metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[tetra­kis­(di­methyl­formamide-κO)magnesium(II)]-μ-diphen­ylphosphato-κ2O:O′] tri­fluoro­methane­sulfonate]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: h.adams@sheffield.ac.uk

(Received 12 May 2005; accepted 26 May 2005; online 10 June 2005)

The title compound, [Mg(C12H10O4P)(C3H7NO)4](CF3O3S), consists of diphen­ylphosphate anions linked into infinite chains by bridging magnesium ions, which are also coordinated by dimethyl­formamide mol­ecules. A non-coordinated trifluoro­methane­sulfonate counter-ion provides charge balance. Both crystallographically distinct magnesium cations occupy special positions with [\overline{1}] site symmetry.

Comment

There are few examples of phospho­diester mol­ecules that are linked by magnesium ions (Cremlyn et al., 1958[Cremlyn, R. J. W., Kenner, G. W., Mather, J. & Todd, A. J. (1958). J. Chem. Soc. pp. 528-530.]; Ezra & Collin, 1973[Ezra, F. S. & Collin, R. L. (1973). Acta Cryst. B29, 1398-1403.]; Schwalbe et al., 1973[Schwalbe, C. H., Goody, R. & Saenger, W. (1973). Acta Cryst. B29, 2264-2272.]). Narayan et al. (1978[Narayan, P., Ramirez, F., McCaffery, T., Chaw, Y. & Mareck, J. F. (1978). J. Org. Chem. 43, 24-31.]) described an unusual crystal structure in which phospho­diester anions are linked by magnesium cations into a chain structure. This compound arose from the crystallization of magnesium diphen­ylphosphate in moist dieth­yl ether.

[Scheme 1]

The related title compound, (I)[link], arose from the attempted crystallization of an imidazole catalyst inter­mediate. The asymmeric unit of (I)[link] (Fig. 1[link]) contains one diphen­ylphosphate anion, four distinct dimethyl­formamide (DMF) mol­ecules, one non-coordinated trifluoro­methane­sulfonate counter-ion and two crystallographically distinct octa­hedrally coordinated (Table 1[link]) magnesium cations (both with site symmetry [\overline{1}]). The main differences between the structures are that (I)[link] has DMF coordinated to Mg, whereas the Narayan et al. (1978[Narayan, P., Ramirez, F., McCaffery, T., Chaw, Y. & Mareck, J. F. (1978). J. Org. Chem. 43, 24-31.]) compound has water mol­ecules. In the Narayan structure, four phosphate O atoms and two water mol­ecules are coordinated to each Mg atom, whereas in (I)[link], two phosphate O atoms and four DMF O atoms link to each Mg atom (Fig. 2[link]). In the Narayan structure, the mean Mg—OP (P = phosphate) and Mg—OW (W = water) bond distances are 2.042 (4) and 2.154 (4) Å, respectively. Equivalent values of 2.0491 (18) and 2.075 (19) Å [for Mg—OD (D = DMF)] arise in (I)[link]. The phospho­rus–phen­yl bond lengths are comparable in both structures. There appear to be no significant hydrogen-bonding intra­ctions in (I)[link].

[Figure 1]
Figure 1
The asymmetic unit of (I)[link], with displacement ellipsoids at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
An extended view of the chain structure of (I)[link] [symmetry code: (i) −x, −y + 2, −z]. H atoms have been omitted for clarity.

Experimental

A solution of diphen­yl chloro­phosphate (0.319 g, 0.118 mmol), 2-{2-[2-(2-methoxy­eth­oxy)eth­oxy]ethoxy­meth­yl}-1-meth­yl-1H-imidazole (0.25 g, 0.118 mmol), and magnesium trifluoro­methane­sulfonate (0.038 g, 0.118 mmol) in dry DMF (5 ml) in a specimen vial was submersed into a sealed specimen vial containing dry dieth­yl ether (5 ml). This was kept for 4 d at 283 K to allow slow growth of crystals. Once harvested, the crystals of (I)[link] were very sensitive to atmospheric moisture and were prone decomposition whilst being handled.

Crystal data
  • [Mg(C12H10O4P)(C3H7NO)4](CF3O3S)

  • Mr = 714.93

  • Triclinic, [P \overline 1]

  • a = 11.2645 (19) Å

  • b = 11.4907 (19) Å

  • c = 13.665 (2) Å

  • α = 95.865 (3)°

  • β = 104.109 (3)°

  • γ = 100.969 (3)°

  • V = 1663.4 (5) Å3

  • Z = 2

  • Dx = 1.427 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 139 reflections

  • θ = 7.3–50.6°

  • μ = 0.24 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.48 × 0.32 × 0.21 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.893, Tmax = 0.951

  • 11079 measured reflections

  • 5729 independent reflections

  • 4183 reflections with I > 2σ(I)

  • Rint = 0.035

  • θmax = 25.0°

  • h = −13 → 12

  • k = −13 → 13

  • l = −16 → 16

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.119

  • S = 1.01

  • 5729 reflections

  • 426 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0484P)2 + 1.6348P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Mg1—O2 2.0532 (18)
Mg1—O5 2.061 (2)
Mg1—O6 2.0898 (18)
Mg2—O1 2.0491 (18)
Mg2—O8 2.0695 (19)
Mg2—O7 2.0808 (18)
P1—O1—Mg2 136.79 (11)
P1—O2—Mg1 136.67 (11)

H atoms were positioned geometrically, with C—H = 0.95–0.98 Å, and refined as riding (including torsional freedom for meth­yl groups) with the constraint Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(meth­yl carrier).

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SMART; data reduction: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

catena-Poly[[[tetrakis(dimethylformamide-κO)magnesium(II)]-µ- diphenylphosphato-κ2O:O'] trifluoromethanesulfonate] top
Crystal data top
[Mg(C12H10O4P)(C3H7NO)4](CF3O3S)Z = 2
Mr = 714.93F(000) = 748
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.2645 (19) ÅCell parameters from 139 reflections
b = 11.4907 (19) Åθ = 7.3–50.6°
c = 13.665 (2) ŵ = 0.24 mm1
α = 95.865 (3)°T = 150 K
β = 104.109 (3)°Block, colourless
γ = 100.969 (3)°0.48 × 0.32 × 0.21 mm
V = 1663.4 (5) Å3
Data collection top
Bruker SMART1000 CCD
diffractometer
5729 independent reflections
Radiation source: fine-focus sealed tube4183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 100 pixels mm-1θmax = 25.0°, θmin = 1.6°
ω scansh = 1312
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 1313
Tmin = 0.893, Tmax = 0.951l = 1616
11079 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0484P)2 + 1.6348P]
where P = (Fo2 + 2Fc2)/3
5729 reflections(Δ/σ)max < 0.001
426 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.46 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mg10.50001.00000.00000.0163 (3)
Mg20.00001.00000.00000.0152 (3)
P10.21959 (7)0.84881 (6)0.00364 (5)0.01622 (18)
N10.2850 (2)1.3132 (2)0.13342 (18)0.0238 (6)
N20.5530 (2)1.0884 (2)0.32025 (17)0.0227 (6)
N30.0242 (2)0.9762 (2)0.31187 (17)0.0246 (6)
N40.6733 (2)0.7302 (2)0.12015 (18)0.0220 (5)
O10.14932 (17)0.92208 (17)0.04599 (13)0.0182 (4)
O20.31636 (17)0.90654 (17)0.05029 (13)0.0172 (4)
O30.11520 (18)0.74903 (18)0.08721 (14)0.0237 (5)
O40.28850 (18)0.77348 (18)0.07570 (15)0.0234 (5)
O50.55548 (18)0.84476 (18)0.03466 (15)0.0243 (5)
O60.48216 (18)1.03605 (18)0.14812 (14)0.0242 (5)
O70.02261 (18)1.00805 (18)0.14702 (14)0.0220 (5)
O80.11983 (18)1.16805 (17)0.04097 (15)0.0230 (5)
C10.2471 (3)0.7286 (3)0.1559 (2)0.0209 (6)
C20.3406 (3)0.7238 (3)0.2408 (2)0.0235 (7)
H20.42620.75420.24380.028*
C30.3087 (3)0.6741 (3)0.3221 (2)0.0290 (7)
H30.37250.66970.38070.035*
C40.1845 (3)0.6314 (3)0.3172 (2)0.0305 (8)
H40.16250.59810.37290.037*
C50.0917 (3)0.6365 (3)0.2320 (2)0.0306 (7)
H50.00610.60630.22920.037*
C60.1223 (3)0.6859 (3)0.1496 (2)0.0261 (7)
H60.05850.68990.09080.031*
C70.1315 (3)0.6921 (3)0.1765 (2)0.0212 (6)
C80.0402 (3)0.6878 (3)0.2651 (2)0.0296 (7)
H80.02760.72560.26390.036*
C90.0474 (3)0.6282 (3)0.3562 (2)0.0373 (8)
H90.01500.62550.41780.045*
C100.1462 (3)0.5727 (3)0.3568 (3)0.0365 (8)
H100.15100.53100.41890.044*
C110.2376 (3)0.5779 (3)0.2674 (2)0.0325 (8)
H110.30530.53980.26830.039*
C120.2314 (3)0.6384 (3)0.1764 (2)0.0273 (7)
H120.29470.64280.11490.033*
C140.6573 (3)0.8306 (3)0.0847 (2)0.0209 (6)
H140.72840.89550.09860.025*
C150.5679 (3)0.6296 (3)0.1051 (3)0.0315 (8)
H15A0.49150.64930.06520.047*
H15B0.55720.61250.17160.047*
H15C0.58380.55890.06830.047*
C160.7970 (3)0.7141 (3)0.1727 (2)0.0309 (7)
H16A0.81160.63990.14050.046*
H16B0.80110.70920.24460.046*
H16C0.86150.78250.16850.046*
C170.5663 (3)1.0837 (3)0.2267 (2)0.0217 (6)
H170.64611.11950.21900.026*
C180.4374 (3)1.0288 (3)0.3405 (2)0.0373 (8)
H18A0.37260.99940.27580.056*
H18B0.40931.08580.38320.056*
H18C0.45250.96110.37620.056*
C190.6576 (3)1.1431 (3)0.4093 (2)0.0415 (9)
H19A0.73071.17860.38680.062*
H19B0.67841.08160.45110.062*
H19C0.63381.20580.44970.062*
C200.2271 (3)1.2007 (3)0.0992 (2)0.0218 (6)
H200.27041.14040.12040.026*
C210.4165 (3)1.3460 (3)0.1931 (3)0.0362 (8)
H21A0.44241.27470.21680.054*
H21B0.42631.40660.25220.054*
H21C0.46901.37880.15040.054*
C220.2233 (3)1.4098 (3)0.1063 (3)0.0396 (9)
H22A0.13351.37680.07490.059*
H22B0.26031.45090.05770.059*
H22C0.23451.46700.16790.059*
C230.0441 (3)0.9752 (3)0.2208 (2)0.0205 (6)
H230.11510.94730.21090.025*
C240.1052 (3)0.9325 (3)0.3936 (2)0.0367 (8)
H24A0.16960.90250.36820.055*
H24B0.05480.86730.41700.055*
H24C0.14560.99810.45070.055*
C250.0801 (3)1.0216 (3)0.3354 (2)0.0371 (8)
H25A0.13011.04410.27380.056*
H25B0.04701.09220.38880.056*
H25C0.13320.95910.35930.056*
C1S0.6746 (3)0.6755 (4)0.5500 (3)0.0449 (10)
F10.7131 (2)0.5738 (2)0.5569 (2)0.0771 (8)
F20.7410 (2)0.7541 (3)0.63436 (16)0.0703 (8)
F30.5543 (2)0.6534 (2)0.55087 (17)0.0600 (7)
S10.69565 (8)0.73507 (8)0.43589 (6)0.0338 (2)
O1S0.6450 (3)0.8396 (2)0.44028 (19)0.0479 (7)
O2S0.8287 (2)0.7558 (2)0.45062 (19)0.0498 (7)
O3S0.6225 (2)0.6387 (2)0.35533 (18)0.0510 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mg10.0169 (7)0.0185 (7)0.0151 (6)0.0057 (6)0.0056 (5)0.0033 (5)
Mg20.0165 (7)0.0161 (7)0.0142 (6)0.0045 (5)0.0054 (5)0.0027 (5)
P10.0162 (4)0.0167 (4)0.0169 (4)0.0045 (3)0.0059 (3)0.0025 (3)
N10.0253 (14)0.0179 (14)0.0260 (13)0.0025 (11)0.0059 (11)0.0007 (11)
N20.0275 (14)0.0255 (14)0.0155 (12)0.0080 (11)0.0053 (10)0.0015 (10)
N30.0315 (15)0.0286 (15)0.0150 (12)0.0071 (12)0.0085 (11)0.0029 (11)
N40.0200 (13)0.0210 (14)0.0249 (13)0.0054 (11)0.0040 (10)0.0055 (11)
O10.0190 (10)0.0197 (11)0.0175 (10)0.0070 (8)0.0058 (8)0.0029 (8)
O20.0152 (10)0.0202 (11)0.0167 (10)0.0035 (8)0.0053 (8)0.0032 (8)
O30.0192 (11)0.0233 (11)0.0266 (11)0.0009 (9)0.0096 (9)0.0060 (9)
O40.0215 (11)0.0282 (12)0.0284 (11)0.0119 (9)0.0128 (9)0.0137 (9)
O50.0217 (11)0.0229 (12)0.0298 (11)0.0082 (9)0.0058 (9)0.0070 (9)
O60.0224 (11)0.0325 (12)0.0160 (10)0.0043 (9)0.0053 (9)0.0004 (9)
O70.0252 (11)0.0310 (12)0.0146 (10)0.0116 (9)0.0089 (8)0.0065 (9)
O80.0198 (11)0.0197 (11)0.0289 (11)0.0019 (9)0.0077 (9)0.0032 (9)
C10.0257 (16)0.0153 (15)0.0263 (16)0.0083 (12)0.0122 (13)0.0051 (12)
C20.0224 (16)0.0207 (16)0.0262 (16)0.0042 (13)0.0059 (13)0.0005 (13)
C30.0319 (18)0.0358 (19)0.0203 (16)0.0138 (15)0.0034 (13)0.0064 (14)
C40.040 (2)0.0343 (19)0.0284 (17)0.0157 (16)0.0202 (15)0.0157 (14)
C50.0243 (17)0.0345 (19)0.0409 (19)0.0118 (15)0.0148 (15)0.0181 (15)
C60.0220 (16)0.0276 (18)0.0312 (17)0.0095 (14)0.0058 (13)0.0125 (14)
C70.0236 (16)0.0155 (15)0.0235 (15)0.0012 (12)0.0088 (13)0.0020 (12)
C80.0240 (17)0.0283 (18)0.0346 (18)0.0067 (14)0.0052 (14)0.0016 (14)
C90.037 (2)0.042 (2)0.0247 (17)0.0022 (17)0.0000 (15)0.0028 (15)
C100.043 (2)0.032 (2)0.0292 (18)0.0007 (16)0.0130 (16)0.0111 (15)
C110.0338 (19)0.0275 (19)0.0394 (19)0.0124 (15)0.0145 (15)0.0009 (15)
C120.0262 (17)0.0265 (18)0.0276 (17)0.0082 (14)0.0042 (13)0.0007 (13)
C140.0238 (16)0.0205 (16)0.0192 (15)0.0055 (13)0.0074 (13)0.0027 (12)
C150.0296 (18)0.0218 (17)0.0396 (19)0.0042 (14)0.0033 (15)0.0067 (14)
C160.0258 (17)0.0316 (19)0.0350 (18)0.0097 (14)0.0034 (14)0.0092 (15)
C170.0236 (16)0.0213 (16)0.0220 (16)0.0064 (13)0.0080 (13)0.0047 (12)
C180.048 (2)0.039 (2)0.0293 (18)0.0044 (17)0.0225 (16)0.0016 (15)
C190.045 (2)0.053 (2)0.0208 (17)0.0132 (18)0.0003 (15)0.0022 (16)
C200.0250 (17)0.0224 (17)0.0217 (15)0.0075 (13)0.0113 (13)0.0046 (12)
C210.0285 (18)0.031 (2)0.0396 (19)0.0027 (15)0.0005 (15)0.0040 (15)
C220.047 (2)0.0206 (18)0.046 (2)0.0083 (16)0.0056 (17)0.0002 (15)
C230.0192 (15)0.0214 (16)0.0205 (15)0.0027 (12)0.0072 (12)0.0010 (12)
C240.047 (2)0.046 (2)0.0174 (16)0.0139 (17)0.0040 (15)0.0097 (15)
C250.051 (2)0.043 (2)0.0294 (18)0.0195 (18)0.0240 (16)0.0107 (16)
C1S0.036 (2)0.060 (3)0.046 (2)0.0209 (19)0.0115 (18)0.023 (2)
F10.0706 (17)0.0762 (18)0.112 (2)0.0408 (15)0.0338 (16)0.0682 (17)
F20.0594 (16)0.115 (2)0.0293 (12)0.0205 (15)0.0012 (11)0.0049 (13)
F30.0386 (13)0.0981 (19)0.0565 (14)0.0200 (12)0.0239 (11)0.0357 (13)
S10.0374 (5)0.0356 (5)0.0331 (5)0.0128 (4)0.0134 (4)0.0088 (4)
O1S0.0636 (18)0.0350 (15)0.0484 (15)0.0221 (13)0.0110 (13)0.0112 (12)
O2S0.0326 (14)0.0682 (19)0.0527 (16)0.0072 (13)0.0196 (12)0.0157 (14)
O3S0.0518 (17)0.0576 (18)0.0367 (14)0.0139 (14)0.0071 (12)0.0148 (13)
Geometric parameters (Å, º) top
Mg1—O2i2.0532 (18)C7—C121.383 (4)
Mg1—O22.0532 (18)C8—C91.386 (4)
Mg1—O5i2.061 (2)C8—H80.9500
Mg1—O52.061 (2)C9—C101.384 (5)
Mg1—O6i2.0898 (18)C9—H90.9500
Mg1—O62.0898 (18)C10—C111.381 (5)
Mg2—O1ii2.0491 (18)C10—H100.9500
Mg2—O12.0491 (18)C11—C121.385 (4)
Mg2—O82.0695 (19)C11—H110.9500
Mg2—O8ii2.0695 (19)C12—H120.9500
Mg2—O72.0808 (18)C14—H140.9500
Mg2—O7ii2.0808 (18)C15—H15A0.9800
P1—O21.4780 (19)C15—H15B0.9800
P1—O11.4812 (19)C15—H15C0.9800
P1—O41.601 (2)C16—H16A0.9800
P1—O31.602 (2)C16—H16B0.9800
N1—C201.312 (4)C16—H16C0.9800
N1—C221.451 (4)C17—H170.9500
N1—C211.463 (4)C18—H18A0.9800
N2—C171.319 (4)C18—H18B0.9800
N2—C181.455 (4)C18—H18C0.9800
N2—C191.458 (4)C19—H19A0.9800
N3—C231.316 (4)C19—H19B0.9800
N3—C241.458 (4)C19—H19C0.9800
N3—C251.463 (4)C20—H200.9500
N4—C141.322 (4)C21—H21A0.9800
N4—C151.448 (4)C21—H21B0.9800
N4—C161.460 (4)C21—H21C0.9800
O3—C71.394 (3)C22—H22A0.9800
O4—C11.399 (3)C22—H22B0.9800
O5—C141.234 (3)C22—H22C0.9800
O6—C171.240 (3)C23—H230.9500
O7—C231.241 (3)C24—H24A0.9800
O8—C201.238 (3)C24—H24B0.9800
C1—C61.377 (4)C24—H24C0.9800
C1—C21.377 (4)C25—H25A0.9800
C2—C31.391 (4)C25—H25B0.9800
C2—H20.9500C25—H25C0.9800
C3—C41.375 (4)C1S—F11.326 (4)
C3—H30.9500C1S—F31.333 (4)
C4—C51.377 (4)C1S—F21.347 (4)
C4—H40.9500C1S—S11.815 (4)
C5—C61.397 (4)S1—O1S1.426 (2)
C5—H50.9500S1—O2S1.432 (3)
C6—H60.9500S1—O3S1.442 (3)
C7—C81.374 (4)
O2i—Mg1—O2180.0C8—C9—H9120.2
O2i—Mg1—O5i90.09 (8)C11—C10—C9120.2 (3)
O2—Mg1—O5i89.91 (8)C11—C10—H10119.9
O2i—Mg1—O589.91 (8)C9—C10—H10119.9
O2—Mg1—O590.09 (8)C10—C11—C12120.4 (3)
O5i—Mg1—O5180.0C10—C11—H11119.8
O2i—Mg1—O6i90.80 (7)C12—C11—H11119.8
O2—Mg1—O6i89.20 (7)C7—C12—C11118.9 (3)
O5i—Mg1—O6i89.46 (8)C7—C12—H12120.5
O5—Mg1—O6i90.54 (8)C11—C12—H12120.5
O2i—Mg1—O689.20 (7)O5—C14—N4123.7 (3)
O2—Mg1—O690.80 (7)O5—C14—H14118.1
O5i—Mg1—O690.54 (8)N4—C14—H14118.1
O5—Mg1—O689.46 (8)N4—C15—H15A109.5
O6i—Mg1—O6180.0N4—C15—H15B109.5
O1ii—Mg2—O1180.0H15A—C15—H15B109.5
O1ii—Mg2—O889.95 (8)N4—C15—H15C109.5
O1—Mg2—O890.05 (8)H15A—C15—H15C109.5
O1ii—Mg2—O8ii90.05 (8)H15B—C15—H15C109.5
O1—Mg2—O8ii89.95 (8)N4—C16—H16A109.5
O8—Mg2—O8ii180.0N4—C16—H16B109.5
O1ii—Mg2—O790.96 (7)H16A—C16—H16B109.5
O1—Mg2—O789.04 (7)N4—C16—H16C109.5
O8—Mg2—O789.98 (8)H16A—C16—H16C109.5
O8ii—Mg2—O790.02 (8)H16B—C16—H16C109.5
O1ii—Mg2—O7ii89.04 (7)O6—C17—N2124.8 (3)
O1—Mg2—O7ii90.96 (7)O6—C17—H17117.6
O8—Mg2—O7ii90.02 (8)N2—C17—H17117.6
O8ii—Mg2—O7ii89.98 (8)N2—C18—H18A109.5
O7—Mg2—O7ii180.0N2—C18—H18B109.5
O2—P1—O1120.34 (11)H18A—C18—H18B109.5
O2—P1—O4105.57 (11)N2—C18—H18C109.5
O1—P1—O4110.10 (11)H18A—C18—H18C109.5
O2—P1—O3109.87 (10)H18B—C18—H18C109.5
O1—P1—O3105.68 (11)N2—C19—H19A109.5
O4—P1—O3104.22 (11)N2—C19—H19B109.5
C20—N1—C22120.8 (3)H19A—C19—H19B109.5
C20—N1—C21121.4 (3)N2—C19—H19C109.5
C22—N1—C21117.6 (3)H19A—C19—H19C109.5
C17—N2—C18121.7 (3)H19B—C19—H19C109.5
C17—N2—C19121.6 (3)O8—C20—N1124.3 (3)
C18—N2—C19116.4 (3)O8—C20—H20117.9
C23—N3—C24121.5 (3)N1—C20—H20117.9
C23—N3—C25121.3 (3)N1—C21—H21A109.5
C24—N3—C25117.1 (2)N1—C21—H21B109.5
C14—N4—C15120.9 (2)H21A—C21—H21B109.5
C14—N4—C16121.9 (3)N1—C21—H21C109.5
C15—N4—C16117.2 (2)H21A—C21—H21C109.5
P1—O1—Mg2136.79 (11)H21B—C21—H21C109.5
P1—O2—Mg1136.67 (11)N1—C22—H22A109.5
C7—O3—P1125.70 (17)N1—C22—H22B109.5
C1—O4—P1126.81 (18)H22A—C22—H22B109.5
C14—O5—Mg1130.04 (19)N1—C22—H22C109.5
C17—O6—Mg1127.64 (19)H22A—C22—H22C109.5
C23—O7—Mg2126.37 (18)H22B—C22—H22C109.5
C20—O8—Mg2130.27 (19)O7—C23—N3125.1 (3)
C6—C1—C2121.5 (3)O7—C23—H23117.5
C6—C1—O4123.0 (3)N3—C23—H23117.5
C2—C1—O4115.4 (3)N3—C24—H24A109.5
C1—C2—C3119.5 (3)N3—C24—H24B109.5
C1—C2—H2120.2H24A—C24—H24B109.5
C3—C2—H2120.2N3—C24—H24C109.5
C4—C3—C2119.7 (3)H24A—C24—H24C109.5
C4—C3—H3120.1H24B—C24—H24C109.5
C2—C3—H3120.1N3—C25—H25A109.5
C3—C4—C5120.3 (3)N3—C25—H25B109.5
C3—C4—H4119.8H25A—C25—H25B109.5
C5—C4—H4119.8N3—C25—H25C109.5
C4—C5—C6120.6 (3)H25A—C25—H25C109.5
C4—C5—H5119.7H25B—C25—H25C109.5
C6—C5—H5119.7F1—C1S—F3107.7 (3)
C1—C6—C5118.3 (3)F1—C1S—F2107.7 (3)
C1—C6—H6120.8F3—C1S—F2108.0 (3)
C5—C6—H6120.8F1—C1S—S1111.5 (3)
C8—C7—C12121.2 (3)F3—C1S—S1111.4 (2)
C8—C7—O3116.5 (3)F2—C1S—S1110.5 (3)
C12—C7—O3122.3 (3)O1S—S1—O2S115.91 (17)
C7—C8—C9119.7 (3)O1S—S1—O3S114.64 (16)
C7—C8—H8120.1O2S—S1—O3S115.09 (16)
C9—C8—H8120.1O1S—S1—C1S102.96 (17)
C10—C9—C8119.6 (3)O2S—S1—C1S102.92 (16)
C10—C9—H9120.2O3S—S1—C1S102.62 (18)
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z.
 

Acknowledgements

EPSRC and Onyx Scientific for funding (AR).

References

First citationBruker (1997). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremlyn, R. J. W., Kenner, G. W., Mather, J. & Todd, A. J. (1958). J. Chem. Soc. pp. 528–530.  Google Scholar
First citationEzra, F. S. & Collin, R. L. (1973). Acta Cryst. B29, 1398–1403.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNarayan, P., Ramirez, F., McCaffery, T., Chaw, Y. & Mareck, J. F. (1978). J. Org. Chem. 43, 24–31.  CSD CrossRef Web of Science Google Scholar
First citationSchwalbe, C. H., Goody, R. & Saenger, W. (1973). Acta Cryst. B29, 2264–2272.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds