organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A low-temperature determination of tri­ethyl­ene­diaminium dichloride dihydrate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, England
*Correspondence e-mail: d.a.tocher@ucl.ac.uk

(Received 8 June 2005; accepted 15 June 2005; online 24 June 2005)

The structure determination at 150 K of triethyl­ene­diaminium dichloride dihydrate (also know as 1,4-diaza­onia­bicyclo­[2.2.2]octa­ne dichloride dihydrate), C6H14N22+·2Cl·2H2O, obtained as part of an experimental polymorph screen on guanine, is reported here. The packing consists of a hydrogen-bonded chain structure, with one of the water mol­ecules of crystallization involved in weak O—H⋯Cl contacts.

Comment

Triethyl­enediamine, also known as 1,4-diaza­bicyclo­[2.2.2]octa­ne, is a strong base allowing protons to be removed from other compounds to give anionic inter­mediates. Triethyl­enediamine has two reported anhydrous polymorphs, a room-temperature phase (Nimmo & Lucas, 1976a[Nimmo, J. K. & Lucas, B. W. (1976a). Acta Cryst. B32, 348-353.]) and a high-temperature phase (Nimmo & Lucas, 1976b[Nimmo, J. K. & Lucas, B. W. (1976b). Acta Cryst. B32, 597-600.]). This high-temperature structure assumes a `plastic' phase, and is of inter­est as triethyl­enediamine is a one of a select group of globular mol­ecules which undergo thermal transitions to plastic crystals because of the high degree of mol­ecular mobility which can be achieved in the solid state (Weiss et al., 1964[Weiss, G. S., Parkes, A. S., Nixon, E. R. & Hughes, R. E. (1964). J. Chem. Phys. 41, 3759-3767.]). There are also a number of co-crystals of triethyl­ene­diamine, including with hydro­quinone (Mak et al., 1984[Mak, T. C. W., Yip, W. H. & Book, L. (1984). J. Crystallogr. Spectrosc. Res. 14, 457-465.]), sulfate hemihydrate (Jayaraman et al., 2002[Jayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413-422.]), and bis(hydrogen oxalate) (Vaidhyanathan et al., 2001[Vaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699-706.]). In addition, there are also triethyl­enediamine salts, including the dihydro­chloride (Kennedy et al., 1987[Kennedy, S. W., Schultz, P. K., Slade, P. G. & Tiekink, E. R. T. (1987). Z. Kristallogr. 180, 211-217.]) and hydro­bromide (Katrusiak et al., 1999[Katrusiak, A., Ratajczak-Sitarz, M. & Grech, E. (1999). J. Mol. Struct. 417, 135-141.]). In this paper, we report the dihydro­chloride dihydrate salt, (I)[link], of triethyl­enediamine.

[Scheme 1]

In (I)[link], atoms N1 and N2 are both protonated, with the mol­ecule in a slightly twisted conformation, different from the symmetric cage-like structure present in the room-temperature an­hydrous crystal structure of unprotonated triethyl­enediamine (Nimmo & Lucas, 1976a[Nimmo, J. K. & Lucas, B. W. (1976a). Acta Cryst. B32, 348-353.]). The bond lengths and angles are within expected values (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]), with the C–N bond lengths in the range 1.4942 (15)–1.5009 (15) Å, and the C—C bond lengths in the range 1.5227 (17)–1.5368 (16) Å.

The packing consists of a hydrogen-bonded chain structure (Fig. 2[link]), with atom N2 hydrogen bonded to O2W, through an N—H⋯O hydrogen bond (Table 1[link]). Water atom O2W acts as a hydrogen-bond donor to both Cl1 and Cl2, through O—H⋯Cl hydrogen bonds (Table 1[link]). The ion Cl1 is also hydrogen bonded through an N—H⋯Cl inter­action to the N1 amine group, forming the chain motif. The O1W water of crystallization forms weak hydrogen bonds to Cl2, as shown in Table 1[link].

[Figure 1]
Figure 1
View of (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The packing in (I)[link], showing the hydrogen-bonded chain structure. The hydrogen bonds with D⋯A > 3.2 Å have been omitted for clarity.

Experimental

As part of an experimental polymorph screen on guanine, (I)[link] was obtained from a saturated solution of triethyl­enediamine in dilute hydro­chloric acid, in which approximately 0.03 g of guanine was added in an attempt to crystallize this purine base. The solution was stirred, filtered, then evaporated at room temperature (10 ml solution, in 75 × 25 mm vessels). Colourless block-shaped crystals of (I)[link] were formed over a number of weeks. It should also be noted that large block-shaped crystals of triethyl­enediamine dihydro­chloride were also obtained (Kennedy et al., 1987[Kennedy, S. W., Schultz, P. K., Slade, P. G. & Tiekink, E. R. T. (1987). Z. Kristallogr. 180, 211-217.]).

Crystal data
  • C6H14N22+·2Cl·2H2O

  • Mr = 221.12

  • Orthorhombic, P 21 21 21

  • a = 7.1407 (8) Å

  • b = 8.7188 (10) Å

  • c = 16.8945 (19) Å

  • V = 1051.8 (2) Å3

  • Z = 4

  • Dx = 1.396 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 7311 reflections

  • θ = 2.3–28.2°

  • μ = 0.59 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.98 × 0.24 × 0.21 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Narrow-frame ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.598, Tmax = 0.887

  • 9177 measured reflections

  • 2508 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.027

  • θmax = 28.2°

  • h = −9 → 9

  • k = −11 → 11

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.053

  • S = 1.06

  • 2508 reflections

  • 121 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0284P)2 + 0.1405P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: 0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯Cl2 0.84 (2) 2.50 (2) 3.2848 (12) 156 (2)
O1W—H2W⋯Cl2i 0.83 (2) 2.54 (2) 3.3537 (11) 169 (2)
O2W—H3W⋯Cl2 0.83 (1) 2.30 (1) 3.1109 (10) 167 (2)
O2W—H4W⋯Cl1 0.84 (1) 2.22 (1) 3.0585 (10) 173 (2)
N1—H1⋯Cl1 0.91 2.16 3.0110 (11) 156
N2—H2⋯O2Wii 0.91 1.77 2.6634 (13) 168
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

The triethyl­enediaminium H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, whilst the water H atoms were refined, with O—H and H⋯H distance restraints of 0.84 Å and 1.33 (2) Å, respectively.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and MERCURY (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97.

1,4-diazaoniabicyclo[2.2.2]octane dichloride dihydrate top
Crystal data top
C6H14N22+·2Cl·2H2OF(000) = 472
Mr = 221.12Dx = 1.396 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7311 reflections
a = 7.1407 (8) Åθ = 2.3–28.2°
b = 8.7188 (10) ŵ = 0.59 mm1
c = 16.8945 (19) ÅT = 150 K
V = 1051.8 (2) Å3Block, colourless
Z = 40.98 × 0.24 × 0.21 mm
Data collection top
Bruker SMART APEX
diffractometer
2508 independent reflections
Radiation source: fine-focus sealed tube2473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω rotation with narrow frames scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.598, Tmax = 0.887k = 1111
9177 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.053 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.1405P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2508 reflectionsΔρmax = 0.27 e Å3
121 parametersΔρmin = 0.16 e Å3
6 restraintsAbsolute structure: Flack 1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (4)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.51446 (4)0.04577 (3)0.554391 (16)0.02113 (7)
Cl21.07647 (4)0.17252 (4)0.656610 (17)0.02424 (8)
O1W0.83585 (16)0.30071 (12)0.80854 (6)0.0352 (2)
H1W0.924 (3)0.283 (2)0.7773 (11)0.053*
H2W0.845 (3)0.3922 (18)0.8215 (12)0.053*
O2W0.74444 (14)0.03678 (11)0.70705 (5)0.0254 (2)
H3W0.829 (2)0.0263 (19)0.7005 (10)0.038*
H4W0.674 (2)0.034 (2)0.6671 (9)0.038*
N10.16941 (14)0.00540 (11)0.45541 (6)0.0185 (2)
H10.24990.00340.49690.022*
N20.05023 (13)0.02830 (11)0.34157 (5)0.01770 (19)
H20.13000.03670.29980.021*
C10.01906 (17)0.05314 (13)0.47979 (6)0.0202 (2)
H1A0.05720.00540.52910.024*
H1B0.01410.16320.48780.024*
C20.15987 (18)0.01430 (14)0.41399 (7)0.0198 (2)
H2A0.23910.10220.40310.024*
H2B0.23890.07060.43020.024*
C30.15394 (18)0.17045 (14)0.43252 (7)0.0206 (2)
H3A0.27770.21460.42610.025*
H3B0.08850.22730.47340.025*
C40.04533 (17)0.17919 (13)0.35432 (7)0.0203 (2)
H4A0.04660.26100.35670.024*
H4B0.13050.20030.31090.024*
C50.24379 (18)0.08551 (15)0.38683 (8)0.0253 (3)
H5A0.27820.18780.40410.030*
H5B0.35420.03610.36520.030*
C60.09099 (18)0.09438 (15)0.32414 (7)0.0224 (2)
H6A0.14440.07890.27190.027*
H6B0.03170.19440.32540.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02161 (13)0.01921 (12)0.02256 (13)0.00056 (11)0.00470 (10)0.00008 (10)
Cl20.02123 (13)0.02818 (14)0.02332 (13)0.00414 (11)0.00041 (11)0.00136 (11)
O1W0.0358 (5)0.0323 (6)0.0376 (5)0.0077 (5)0.0103 (5)0.0058 (4)
O2W0.0263 (5)0.0338 (5)0.0159 (4)0.0065 (4)0.0015 (3)0.0022 (4)
N10.0194 (5)0.0169 (4)0.0191 (5)0.0006 (4)0.0043 (4)0.0007 (4)
N20.0178 (4)0.0209 (4)0.0144 (4)0.0013 (4)0.0006 (3)0.0001 (3)
C10.0250 (6)0.0190 (5)0.0166 (5)0.0037 (5)0.0006 (4)0.0008 (4)
C20.0177 (5)0.0242 (6)0.0175 (5)0.0042 (5)0.0031 (4)0.0004 (4)
C30.0227 (5)0.0153 (5)0.0237 (5)0.0044 (5)0.0036 (5)0.0006 (4)
C40.0218 (5)0.0178 (5)0.0212 (5)0.0018 (4)0.0008 (4)0.0032 (4)
C50.0215 (6)0.0267 (6)0.0277 (6)0.0073 (5)0.0001 (5)0.0053 (5)
C60.0248 (6)0.0230 (6)0.0195 (5)0.0027 (5)0.0021 (5)0.0056 (4)
Geometric parameters (Å, º) top
O1W—H1W0.836 (15)C1—H1B0.9700
O1W—H2W0.829 (15)C2—H2A0.9700
O2W—H3W0.827 (13)C2—H2B0.9700
O2W—H4W0.841 (13)C3—C41.5339 (16)
N1—C31.4942 (15)C3—H3A0.9700
N1—C11.4971 (15)C3—H3B0.9700
N1—C51.5009 (15)C4—H4A0.9700
N1—H10.9100C4—H4B0.9700
N2—C41.4976 (15)C5—C61.5227 (17)
N2—C61.4992 (16)C5—H5A0.9700
N2—C21.4993 (14)C5—H5B0.9700
N2—H20.9100C6—H6A0.9700
C1—C21.5368 (16)C6—H6B0.9700
C1—H1A0.9700
H1W—O1W—H2W106.7 (17)H2A—C2—H2B108.5
H3W—O2W—H4W108.0 (15)N1—C3—C4107.95 (9)
C3—N1—C1109.46 (9)N1—C3—H3A110.1
C3—N1—C5109.58 (9)C4—C3—H3A110.1
C1—N1—C5110.52 (9)N1—C3—H3B110.1
C3—N1—H1109.1C4—C3—H3B110.1
C1—N1—H1109.1H3A—C3—H3B108.4
C5—N1—H1109.1N2—C4—C3108.10 (9)
C4—N2—C6110.40 (9)N2—C4—H4A110.1
C4—N2—C2109.77 (9)C3—C4—H4A110.1
C6—N2—C2109.56 (9)N2—C4—H4B110.1
C4—N2—H2109.0C3—C4—H4B110.1
C6—N2—H2109.0H4A—C4—H4B108.4
C2—N2—H2109.0N1—C5—C6108.07 (9)
N1—C1—C2108.30 (9)N1—C5—H5A110.1
N1—C1—H1A110.0C6—C5—H5A110.1
C2—C1—H1A110.0N1—C5—H5B110.1
N1—C1—H1B110.0C6—C5—H5B110.1
C2—C1—H1B110.0H5A—C5—H5B108.4
H1A—C1—H1B108.4N2—C6—C5108.01 (9)
N2—C2—C1107.65 (10)N2—C6—H6A110.1
N2—C2—H2A110.2C5—C6—H6A110.1
C1—C2—H2A110.2N2—C6—H6B110.1
N2—C2—H2B110.2C5—C6—H6B110.1
C1—C2—H2B110.2H6A—C6—H6B108.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···Cl20.84 (2)2.50 (2)3.2848 (12)156 (2)
O1W—H2W···Cl2i0.83 (2)2.54 (2)3.3537 (11)169 (2)
O2W—H3W···Cl20.83 (1)2.30 (1)3.1109 (10)167 (2)
O2W—H4W···Cl10.84 (1)2.22 (1)3.0585 (10)173 (2)
N1—H1···Cl10.912.163.0110 (11)156
N2—H2···O2Wii0.911.772.6634 (13)168
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+1/2, y, z1/2.
 

Acknowledgements

This research was supported by the EPSRC in funding a studentship for TCL. The authors acknowledge the Research Council's UK Basic Technology Programme for supporting `Control and Prediction of the Organic Solid State'. For more information on this work, see https://www.cposs.org.uk.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M. K., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJayaraman, K., Choudhury, A. & Rao, C. N. R. (2002). Solid State Sci. 4, 413–422.  Web of Science CSD CrossRef CAS Google Scholar
First citationKatrusiak, A., Ratajczak-Sitarz, M. & Grech, E. (1999). J. Mol. Struct. 417, 135–141.  Web of Science CSD CrossRef Google Scholar
First citationKennedy, S. W., Schultz, P. K., Slade, P. G. & Tiekink, E. R. T. (1987). Z. Kristallogr. 180, 211–217.  CrossRef CAS Web of Science Google Scholar
First citationMak, T. C. W., Yip, W. H. & Book, L. (1984). J. Crystallogr. Spectrosc. Res. 14, 457–465.  Google Scholar
First citationNimmo, J. K. & Lucas, B. W. (1976a). Acta Cryst. B32, 348–353.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationNimmo, J. K. & Lucas, B. W. (1976b). Acta Cryst. B32, 597–600.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVaidhyanathan, R., Natarajan, S. & Rao, C. N. R. (2001). J. Chem. Soc. Dalton Trans. pp. 699–706.  Web of Science CSD CrossRef Google Scholar
First citationWeiss, G. S., Parkes, A. S., Nixon, E. R. & Hughes, R. E. (1964). J. Chem. Phys. 41, 3759–3767.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds