metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Creatininium di­hydrogenarsenate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 17 May 2005; accepted 20 May 2005; online 28 May 2005)

The title compound, (C4H8N3O)[H2AsO4], contains a network of creatininium cations and dihydrogenarsenate anions [mean As—O = 1.681 (2) Å]. The crystal packing involves anion-to-anion O—H⋯O, cation-to-anion N—H⋯O and cation-to-cation N—H⋯O hydrogen bonds, resulting in a chain structure.

Comment

The title compound, (I)[link] (Fig. 1[link]), was prepared as part of our ongoing structural studies of hydrogen-bonding inter­actions in protonated-amine (di)hydrogen arsenate mol­ecular salts (Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]; Todd & Harrison, 2005[Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024-m1026.]). The [H2AsO4] dihydrogenarsenate group in (I)[link] shows a normal tetra­hedral geometry [mean As—O = 1.681 (2) Å], with the protonated As1—O3 and As1—O4 vertices showing their usual lengthening relative to the unprotonated As1—O1 and As1—O2 bonds, which have formal partial double-bond character (Table 1[link]).

[Scheme 1]

The creatininium cation is approximately planar [r.m.s. deviation for the non-H atoms = 0.031 Å; maximum deviation from the mean plane = 0.0597 (16) Å for N2]. The three C1—N bond distances (Table 1[link]) are distinctly different, with C1—N1 much longer than the other two. This configuration perhaps indicates that the canonical form of the mol­ecule, with a formal double bond in the C1—N1 position and a formal positive charge on N1, is of less importance than the forms that place the double bond in the C1—N2 and C1—N3 positions and the positive charge on the respective N atoms. However, the rather short C2—N1 bond length suggests that some conjugation involving the C2=O5 group may also be significant. In the structure of creatininium dipicolinate monohydrate (Moghimi et al., 2004[Moghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790-o1792.]), the creatininium cation is constrained to be planar by mirror symmetry and an almost identical pattern of C—N bond lengths is observed.

As well as electrostatic attractions, the component species in (I)[link] inter­act by means of a network of cation-to-anion N—H⋯O, anion-to-anion O—H⋯O and cation-to-cation N—H⋯O hydrogen bonds (Table 2[link]). The [H2AsO4] units are linked into polymeric chains (Fig. 2[link]) propagating along [100] by way of inversion-generated pairs of O3—H1⋯O2i and O4—H2⋯O1ii bonds (see Table 2[link] for symmetry codes). In graph-set notation (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), each inter-tetra­hedral linking motif corresponds to an R22(8) loop. The As1⋯As1i and As1⋯As1ii separations are 4.0608 (3) and 3.9286 (3) Å, respectively.

The organic species inter­acts with the dihydrogenarsenate chains by way of two N—H⋯O hydrogen bonds (Fig. 1[link]), such that both sides of each [100] chain are decorated by the creatininium cations. The third creatininium N—H group is involved in a cation-to-cation N—H⋯O bond (Fig. 2[link]) that appears to reinforce the chains. Overall, a chain structure along the a axis arises for (I)[link], as shown in Fig. 3[link]. Atoms O1 and O2 accept two hydrogen bonds each (bond angle sums about these atoms are 358.3 and 359.3°, respectively). A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] flagged the possible presence of two short C—H⋯O inter­actions (Table 2[link]), although their structural significance is not clear.

PLATON also flagged a short C2⋯C2v [symmetry code: (v) −x, 1 − y, −z] inter­molecular contact of 3.158 (3) Å, compared with a van der Waals radius sum of 3.40 Å (Bondi, 1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). This close contact might arise as part of a carbon­yl–carbon­yl inter­action, as described by Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). In the notation of these workers, the situation in (I)[link] corresponds to a `sheared antiparallel' or motif II inter­action (Fig. 4[link]), generated by a centre of symmetry. Here, the O5=C2⋯O5v and C2=O5⋯C2v inter­action angles are 100.50 (14) and 79.50 (13)°, respectively, compared with the nominal values of 2 × 90° for a perfect rectangle of the four constituent atoms. This is slightly more distorted than the mean O=C⋯O and C=O⋯C angles of 96.5 (4) and 83.5 (4)° based on 553 contributors, as cited by Allen et al. (1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]). The C2⋯O5v separation of 3.147 (3) Å in (I)[link] is slightly less than the C⋯O van der Waals separation of 3.22 Å.

The dihydrogenarsenate chain motif in (I)[link] replicates that seen in t-butyl­ammonium dihydrogenarsenate (Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]). However, a different cation-to-anion hydrogen-bonding scheme leads to a layered structure in this phase. The intra­chain As⋯As separations of 4.2662 (3) and 4.3002 (4) Å in the t-butyl­ammonium compound are significantly larger than those seen in (I)[link].

[Figure 1]
Figure 1
View of the asymmetric unit of (I)[link], showing 50% probability displacement ellipsoids, with hydrogen bonds indicated by dashed lines.
[Figure 2]
Figure 2
Detail of a hydrogen-bonded chain in (I)[link]. Hydrogen bonds are indicated by dashed lines. [Symmetry codes as in Table 2[link]; additionally, (vi) x − 1, y, z.]
[Figure 3]
Figure 3
Projection of the packing of (I)[link] along the a axis. Hydrogen bonds are indicated by dashed lines.
[Figure 4]
Figure 4
Detail of (I)[link], showing the possible carbon­yl–carbon­yl inter­action, with H atoms omitted for clarity. Hydrogen bonds are indicated by dashed lines. [Symmetry code: (v) −x, 1 − y, −z.]

Experimental

A 0.5 M aqueous creatine solution (10 ml) was added to a 0.5 M aqueous H3AsO4 solution (20 ml) to result in a clear solution. A mass of block-like crystals of (I)[link] grew as the water evaporated over the course of a few days. The creatine transformed to creatinine under the low-pH conditions of the reaction.

Crystal data
  • (C4H8N3O)[H2AsO4]

  • Mr = 255.07

  • Monoclinic, P 21 /n

  • a = 7.3576 (3) Å

  • b = 10.4263 (5) Å

  • c = 11.9471 (5) Å

  • β = 102.908 (1)°

  • V = 893.33 (7) Å3

  • Z = 4

  • Dx = 1.897 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 5020 reflections

  • θ = 2.6–32.2°

  • μ = 3.80 mm−1

  • T = 293 (2) K

  • Chunk, colourless

  • 0.49 × 0.33 × 0.24 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.223, Tmax = 0.401

  • 11192 measured reflections

  • 3202 independent reflections

  • 2403 reflections with I > 2σ(I)

  • Rint = 0.029

  • θmax = 32.5°

  • h = −11 → 11

  • k = −15 → 15

  • l = −17 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.00

  • 3202 reflections

  • 119 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0381P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected interatomic distances (Å)[link]

As1—O1 1.6512 (13)
As1—O2 1.6563 (12)
As1—O4 1.7013 (15)
As1—O3 1.7134 (13)
C1—N2 1.305 (2)
C1—N3 1.321 (2)
C1—N1 1.374 (2)
C2—N1 1.367 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2i 0.85 1.77 2.618 (2) 177
O4—H2⋯O1ii 0.82 1.79 2.598 (2) 169
N1—H3⋯O2 0.86 1.89 2.703 (2) 158
N2—H4⋯O5iii 0.86 2.16 2.983 (2) 161
N2—H5⋯O1 0.86 1.89 2.747 (2) 172
C3—H6⋯O1iv 0.97 2.46 3.334 (2) 149
C3—H7⋯O2v 0.97 2.46 3.384 (2) 159
Symmetry codes: (i) -x, -y+2, -z; (ii) -x+1, -y+2, -z; (iii) x+1, y, z; (iv) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) -x, -y+1, -z.

The hydr­oxy H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. The H atoms bonded to C and N atoms were placed in idealized positions (C—H = 0.96–0.97 Å and N—H = 0.86 Å) and refined as riding, allowing for free rotation of the –CH3 group. The constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(meth­yl carrier) was applied.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Creatininium dihydrogenarsenate top
Crystal data top
(C4H8N3O)[H2AsO4]F(000) = 512
Mr = 255.07Dx = 1.897 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5020 reflections
a = 7.3576 (3) Åθ = 2.6–32.2°
b = 10.4263 (5) ŵ = 3.80 mm1
c = 11.9471 (5) ÅT = 293 K
β = 102.908 (1)°Chunk, colourless
V = 893.33 (7) Å30.49 × 0.33 × 0.24 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2403 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 32.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1111
Tmin = 0.223, Tmax = 0.401k = 1515
11192 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0381P)2]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max = 0.002
119 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.52 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.26213 (2)0.928771 (15)0.019997 (18)0.03047 (7)
O10.46360 (18)0.87172 (12)0.09239 (13)0.0373 (3)
O20.08787 (18)0.82749 (11)0.01759 (13)0.0398 (3)
O30.2283 (2)1.06885 (12)0.08753 (15)0.0438 (3)
H10.12741.10290.05140.053*
O40.2634 (2)0.96492 (14)0.11868 (13)0.0444 (3)
H20.34511.01790.11980.053*
C10.3742 (2)0.54747 (15)0.13831 (17)0.0311 (4)
C20.0711 (3)0.51202 (17)0.13441 (17)0.0338 (4)
C30.1748 (3)0.38752 (17)0.16057 (18)0.0355 (4)
H60.16400.35370.23440.043*
H70.12940.32400.10160.043*
C40.5201 (3)0.33417 (18)0.1848 (2)0.0446 (5)
H80.47930.25280.15060.067*
H90.56360.32390.26620.067*
H100.61960.36640.15270.067*
N10.2003 (2)0.60209 (13)0.12221 (14)0.0316 (3)
H30.17610.68170.10670.038*
N20.5212 (2)0.61337 (15)0.12952 (17)0.0430 (4)
H40.62800.57630.13950.052*
H50.51120.69390.11380.052*
N30.3657 (2)0.42406 (13)0.16181 (15)0.0345 (3)
O50.0931 (2)0.53087 (16)0.12300 (15)0.0489 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.02924 (9)0.01985 (8)0.03993 (12)0.00035 (7)0.00263 (7)0.00260 (7)
O10.0290 (6)0.0275 (6)0.0517 (9)0.0024 (5)0.0011 (6)0.0088 (6)
O20.0305 (6)0.0231 (5)0.0629 (10)0.0022 (5)0.0042 (6)0.0075 (6)
O30.0382 (7)0.0294 (6)0.0582 (10)0.0038 (6)0.0012 (7)0.0102 (6)
O40.0428 (8)0.0446 (7)0.0421 (9)0.0107 (6)0.0013 (7)0.0051 (6)
C10.0325 (8)0.0231 (7)0.0364 (10)0.0023 (6)0.0051 (7)0.0003 (6)
C20.0349 (9)0.0316 (8)0.0351 (10)0.0010 (7)0.0085 (8)0.0012 (7)
C30.0384 (10)0.0263 (7)0.0418 (11)0.0038 (7)0.0089 (8)0.0015 (7)
C40.0440 (11)0.0260 (8)0.0602 (14)0.0085 (8)0.0039 (10)0.0030 (8)
N10.0298 (7)0.0230 (6)0.0418 (9)0.0031 (5)0.0077 (6)0.0028 (6)
N20.0282 (8)0.0269 (7)0.0722 (13)0.0026 (6)0.0077 (8)0.0076 (8)
N30.0356 (8)0.0216 (6)0.0449 (10)0.0017 (6)0.0062 (7)0.0021 (6)
O50.0340 (7)0.0476 (8)0.0678 (11)0.0002 (7)0.0176 (7)0.0017 (8)
Geometric parameters (Å, º) top
As1—O11.6512 (13)C2—C31.503 (3)
As1—O21.6563 (12)C3—N31.452 (2)
As1—O41.7013 (15)C3—H60.9700
As1—O31.7134 (13)C3—H70.9700
O3—H10.8488C4—N31.451 (2)
O4—H20.8185C4—H80.9600
C1—N21.305 (2)C4—H90.9600
C1—N31.321 (2)C4—H100.9600
C1—N11.374 (2)N1—H30.8600
C2—O51.202 (2)N2—H40.8600
C2—N11.367 (2)N2—H50.8600
O1—As1—O2112.36 (6)C2—C3—H7111.2
O1—As1—O4112.96 (7)H6—C3—H7109.1
O2—As1—O4107.28 (7)N3—C4—H8109.5
O1—As1—O3105.56 (7)N3—C4—H9109.5
O2—As1—O3111.00 (7)H8—C4—H9109.5
O4—As1—O3107.62 (8)N3—C4—H10109.5
As1—O3—H1108.6H8—C4—H10109.5
As1—O4—H2109.2H9—C4—H10109.5
N2—C1—N3127.51 (17)C2—N1—C1110.36 (14)
N2—C1—N1122.20 (16)C2—N1—H3124.8
N3—C1—N1110.29 (15)C1—N1—H3124.8
O5—C2—N1125.52 (18)C1—N2—H4120.0
O5—C2—C3128.01 (18)C1—N2—H5120.0
N1—C2—C3106.45 (15)H4—N2—H5120.0
N3—C3—C2102.73 (14)C1—N3—C4126.66 (16)
N3—C3—H6111.2C1—N3—C3110.16 (15)
C2—C3—H6111.2C4—N3—C3123.18 (15)
N3—C3—H7111.2
O5—C2—C3—N3179.0 (2)N2—C1—N3—C40.9 (3)
N1—C2—C3—N30.8 (2)N1—C1—N3—C4179.61 (18)
O5—C2—N1—C1178.5 (2)N2—C1—N3—C3178.4 (2)
C3—C2—N1—C10.2 (2)N1—C1—N3—C31.0 (2)
N2—C1—N1—C2179.00 (19)C2—C3—N3—C11.1 (2)
N3—C1—N1—C20.5 (2)C2—C3—N3—C4179.53 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1···O2i0.851.772.618 (2)177
O4—H2···O1ii0.821.792.598 (2)169
N1—H3···O20.861.892.703 (2)158
N2—H4···O5iii0.862.162.983 (2)161
N2—H5···O10.861.892.747 (2)172
C3—H6···O1iv0.972.463.334 (2)149
C3—H7···O2v0.972.463.384 (2)159
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z; (iii) x+1, y, z; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z.
 

Acknowledgements

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMoghimi, A., Sharif, M. A. & Aghabozorg, H. (2004). Acta Cryst. E60, o1790–o1792.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024–m1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359–m1361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds