organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,4-Di­chloro-1-nitro­benzene–aniline (2/1)

CROSSMARK_Color_square_no_text.svg

aDepartment of Theoretical and Computational Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England, bDepartment of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and cDepartment of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, Scotland
*Correspondence e-mail: sarah.barnett@ucl.ac.uk

(Received 22 June 2005; accepted 24 June 2005; online 30 June 2005)

The solvate structure of 3,4-dichloro-1-nitro­benzene with aniline, 2C6H3Cl2NO2·C6H7N, is reported. Ribbons of 3,4-dichloro­nitro­benzene, formed by Cl⋯Cl and N—O⋯Cl inter­actions, are linked together via N—H⋯O hydrogen bonds with aniline into an undulating two-dimensional sheet.

Comment

The title compound, (I)[link], was produced during an automated parallel crystallization polymorph screen on 3,4-dichloro­nitro­benzene (3,4-DCNB). The sample was identified as a novel form using multi-sample X-ray powder diffraction analysis of all recrystallized samples (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]). Subsequent manual recrystallization from a saturated aniline solution by slow evaporation at 298 K yielded samples suitable for single-crystal X-ray analysis. The title solvate, (I)[link], crystallizes in the space group P21/n with two mol­ecules of 3,4-DCNB and one mol­ecule of aniline in the asymmetric unit (Fig. 1[link]).

[Scheme 1]

The crystal structure of (I)[link] is characterized by ribbons of 3,4-DCNB, which are linked by aniline mol­ecules to form a continuous sheet (Fig. 2[link]). Mol­ecules of type 1 (C1–C6) form a zigzag chain via Cl⋯Cl inter­actions [Cl1⋯Cl2i = 3.399 (1) Å and C3—Cl1⋯Cl2i = 149.4 (1)°; symmetry code: (i) [{3\over 2}]x, [{1\over 2}] + y, [{3\over 2}]z]. These mol­ecules are then involved in a second contact with mol­ecules of type 2 (C7–C12) via N—O⋯Cl inter­actions [O2⋯Cl4ii = 3.056 (2) Å and N1—O2⋯Cl4ii = 140.1 (1)°; symmetry code: (ii) 1 − x, 1 − y, 1 − z], thus forming 3,4-DCNB ribbons running parallel to the b axis. The aniline solvent mol­ecules, which lie in a perpendicular plane, link these ribbons into an undulating sheet through two N—H⋯O inter­actions [N3⋯O1iii = 2.52 (2) Å and N3—H1N⋯O1iii = 157 (2)°, and N3⋯O3i = 2.64 (2) Å and N3—H2N⋯O3i = 147 (2)°; symmetry code: (iii) 2 − x, 1 − y, 1 − z]. These sheets form an inter­digitated ABAB stack parallel to the a axis (Fig. 3[link]).

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing the numbering scheme used. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The two-dimensional network formed by (I)[link], showing the inter­molecular inter­actions involved as dashed lines (3,4-DCNB mol­ecule 1: green; 3,4-DCNB mol­ecule 2: blue; aniline: red).
[Figure 3]
Figure 3
Packing diagram viewed perpendicular to the sheets, illustrating the out-of-plane aniline mol­ecules and the stacking arrangement of the sheets. Inter­molecular inter­actions are shown as dashed lines.

Experimental

A single-crystal sample of the title compound was recrystallized from aniline solution by slow evaporation at ca 293 K.

Crystal data
  • 2C6H3Cl2NO2·C6H7N

  • Mr = 477.11

  • Monoclinic, P 21 /n

  • a = 6.9774 (2) Å

  • b = 10.1668 (3) Å

  • c = 27.6762 (7) Å

  • β = 96.495 (2)°

  • V = 1950.69 (9) Å3

  • Z = 4

  • Dx = 1.625 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4734 reflections

  • θ = 1.0–27.9°

  • μ = 0.64 mm−1

  • T = 123 (2) K

  • Triangle, orange

  • 0.45 × 0.30 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω and φ scans

  • Absorption correction: none

  • 22354 measured reflections

  • 4629 independent reflections

  • 3314 reflections with I > 2σ(I)

  • Rint = 0.058

  • θmax = 27.9°

  • h = −9 → 9

  • k = −13 → 13

  • l = −36 → 36

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.081

  • S = 1.04

  • 4629 reflections

  • 314 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0275P)2 + 0.7246P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

C—H distances are in the range 0.09 (2)–1.00 (2) Å, and N—H distances are 0.86 (2) and 0.87 (2) Å.

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]) and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) and OLEX (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000) and OLEX (Dolomanov et al., 2003); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

3,4-dichloronitrobenzene–aniline (2/1) top
Crystal data top
2C6H3Cl2NO2·C6H7NF(000) = 968
Mr = 477.11Dx = 1.625 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9774 (2) ÅCell parameters from 4734 reflections
b = 10.1668 (3) Åθ = 1.0–27.9°
c = 27.6762 (7) ŵ = 0.64 mm1
β = 96.495 (2)°T = 123 K
V = 1950.69 (9) Å3Triangle, orange
Z = 40.45 × 0.30 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
3314 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.058
Graphite monochromatorθmax = 27.9°, θmin = 1.5°
ω and φ scansh = 99
22354 measured reflectionsk = 1313
4629 independent reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0275P)2 + 0.7246P]
where P = (Fo2 + 2Fc2)/3
4629 reflections(Δ/σ)max = 0.002
314 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.65101 (8)0.29879 (5)0.704181 (17)0.02699 (13)
Cl20.59533 (8)0.00859 (5)0.710847 (18)0.02975 (14)
O10.6570 (2)0.17232 (14)0.48418 (5)0.0305 (4)
O20.7091 (3)0.36004 (14)0.51992 (5)0.0384 (4)
N10.6761 (2)0.24168 (17)0.52060 (6)0.0232 (4)
C10.6599 (3)0.17966 (19)0.56799 (7)0.0180 (4)
C20.6634 (3)0.2596 (2)0.60845 (7)0.0190 (4)
C30.6455 (3)0.20088 (19)0.65295 (7)0.0179 (4)
C40.6246 (3)0.0651 (2)0.65591 (7)0.0200 (4)
C50.6249 (3)0.0128 (2)0.61466 (7)0.0213 (4)
C60.6426 (3)0.0441 (2)0.57025 (7)0.0210 (4)
H20.679 (3)0.350 (2)0.6043 (7)0.021 (5)*
H50.611 (3)0.100 (2)0.6179 (7)0.026 (6)*
H60.640 (3)0.0082 (19)0.5428 (7)0.023 (6)*
Cl30.13987 (8)0.11529 (5)0.541764 (17)0.02701 (13)
Cl40.19771 (8)0.42446 (5)0.550794 (19)0.03159 (14)
O30.1424 (2)0.15949 (17)0.76614 (5)0.0396 (4)
O40.0924 (2)0.01482 (16)0.72154 (6)0.0385 (4)
N20.1219 (2)0.10362 (19)0.72661 (6)0.0276 (4)
C70.1347 (3)0.1830 (2)0.68264 (7)0.0199 (4)
C80.1309 (3)0.1183 (2)0.63845 (7)0.0197 (4)
C90.1471 (3)0.19368 (19)0.59743 (7)0.0190 (4)
C100.1676 (3)0.3298 (2)0.60112 (7)0.0217 (4)
C110.1690 (3)0.3914 (2)0.64595 (8)0.0246 (5)
C120.1527 (3)0.3178 (2)0.68721 (7)0.0250 (5)
H80.116 (3)0.025 (2)0.6355 (7)0.024 (6)*
H110.181 (3)0.481 (2)0.6486 (8)0.039 (7)*
H120.155 (3)0.359 (2)0.7179 (8)0.036 (6)*
N31.1864 (3)0.79026 (19)0.62461 (8)0.0298 (4)
C131.0052 (3)0.73193 (19)0.62348 (7)0.0217 (4)
C140.8979 (3)0.7006 (2)0.57924 (7)0.0263 (5)
C150.7159 (3)0.6460 (2)0.57829 (8)0.0304 (5)
C160.6376 (3)0.6211 (2)0.62136 (8)0.0297 (5)
C170.7429 (3)0.6525 (2)0.66525 (8)0.0269 (5)
C180.9240 (3)0.7080 (2)0.66656 (7)0.0241 (5)
H1N1.246 (3)0.778 (2)0.5990 (8)0.035 (7)*
H2N1.265 (3)0.783 (2)0.6505 (8)0.035 (7)*
H140.959 (3)0.716 (2)0.5499 (7)0.027 (6)*
H150.646 (3)0.625 (2)0.5480 (8)0.030 (6)*
H160.514 (3)0.584 (2)0.6203 (7)0.021 (5)*
H170.689 (3)0.633 (2)0.6965 (8)0.031 (6)*
H181.001 (3)0.727 (2)0.6966 (8)0.035 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0332 (3)0.0285 (3)0.0199 (3)0.0004 (2)0.0058 (2)0.0069 (2)
Cl20.0355 (3)0.0310 (3)0.0238 (3)0.0033 (2)0.0078 (2)0.0099 (2)
O10.0421 (10)0.0314 (9)0.0180 (7)0.0002 (7)0.0040 (7)0.0039 (7)
O20.0666 (12)0.0208 (8)0.0293 (9)0.0109 (8)0.0119 (8)0.0038 (7)
N10.0258 (10)0.0241 (10)0.0201 (9)0.0004 (8)0.0039 (7)0.0001 (7)
C10.0174 (10)0.0205 (10)0.0165 (9)0.0006 (8)0.0042 (8)0.0030 (8)
C20.0180 (10)0.0164 (10)0.0229 (10)0.0016 (8)0.0032 (8)0.0006 (8)
C30.0157 (10)0.0215 (10)0.0166 (9)0.0033 (8)0.0020 (8)0.0041 (8)
C40.0162 (10)0.0243 (10)0.0198 (10)0.0020 (8)0.0028 (8)0.0053 (8)
C50.0213 (11)0.0156 (10)0.0272 (11)0.0018 (9)0.0038 (8)0.0012 (9)
C60.0217 (11)0.0190 (10)0.0225 (10)0.0003 (9)0.0035 (9)0.0032 (9)
Cl30.0311 (3)0.0305 (3)0.0197 (2)0.0026 (2)0.0040 (2)0.0058 (2)
Cl40.0413 (3)0.0272 (3)0.0272 (3)0.0012 (2)0.0080 (2)0.0093 (2)
O30.0443 (10)0.0575 (11)0.0172 (8)0.0067 (8)0.0046 (7)0.0009 (8)
O40.0489 (11)0.0328 (10)0.0343 (9)0.0068 (8)0.0070 (8)0.0118 (7)
N20.0236 (10)0.0384 (11)0.0207 (9)0.0025 (9)0.0030 (7)0.0063 (8)
C70.0178 (10)0.0239 (11)0.0183 (10)0.0008 (8)0.0031 (8)0.0040 (8)
C80.0157 (10)0.0191 (10)0.0242 (10)0.0000 (8)0.0020 (8)0.0006 (9)
C90.0167 (10)0.0228 (10)0.0177 (10)0.0020 (8)0.0030 (8)0.0022 (8)
C100.0187 (10)0.0242 (11)0.0226 (10)0.0011 (9)0.0048 (8)0.0046 (9)
C110.0260 (12)0.0189 (11)0.0295 (11)0.0007 (9)0.0050 (9)0.0025 (9)
C120.0237 (11)0.0296 (12)0.0220 (11)0.0019 (9)0.0043 (9)0.0055 (9)
N30.0291 (11)0.0332 (11)0.0284 (11)0.0003 (9)0.0089 (9)0.0016 (9)
C130.0269 (11)0.0156 (10)0.0231 (11)0.0035 (9)0.0050 (9)0.0013 (8)
C140.0380 (13)0.0217 (11)0.0202 (11)0.0090 (10)0.0078 (10)0.0020 (9)
C150.0379 (14)0.0217 (11)0.0297 (12)0.0077 (10)0.0046 (11)0.0065 (10)
C160.0288 (13)0.0178 (11)0.0431 (14)0.0009 (10)0.0061 (11)0.0013 (10)
C170.0329 (13)0.0190 (11)0.0305 (12)0.0043 (9)0.0115 (10)0.0037 (9)
C180.0306 (12)0.0208 (11)0.0210 (11)0.0047 (9)0.0031 (9)0.0009 (9)
Geometric parameters (Å, º) top
Cl1—C31.7293 (19)C8—C91.385 (3)
Cl2—C41.7278 (19)C8—H80.96 (2)
O1—N11.225 (2)C9—C101.394 (3)
O2—N11.226 (2)C10—C111.389 (3)
N1—C11.471 (2)C11—C121.380 (3)
C1—C21.381 (3)C11—H110.91 (2)
C1—C61.385 (3)C12—H120.95 (2)
C2—C31.387 (3)N3—C131.393 (3)
C2—H20.94 (2)N3—H1N0.87 (2)
C3—C41.391 (3)N3—H2N0.86 (2)
C4—C51.390 (3)C13—C141.398 (3)
C5—C61.376 (3)C13—C181.398 (3)
C5—H50.90 (2)C14—C151.383 (3)
C6—H60.93 (2)C14—H140.97 (2)
Cl3—C91.7301 (19)C15—C161.389 (3)
Cl4—C101.725 (2)C15—H150.95 (2)
O3—N21.227 (2)C16—C171.384 (3)
O4—N21.227 (2)C16—H160.94 (2)
N2—C71.471 (2)C17—C181.381 (3)
C7—C121.381 (3)C17—H171.00 (2)
C7—C81.386 (3)C18—H180.96 (2)
O1—N1—O2123.75 (17)C10—C9—Cl3121.00 (15)
O1—N1—C1118.34 (16)C11—C10—C9120.24 (18)
O2—N1—C1117.91 (16)C11—C10—Cl4118.70 (16)
C2—C1—C6122.82 (18)C9—C10—Cl4121.04 (15)
C2—C1—N1118.33 (17)C12—C11—C10120.1 (2)
C6—C1—N1118.85 (17)C12—C11—H11119.2 (14)
C1—C2—C3118.14 (18)C10—C11—H11120.7 (14)
C1—C2—H2118.1 (12)C11—C12—C7118.52 (19)
C3—C2—H2123.8 (12)C11—C12—H12120.4 (14)
C2—C3—C4119.98 (17)C7—C12—H12121.0 (14)
C2—C3—Cl1118.99 (15)C13—N3—H1N115.9 (15)
C4—C3—Cl1121.03 (15)C13—N3—H2N118.6 (16)
C5—C4—C3120.46 (18)H1N—N3—H2N111 (2)
C5—C4—Cl2119.15 (16)N3—C13—C14120.76 (19)
C3—C4—Cl2120.39 (15)N3—C13—C18120.62 (19)
C6—C5—C4120.18 (19)C14—C13—C18118.6 (2)
C6—C5—H5121.7 (13)C15—C14—C13120.5 (2)
C4—C5—H5118.1 (13)C15—C14—H14122.4 (12)
C5—C6—C1118.39 (19)C13—C14—H14117.0 (12)
C5—C6—H6119.7 (12)C14—C15—C16120.4 (2)
C1—C6—H6121.9 (12)C14—C15—H15119.2 (13)
O3—N2—O4123.89 (18)C16—C15—H15120.4 (13)
O3—N2—C7118.15 (18)C17—C16—C15119.3 (2)
O4—N2—C7117.95 (18)C17—C16—H16121.0 (12)
C12—C7—C8122.97 (18)C15—C16—H16119.7 (12)
C12—C7—N2118.83 (18)C18—C17—C16120.7 (2)
C8—C7—N2118.20 (18)C18—C17—H17119.4 (12)
C9—C8—C7117.72 (19)C16—C17—H17119.9 (13)
C9—C8—H8119.8 (12)C17—C18—C13120.5 (2)
C7—C8—H8122.4 (12)C17—C18—H18121.8 (13)
C8—C9—C10120.45 (18)C13—C18—H18117.7 (13)
C8—C9—Cl3118.55 (16)
O1—N1—C1—C2174.07 (18)C12—C7—C8—C90.3 (3)
O2—N1—C1—C26.3 (3)N2—C7—C8—C9178.68 (17)
O1—N1—C1—C66.2 (3)C7—C8—C9—C100.4 (3)
O2—N1—C1—C6173.42 (19)C7—C8—C9—Cl3179.25 (15)
C6—C1—C2—C31.2 (3)C8—C9—C10—C111.1 (3)
N1—C1—C2—C3179.14 (17)Cl3—C9—C10—C11178.60 (15)
C1—C2—C3—C40.0 (3)C8—C9—C10—Cl4177.36 (15)
C1—C2—C3—Cl1179.61 (14)Cl3—C9—C10—Cl43.0 (2)
C2—C3—C4—C51.1 (3)C9—C10—C11—C121.0 (3)
Cl1—C3—C4—C5178.47 (15)Cl4—C10—C11—C12177.50 (16)
C2—C3—C4—Cl2178.18 (14)C10—C11—C12—C70.2 (3)
Cl1—C3—C4—Cl22.2 (2)C8—C7—C12—C110.4 (3)
C3—C4—C5—C61.1 (3)N2—C7—C12—C11178.58 (18)
Cl2—C4—C5—C6178.16 (16)N3—C13—C14—C15178.26 (19)
C4—C5—C6—C10.0 (3)C18—C13—C14—C150.6 (3)
C2—C1—C6—C51.1 (3)C13—C14—C15—C160.1 (3)
N1—C1—C6—C5179.17 (17)C14—C15—C16—C170.4 (3)
O3—N2—C7—C125.4 (3)C15—C16—C17—C180.1 (3)
O4—N2—C7—C12175.02 (19)C16—C17—C18—C130.9 (3)
O3—N2—C7—C8173.64 (18)N3—C13—C18—C17178.78 (19)
O4—N2—C7—C85.9 (3)C14—C13—C18—C171.1 (3)
 

Acknowledgements

The authors acknowledge the Research Councils UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State' (www.cposs.org.uk).

References

First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds