hydrogen bonds are indicated by dashed lines. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).

Experimental

Crystals of compound (I)[link] suitable for single-crystal X-ray diffraction were grown from an ethanol solution.

Crystal data
  • C7H5NO3S

  • Mr = 183.18

  • Monoclinic, P 21 /c

  • a = 9.4722 (4) Å

  • b = 6.9227 (2) Å

  • c = 11.7322 (3) Å

  • β = 103.203 (3)°

  • V = 748.98 (4) Å3

  • Z = 4

  • Dx = 1.624 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1706 reflections

  • θ = 3.6–27.5°

  • μ = 0.39 mm−1

  • T = 120 (2) K

  • Lath, colourless

  • 0.44 × 0.16 × 0.11 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.847, Tmax = 0.958

  • 12303 measured reflections

  • 1706 independent reflections

  • 1490 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 27.5°

  • h = −11 → 12

  • k = −8 → 9

  • l = −14 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.11

  • 1706 reflections

  • 109 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0203P)2 + 0.8656P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

S1—O1 1.4291 (15)
S1—O2 1.4323 (15)
S1—N1 1.6643 (16)
S1—C1 1.7560 (19)
N1—C7 1.374 (2)
C7—O3 1.223 (2)
C7—C6 1.481 (3)
C1—C2 1.387 (3)
C2—C3 1.393 (3)
C3—C4 1.390 (3)
C4—C5 1.392 (3)
C5—C6 1.382 (3)
C6—C1 1.391 (3)
O1—S1—O2 117.37 (9)
O1—S1—N1 110.37 (9)
O2—S1—N1 109.48 (9)
O1—S1—C1 111.71 (9)
O2—S1—C1 112.68 (9)
N1—S1—C1 92.41 (8)
S1—N1—C7 115.65 (13)
O3—C7—N1 124.53 (17)
O3—C7—C6 126.12 (17)
N1—C7—C6 109.34 (16)
S1—C1—C6 110.01 (14)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.95 1.86 2.786 (2) 167
C2—H2⋯O2ii 0.95 2.46 3.377 (3) 161
C4—H4⋯O1iii 0.95 2.55 3.375 (2) 145
C5—H5⋯O3iv 0.95 2.50 3.169 (2) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms with C—H = 0.95 Å and N—H = 0.95 Å, and with Uiso(H) = 1.2 Ueq(C,N).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: WinGX (Farrugia, 1999) and SIR92 (Altomare et al., 1993); program(s) used to refine structure: OSCAIL (McArdle, 2003) and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Saccharin top
Crystal data top
C7H5NO3SF(000) = 376
Mr = 183.18Dx = 1.624 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1706 reflections
a = 9.4722 (4) Åθ = 3.6–27.5°
b = 6.9227 (2) ŵ = 0.39 mm1
c = 11.7322 (3) ÅT = 120 K
β = 103.203 (3)°Lath, colourless
V = 748.98 (4) Å30.44 × 0.16 × 0.11 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1706 independent reflections
Radiation source: Bruker–Nonius FR91 rotating anode1490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
φ and ω scansh = 1112
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 89
Tmin = 0.847, Tmax = 0.958l = 1415
12303 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0203P)2 + 0.8656P]
where P = (Fo2 + 2Fc2)/3
1706 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.63 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.21067 (5)0.22909 (7)0.34594 (4)0.01955 (15)
O10.24538 (17)0.1705 (2)0.23876 (12)0.0271 (3)
O20.08217 (15)0.3423 (2)0.33788 (13)0.0287 (4)
O30.52054 (15)0.3079 (2)0.60463 (11)0.0216 (3)
N10.35108 (18)0.3420 (2)0.43105 (14)0.0207 (4)
C10.2223 (2)0.0356 (3)0.44441 (16)0.0184 (4)
C20.1361 (2)0.1284 (3)0.43285 (18)0.0256 (4)
C30.1685 (2)0.2627 (3)0.52349 (19)0.0271 (5)
C40.2818 (2)0.2340 (3)0.62062 (18)0.0256 (4)
C50.3685 (2)0.0699 (3)0.62963 (17)0.0218 (4)
C60.3373 (2)0.0646 (3)0.54037 (15)0.0170 (4)
C70.4147 (2)0.2483 (3)0.53308 (16)0.0177 (4)
H10.38380.46220.40870.025*
H20.05880.14810.36640.031*
H30.11170.37670.51880.033*
H40.30040.32750.68150.031*
H50.44700.05080.69530.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0205 (3)0.0188 (3)0.0173 (2)0.00189 (18)0.00002 (17)0.00062 (17)
O10.0372 (9)0.0252 (8)0.0189 (7)0.0036 (6)0.0067 (6)0.0018 (6)
O20.0221 (8)0.0307 (8)0.0303 (8)0.0049 (6)0.0002 (6)0.0014 (6)
O30.0239 (7)0.0222 (7)0.0169 (6)0.0054 (6)0.0008 (5)0.0016 (5)
N10.0235 (9)0.0165 (8)0.0195 (8)0.0048 (6)0.0003 (6)0.0015 (6)
C10.0204 (9)0.0176 (9)0.0176 (9)0.0012 (7)0.0053 (7)0.0021 (7)
C20.0225 (10)0.0275 (11)0.0264 (10)0.0062 (9)0.0048 (8)0.0070 (9)
C30.0307 (11)0.0191 (10)0.0349 (11)0.0085 (8)0.0146 (9)0.0033 (8)
C40.0344 (12)0.0202 (10)0.0253 (10)0.0029 (8)0.0130 (9)0.0015 (8)
C50.0279 (10)0.0196 (9)0.0186 (9)0.0012 (8)0.0067 (8)0.0001 (7)
C60.0197 (9)0.0161 (9)0.0159 (8)0.0010 (7)0.0056 (7)0.0034 (7)
C70.0197 (9)0.0168 (9)0.0174 (9)0.0017 (7)0.0057 (7)0.0027 (7)
Geometric parameters (Å, º) top
S1—O11.4291 (15)C2—C31.393 (3)
S1—O21.4323 (15)C2—H20.95
S1—N11.6643 (16)C3—C41.390 (3)
S1—C11.7560 (19)C3—H30.95
N1—C71.374 (2)C4—C51.392 (3)
N1—H10.9462C4—H40.95
C7—O31.223 (2)C5—C61.382 (3)
C7—C61.481 (3)C5—H50.95
C1—C21.387 (3)C6—C11.391 (3)
O1—S1—O2117.37 (9)C1—C2—C3116.72 (18)
O1—S1—N1110.37 (9)C1—C2—H2121.6
O2—S1—N1109.48 (9)C3—C2—H2121.6
O1—S1—C1111.71 (9)C4—C3—C2121.65 (19)
O2—S1—C1112.68 (9)C4—C3—H3119.2
N1—S1—C192.41 (8)C2—C3—H3119.2
S1—N1—C7115.65 (13)C3—C4—C5120.71 (19)
C7—N1—H1123.4C3—C4—H4119.6
S1—N1—H1120.9C5—C4—H4119.6
O3—C7—N1124.53 (17)C6—C5—C4118.18 (18)
O3—C7—C6126.12 (17)C6—C5—H5120.9
N1—C7—C6109.34 (16)C4—C5—H5120.9
C2—C1—C6122.17 (18)C5—C6—C1120.57 (18)
C2—C1—S1127.80 (15)C5—C6—C7126.84 (17)
S1—C1—C6110.01 (14)C1—C6—C7112.59 (16)
O1—S1—N1—C7113.64 (15)C1—C2—C3—C40.1 (3)
O2—S1—N1—C7115.70 (15)C2—C3—C4—C50.9 (3)
C1—S1—N1—C70.60 (16)C3—C4—C5—C61.0 (3)
S1—N1—C7—O3178.42 (15)C4—C5—C6—C10.1 (3)
S1—N1—C7—C60.3 (2)C4—C5—C6—C7179.60 (18)
O1—S1—C1—C266.2 (2)C2—C1—C6—C51.0 (3)
O2—S1—C1—C268.4 (2)S1—C1—C6—C5179.60 (15)
N1—S1—C1—C2179.26 (19)C2—C1—C6—C7179.32 (18)
O1—S1—C1—C6112.34 (14)S1—C1—C6—C70.7 (2)
O2—S1—C1—C6113.01 (14)O3—C7—C6—C51.3 (3)
N1—S1—C1—C60.72 (15)N1—C7—C6—C5179.96 (18)
C6—C1—C2—C31.1 (3)O3—C7—C6—C1178.97 (19)
S1—C1—C2—C3179.43 (16)N1—C7—C6—C10.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.951.862.786 (2)167
C2—H2···O2ii0.952.463.377 (3)161
C4—H4···O1iii0.952.553.375 (2)145
C5—H5···O3iv0.952.503.169 (2)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x+1, y1/2, z+3/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBart, J. C. J. (1968). J. Chem. Soc. B, pp. 376–382.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOkaya, Y. (1969). Acta Cryst. B25, 2257–2263.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds