metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis­(di­phenyl­phosphino)propane-2κ2P,P′-{μ-2-[bis­(2-mercapto­ethyl)amino]­ethanesulfinato(3–)-1κ4N,S,S′,S′′:2κ2S,S′}chloro-2κCl-di­nitroso-1κ2N-iron(II)nickel(II) aceto­nitrile hemisolvate

CROSSMARK_Color_square_no_text.svg

aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, England, and bDepartment of Chemistry, University of Sussex, Falmer, Brighton BN1 9QJ, England
*Correspondence e-mail: dave.evans@bbsrc.ac.uk

(Received 6 June 2005; accepted 7 June 2005; online 17 June 2005)

The title compound, [{Fe[(SO2CH2CH2)(SCH2CH2)2N](NO)2-S,S′}NiCl{[P(C6H5)2]2(CH2)3}]·0.5CH3CN or [FeNi(C6H12NO2S3)Cl(C27H26P2)(NO)2]·0.5C2H3N, is described. There are two crystallographically distinct dimetallic complex mol­ecules. In each mol­ecule, the Fe atom is octa­hedrally coordinated, with the three S atoms and an N atom of one of the two NO ligands forming the equatorial plane; the N atoms from the second NO group and the (SO2CH2CH2)(SCH2CH2)2N ligand lie in the axial positions. The Ni atom is square pyramidally coordinated by the two bridging S atoms and the two P atoms forming the basal plane, and by the Cl atom lying in the apical position. Slight differences in the bonding modes of the NO ligands are observed for the two distinct mol­ecules.

Comment

As part of our studies on the synthesis of dimetallic complexes with structural properties related to the active site of the enzyme nickel–iron hydrogenase (Evans & Pickett, 2003[Evans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268-275.]), we have been exploring the utility of the anion [Fe{(SCH2CH2)3N}(NO)] as a synthon (Davies et al., 2002[Davies, S. C., Evans, D. J., Hughes, D. L., Konkol, M., Richards, R. L., Sanders, J. R. & Sobota, P. (2002). J. Chem. Soc. Dalton Trans. pp. 2473-2482.]; Smith et al., 2002[Smith, M. C., Barclay, J. E., Cramer, S. P., Davies, S. C., Gu, W.-W., Hughes, D. L., Longhurst, S. & Evans, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2641-2647.]; Smith et al., 2003[Smith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147-4151.]). The title compound, (I)[link], crystallized as an unexpected minor product after long-term storage of a solution in acetonitrile at 277 K, from the attempted preparation of [{Fe[(SCH2CH2)3N](NO)-S,S′}NiCl{[P(C6H5)2]2(CH2)3}] following an adaptation of the method established for a related complex (Smith et al., 2002[Smith, M. C., Barclay, J. E., Cramer, S. P., Davies, S. C., Gu, W.-W., Hughes, D. L., Longhurst, S. & Evans, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2641-2647.]).

[Scheme 1]

The asymmetric unit of (I)[link] contains two complex mol­ecules, denoted A (containing Fe and Ni) and B (Fe1b and Ni1b), and one CH3CN solvent mol­ecule, the latter showing signs of disorder (Fig. 1[link]).

The structures of A and B in (I)[link] closely resemble those of the analogous species in [{Fe[(SCH2CH2)3N](CO)2-S,S′}NiCl{[P(C6H5)2]2(CH2)3}], (II) (Duff et al., 2005[Duff, S. E., Hitchcock, P. B., Davies, S. C., Barclay, J. E. & Evans, D. J. (2005). Acta Cryst. E61, m1316-m1319.]), with bond dimensions similar in both. In (I)[link], both Fe atoms are octa­hedrally coordinated, with the three S atoms and the N atom of one of the NO ligands forming the equatorial plane, while the N atoms from the (SO2CH2CH2)(SCH2CH2)2N and second NO ligand lie in the axial positions. The Fe atoms lie 0.119 (2) and 0.045 (2) Å from the mean equatorial planes in mol­ecules A and B, respectively, and are displaced towards the axial NO ligands. The Ni atoms are square pyramidally coordinated with an S2P2 base plane and the Cl atom lying in the apical position. The Ni atoms lie 0.297 (2) and 0.328 (2) Å from the mean base planes for mol­ecules A and B, respectively, displaced towards the Cl atoms. The angle between the normals to the mean equatorial and base planes are 167.35 (8) and 159.69 (8)° for A and B, respectively, with Fe⋯Ni distances of 3.372 (2) and 3.343 (2) Å.

Bond distances about the metal atoms are not unusual (Table 1[link]); within the core of the (SO2CH2CH2)(SCH2CH2)2N ligand and in the [P(C6H5)2]2(CH2)3 ligand, dimensions are as found in (II), including the removal of the usual pseudo-threefold rotation about the M—N axis of (SCH2CH2)3N and related ligands by the non-bridging SCH2CH2 group. Three of the NO ligands are classed as being `linear' (Table 2[link]), while the equatorial NO in mol­ecule A may be described as `bent'. The configuration is different in (II), where both CO ligands in the two independent mol­ecules are linear, as expected, with M—C—O bond angles of 175.3 (5) and 176.9 (5)° in one mol­ecule, and 175.4 (8) and 176.9 (5) Å in the second.

The component mol­ecules in (I)[link] are arranged within the crystal structure with normal van der Waals contacts between the individual components.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link], showing 50% probability displacement ellipsoids (H atoms have been omitted for clarity).

Experimental

Under a dinitro­gen atmosphere, (NEt4)[Fe{(SCH2CH2)3N}(NO)] (0.12 g, 0.29 mmol) was added to a stirred solution of [NiCl2(dppp)] (0.16 g, 0.29 mmol) in MeCN (75 ml). The reaction mixture was stirred overnight. Some red–brown precipitate was removed by filtration and the filtrate stored for eight months at 277 K. After this time, a few red crystals of (I)[link] were collected by filtration. ν(NO), KBr: 1704 and 1733 cm−1; Mössbauer (solid, 80 K, relative to iron foil at 298 K) isomer shift 0.26 mm s−1, quadrupole splitting 1.19 mm s−1.

Crystal data
  • [FeNi(C6H12NO2S3)Cl(C27H26P2)(NO)2]·0.5C2H3N

  • Mr = 869.32

  • Monoclinic, P 21 /n

  • a = 16.5125 (5) Å

  • b = 17.8156 (6) Å

  • c = 25.5801 (8) Å

  • β = 99.913 (2)°

  • V = 7412.8 (4) Å3

  • Z = 8

  • Dx = 1.558 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 52202 reflections

  • θ = 3.4–26.0°

  • μ = 1.27 mm−1

  • T = 173 (2) K

  • Prism, red

  • 0.10 × 0.05 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.864, Tmax = 0.975

  • 52202 measured reflections

  • 14540 independent reflections

  • 7005 reflections with I > 2σ(I)

  • Rint = 0.155

  • θmax = 26.0°

  • h = −20 → 18

  • k = −20 → 21

  • l = −31 → 31

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.108

  • wR(F2) = 0.256

  • S = 0.99

  • 14540 reflections

  • 477 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0679P)2 + 96.5506P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.63 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Selected interatomic distances (Å)[link]

Ni—S1 2.248 (3)
Ni—S2 2.243 (3)
Ni—P1 2.205 (3)
Ni—P2 2.201 (3)
Ni—Cl 2.607 (3)
Fe—N1 2.039 (9)
Fe—N2 1.991 (12)
Fe—N3 1.760 (12)
Fe—S1 2.305 (3)
Fe—S2 2.284 (3)
Fe—S3 2.222 (5)
Ni1b—S1b 2.253 (3)
Ni1b—S2b 2.259 (3)
Ni1b—P1b 2.193 (3)
Ni1b—P2b 2.203 (3)
Ni1b—Cl1b 2.560 (3)
Fe1b—N1b 2.052 (9)
Fe1b—N2b 1.794 (12)
Fe1b—N3b 1.781 (12)
Fe1b—S1b 2.290 (3)
Fe1b—S2b 2.293 (3)
Fe1b—S3b 2.224 (3)

Table 2
Bond lengths (Å) and angles (°) in idealized NO ligands and in complex (I)

      Mol­ecule A Mol­ecule B
  Bent Linear Equatorial Axial Equatorial Axial
M—N—O 149 175 149.1 (14) 175.1 (10) 176.4 (10) 177.3 (10)
M—N 1.992 1.759 1.991 (12) 1.759 (12) 1.779 (12) 1.794 (12)
N—O 1.023 1.177 1.023 (16) 1.177 (12) 1.157 (12) 1.158 (12)

The crystal of (I)[link] was a very weak scatterer, particularly at higher angles. All C, N and O atoms were refined isotropically. H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding [Uiso(H) = 1.2Ueq(C)]. The H atoms of the solvent mol­ecule were not located. The highest peak is located 0.96 Å from atom O3.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: HKL DENZO (Otwinowski & Minor 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 1986[Sheldrick, G. M. (1986). SHELXS86. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: HKL SCALEPACK (Otwinowski & Minor, 1997); data reduction: HKL DENZO (Otwinowski & Minor 1997)and SCALEPACK; program(s) used to solve structure: SHELXS86 (Sheldrick, 1986); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

(I) top
Crystal data top
[Fe(C6H12NO2S3)(NO)2NiCl(C27H26P2)]·0.5C2H3NF(000) = 3592
Mr = 869.32Dx = 1.558 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 89254 reflections
a = 16.5125 (5) Åθ = 3.4–26.0°
b = 17.8156 (6) ŵ = 1.27 mm1
c = 25.5801 (8) ÅT = 173 K
β = 99.913 (2)°Prism, red
V = 7412.8 (4) Å30.10 × 0.05 × 0.02 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
14540 independent reflections
Radiation source: Enraf–Nonius FR5907005 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.155
Detector resolution: 9 pixels mm-1θmax = 26.0°, θmin = 3.4°
φ or ω? scansh = 2018
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 2021
Tmin = 0.864, Tmax = 0.975l = 3131
52202 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.108Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.256H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0679P)2 + 96.5506P]
where P = (Fo2 + 2Fc2)/3
14540 reflections(Δ/σ)max = 0.001
477 parametersΔρmax = 1.63 e Å3
0 restraintsΔρmin = 0.79 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. ************************************************************************* The diffraction was very weak, particularly at higher angle. But this was the best (or least bad !) crystal available. ***************************************************************************

C,N, and O atoms had to be left isotropic otherwise some went non-positive-definite. The H atoms for the CH3CN solvate molecule were omitted.

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.82086 (8)0.06690 (8)0.10598 (5)0.0284 (3)
Fe0.71629 (9)0.00387 (9)0.00821 (6)0.0323 (4)
Cl0.97792 (17)0.03802 (17)0.12602 (11)0.0429 (7)
S10.79207 (16)0.10157 (15)0.02032 (10)0.0306 (6)
S20.75690 (17)0.04049 (15)0.07790 (10)0.0308 (6)
S30.6562 (2)0.1130 (2)0.03239 (14)0.0645 (11)
P10.84817 (17)0.18479 (16)0.12867 (11)0.0320 (7)
P20.81271 (18)0.03457 (17)0.18795 (11)0.0336 (7)
O10.5937 (7)0.1071 (7)0.0801 (5)0.096 (4)*
O20.6323 (7)0.1606 (6)0.0087 (4)0.087 (3)*
O30.6667 (9)0.0603 (9)0.1138 (6)0.134 (5)*
O40.5668 (5)0.0589 (5)0.0222 (3)0.055 (2)*
N10.8235 (5)0.0473 (5)0.0245 (3)0.036 (2)*
N20.6952 (7)0.0256 (6)0.0845 (5)0.056 (3)*
N30.6249 (7)0.0332 (6)0.0078 (4)0.063 (3)*
C10.8715 (10)0.0161 (9)0.0442 (6)0.080 (5)*
H1A0.92620.00320.04840.096*
H1B0.84260.03160.07970.096*
C20.8833 (7)0.0835 (6)0.0094 (4)0.038 (3)*
H2A0.89460.12770.03040.045*
H2B0.93130.07570.01910.045*
C30.8724 (9)0.0865 (8)0.0208 (5)0.064 (4)*
H3A0.89450.13270.00710.077*
H3B0.92010.05410.03460.077*
C40.8339 (7)0.1079 (6)0.0657 (4)0.038 (3)*
H4A0.87660.11220.09780.046*
H4B0.80770.15780.05870.046*
C50.8048 (8)0.0998 (7)0.0702 (5)0.053 (3)*
H5A0.85580.12360.07760.064*
H5B0.77810.07280.10240.064*
C60.7446 (9)0.1610 (8)0.0534 (6)0.067 (4)*
H6A0.7740.19170.02390.08*
H6B0.72510.19470.08370.08*
C70.9129 (7)0.2016 (7)0.1926 (4)0.043 (3)*
H7A0.96890.18250.19140.051*
H7B0.91730.25640.19880.051*
C80.8811 (7)0.1644 (6)0.2401 (5)0.044 (3)*
H8A0.91310.18380.27370.052*
H8B0.82280.17850.2390.052*
C90.8881 (7)0.0788 (6)0.2396 (4)0.039 (3)*
H9A0.88060.05910.27460.047*
H9B0.9440.06490.2340.047*
C100.9019 (7)0.2354 (6)0.0825 (4)0.034 (3)*
C110.8592 (7)0.2787 (6)0.0423 (4)0.039 (3)*
H110.80190.28690.04050.047*
C120.8998 (7)0.3103 (7)0.0045 (5)0.047 (3)*
H120.86960.33940.02340.057*
C130.9838 (7)0.3004 (7)0.0066 (5)0.047 (3)*
H131.01090.32070.02010.057*
C141.0268 (8)0.2601 (7)0.0485 (5)0.051 (3)*
H141.08470.25530.05170.061*
C150.9866 (7)0.2264 (6)0.0864 (5)0.040 (3)*
H151.01680.19760.11440.048*
C160.7570 (6)0.2409 (6)0.1302 (4)0.033 (3)*
C170.6815 (7)0.2184 (7)0.1017 (5)0.047 (3)*
H170.67870.17270.08230.056*
C180.6099 (8)0.2599 (7)0.1004 (5)0.054 (4)*
H180.55950.24360.07980.065*
C190.6137 (8)0.3252 (7)0.1296 (5)0.052 (3)*
H190.56530.35390.12990.063*
C200.6856 (8)0.3484 (7)0.1577 (5)0.050 (3)*
H200.68730.39370.17740.06*
C210.7575 (7)0.3078 (6)0.1586 (5)0.044 (3)*
H210.80750.32560.17880.052*
C220.8274 (7)0.0663 (6)0.2007 (4)0.036 (3)*
C230.9082 (8)0.0960 (7)0.2092 (5)0.048 (3)*
H230.95470.06430.21030.058*
C240.9170 (9)0.1736 (8)0.2159 (5)0.059 (4)*
H240.97050.19490.22260.071*
C250.8530 (9)0.2172 (9)0.2129 (5)0.064 (4)*
H250.86160.26980.2160.077*
C260.7718 (9)0.1900 (8)0.2055 (5)0.060 (4)*
H260.72630.22260.20530.072*
C270.7616 (8)0.1122 (7)0.1983 (5)0.047 (3)*
H270.70770.09160.19170.056*
C280.7147 (6)0.0533 (6)0.2075 (4)0.033 (3)*
C290.6469 (8)0.0667 (7)0.1690 (5)0.051 (3)*
H290.65230.06720.13260.061*
C300.5692 (9)0.0796 (8)0.1838 (6)0.062 (4)*
H300.5220.08720.15730.074*
C310.5620 (8)0.0812 (7)0.2369 (5)0.050 (3)*
H310.51030.09110.24690.06*
C320.6289 (8)0.0687 (7)0.2744 (5)0.055 (3)*
H320.6240.06950.31090.066*
C330.7036 (7)0.0548 (6)0.2603 (5)0.042 (3)*
H330.74960.04580.28740.051*
Ni1B0.18700 (8)0.00349 (8)0.38970 (5)0.0299 (3)
Fe1B0.27592 (9)0.04471 (9)0.51387 (6)0.0289 (4)
Cl1B0.02994 (16)0.01142 (15)0.36928 (11)0.0375 (7)
S1B0.21976 (16)0.05808 (15)0.46740 (11)0.0319 (7)
S2B0.22663 (16)0.10827 (15)0.43699 (10)0.0306 (6)
S3B0.31347 (17)0.14938 (16)0.55897 (11)0.0346 (7)
P1B0.17828 (18)0.10730 (17)0.35174 (12)0.0361 (7)
P2B0.20497 (18)0.06121 (18)0.31640 (11)0.0354 (7)
O1B0.3755 (5)0.1349 (4)0.6061 (3)0.042 (2)*
O2B0.3299 (4)0.2145 (4)0.5280 (3)0.0401 (19)*
O3B0.3461 (5)0.0478 (5)0.6063 (3)0.052 (2)*
O4B0.4305 (5)0.0315 (5)0.4724 (3)0.049 (2)*
N1B0.1625 (5)0.0575 (5)0.5352 (3)0.032 (2)*
N2B0.3173 (7)0.0101 (6)0.5711 (5)0.061 (3)*
N3B0.3706 (7)0.0372 (6)0.4899 (4)0.059 (3)*
C1B0.1286 (7)0.0187 (6)0.5439 (4)0.037 (3)*
H1B10.16320.04250.5750.044*
H1B20.07240.01310.55210.044*
C2B0.1254 (7)0.0694 (6)0.4961 (4)0.036 (3)*
H2B10.120.12230.50680.043*
H2B20.07690.05650.46910.043*
C3B0.1003 (7)0.0984 (6)0.4937 (4)0.037 (3)*
H3B10.06250.12740.51220.044*
H3B20.06710.06070.47110.044*
C4B0.1380 (6)0.1508 (6)0.4589 (4)0.033 (3)*
H4B10.09650.16420.42760.04*
H4B20.15520.19750.47870.04*
C5B0.1720 (7)0.0990 (6)0.5873 (4)0.039 (3)*
H5B10.1170.11030.59580.047*
H5B20.20170.06690.61590.047*
C6B0.2189 (7)0.1714 (6)0.5847 (5)0.040 (3)*
H6B10.1850.20760.5610.047*
H6B20.23260.1940.62050.047*
C7B0.1237 (7)0.1110 (7)0.2837 (5)0.047 (3)*
H7B10.06520.09860.28350.057*
H7B20.1260.16310.27050.057*
C8B0.1579 (8)0.0574 (7)0.2452 (5)0.049 (3)*
H8B10.13160.06930.20830.059*
H8B20.21770.0660.2480.059*
C9B0.1431 (7)0.0249 (7)0.2563 (5)0.045 (3)*
H9B10.15440.05510.22590.054*
H9B20.08440.03160.25870.054*
C10B0.1254 (7)0.1765 (6)0.3853 (5)0.041 (3)*
C11B0.1666 (8)0.2245 (7)0.4237 (5)0.053 (3)*
H11B0.2250.2250.42960.064*
C12B0.1260 (10)0.2720 (9)0.4538 (6)0.074 (4)*
H12B0.15680.30330.480.089*
C13B0.0418 (10)0.2737 (9)0.4459 (6)0.079 (5)*
H13B0.01330.30480.46680.095*
C14B0.0007 (10)0.2278 (8)0.4057 (6)0.072 (4)*
H14B0.0590.23040.39810.087*
C15B0.0387 (8)0.1801 (7)0.3776 (5)0.050 (3)*
H15B0.00730.14830.3520.061*
C16B0.2781 (7)0.1506 (6)0.3506 (4)0.038 (3)*
C17B0.3488 (7)0.1083 (7)0.3673 (4)0.043 (3)*
H17B0.34340.05830.3790.052*
C18B0.4279 (8)0.1373 (7)0.3674 (5)0.055 (4)*
H18B0.47540.1080.37970.066*
C19B0.4346 (9)0.2082 (8)0.3497 (5)0.065 (4)*
H19B0.48780.22830.34930.077*
C20B0.3668 (10)0.2522 (9)0.3322 (6)0.079 (5)*
H20B0.37350.30170.31980.095*
C21B0.2858 (8)0.2229 (8)0.3328 (5)0.058 (4)*
H21B0.23840.25280.32110.069*
C22B0.1763 (7)0.1613 (6)0.3137 (4)0.033 (3)*
C23B0.0962 (7)0.1813 (7)0.3165 (4)0.042 (3)*
H23B0.05610.14350.3180.05*
C24B0.0745 (8)0.2563 (7)0.3170 (5)0.049 (3)*
H24B0.020.26950.32060.058*
C25B0.1298 (8)0.3115 (7)0.3126 (5)0.052 (3)*
H25B0.11370.36270.31150.062*
C26B0.2099 (8)0.2917 (8)0.3096 (5)0.057 (4)*
H26B0.24950.32970.30750.069*
C27B0.2328 (8)0.2176 (7)0.3097 (5)0.051 (3)*
H27B0.28780.20480.30710.062*
C28B0.3106 (7)0.0659 (6)0.3048 (5)0.041 (3)*
C29B0.3719 (7)0.0824 (6)0.3472 (5)0.045 (3)*
H29B0.35830.0890.38150.054*
C30B0.4536 (8)0.0893 (7)0.3401 (5)0.052 (3)*
H30B0.49490.10150.36950.062*
C31B0.4747 (10)0.0786 (9)0.2911 (6)0.079 (5)*
H31B0.53060.08220.28680.095*
C32B0.4142 (10)0.0624 (9)0.2477 (7)0.080 (5)*
H32B0.42830.05580.21350.096*
C33B0.3323 (9)0.0559 (8)0.2549 (6)0.066 (4)*
H33B0.29090.04460.22530.079*
N1S0.5620 (11)0.1572 (10)0.2003 (8)0.121 (6)*
C1S0.547 (2)0.123 (2)0.1594 (18)0.238 (17)*
C2S0.5475 (19)0.0836 (18)0.1067 (14)0.194 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0276 (8)0.0323 (8)0.0247 (7)0.0040 (6)0.0033 (6)0.0016 (6)
Fe0.0294 (9)0.0422 (10)0.0244 (8)0.0030 (8)0.0021 (7)0.0021 (7)
Cl0.0296 (15)0.0527 (18)0.0446 (17)0.0089 (14)0.0017 (13)0.0055 (15)
S10.0287 (15)0.0346 (16)0.0289 (14)0.0049 (13)0.0059 (12)0.0022 (13)
S20.0360 (16)0.0339 (16)0.0223 (13)0.0039 (13)0.0043 (12)0.0001 (12)
S30.052 (2)0.089 (3)0.051 (2)0.020 (2)0.0044 (17)0.006 (2)
P10.0260 (16)0.0344 (16)0.0359 (16)0.0038 (13)0.0067 (13)0.0027 (14)
P20.0347 (17)0.0409 (17)0.0232 (14)0.0095 (14)0.0009 (12)0.0007 (13)
Ni1B0.0294 (8)0.0333 (8)0.0263 (7)0.0062 (6)0.0027 (6)0.0042 (7)
Fe1B0.0234 (8)0.0363 (9)0.0262 (8)0.0000 (7)0.0022 (6)0.0003 (7)
Cl1B0.0315 (15)0.0387 (16)0.0404 (16)0.0083 (13)0.0011 (12)0.0050 (13)
S1B0.0286 (15)0.0301 (15)0.0356 (15)0.0030 (12)0.0019 (12)0.0008 (13)
S2B0.0270 (15)0.0347 (16)0.0298 (14)0.0029 (12)0.0045 (12)0.0019 (13)
S3B0.0301 (16)0.0417 (17)0.0314 (15)0.0026 (13)0.0041 (12)0.0047 (13)
P1B0.0329 (17)0.0371 (17)0.0352 (16)0.0084 (14)0.0033 (13)0.0086 (14)
P2B0.0328 (17)0.0446 (19)0.0280 (15)0.0103 (14)0.0031 (13)0.0022 (14)
Geometric parameters (Å, º) top
Ni—S12.248 (3)Ni1B—S2B2.259 (3)
Ni—S22.243 (3)Ni1B—P1B2.193 (3)
Ni—P12.205 (3)Ni1B—P2B2.203 (3)
Ni—P22.201 (3)Ni1B—Cl1B2.560 (3)
Ni—Cl2.607 (3)Fe1B—S1B2.290 (3)
Fe—N12.039 (9)Fe1B—S2B2.293 (3)
Fe—N21.991 (12)Fe1B—S3B2.224 (3)
Fe—N31.760 (12)Fe1B—N1B2.052 (9)
Fe—S12.305 (3)Fe1B—N2B1.794 (12)
Fe—S22.284 (3)Fe1B—N3B1.781 (12)
Fe—S32.222 (5)S1B—C2B1.845 (11)
S1—C21.828 (11)S2B—C4B1.821 (11)
S2—C41.814 (11)S3B—O2B1.457 (8)
S3—O21.458 (11)S3B—O1B1.465 (8)
S3—O11.460 (12)S3B—C6B1.839 (12)
S3—C61.851 (14)P1B—C10B1.809 (12)
P1—C161.812 (11)P1B—C7B1.817 (12)
P1—C71.818 (11)P1B—C16B1.825 (12)
P1—C101.833 (11)P2B—C9B1.811 (12)
P2—C281.806 (11)P2B—C28B1.822 (12)
P2—C91.830 (11)P2B—C22B1.843 (11)
P2—C221.835 (11)N2B—O3B1.157 (12)
N2—O31.023 (16)N3B—O4B1.157 (12)
N3—O41.178 (12)N1B—C1B1.500 (13)
N1—C31.469 (15)N1B—C5B1.510 (13)
N1—C51.489 (14)N1B—C3B1.528 (13)
N1—C11.517 (17)C1B—C2B1.516 (14)
C1—C21.488 (18)C1B—H1B10.9900
C1—H1A0.9900C1B—H1B20.9900
C1—H1B0.9900C2B—H2B10.9900
C2—H2A0.9900C2B—H2B20.9900
C2—H2B0.9900C3B—C4B1.498 (14)
C3—C41.457 (17)C3B—H3B10.9900
C3—H3A0.9900C3B—H3B20.9900
C3—H3B0.9900C4B—H4B10.9900
C4—H4A0.9900C4B—H4B20.9900
C4—H4B0.9900C5B—C6B1.512 (15)
C5—C61.584 (18)C5B—H5B10.9900
C5—H5A0.9900C5B—H5B20.9900
C5—H5B0.9900C6B—H6B10.9900
C6—H6A0.9900C6B—H6B20.9900
C6—H6B0.9900C7B—C8B1.549 (16)
C7—C81.554 (16)C7B—H7B10.9900
C7—H7A0.9900C7B—H7B20.9900
C7—H7B0.9900C8B—C9B1.521 (16)
C8—C91.527 (15)C8B—H8B10.9900
C8—H8A0.9900C8B—H8B20.9900
C8—H8B0.9900C9B—H9B10.9900
C9—H9A0.9900C9B—H9B20.9900
C9—H9B0.9900C10B—C11B1.389 (16)
C10—C111.376 (14)C10B—C15B1.414 (16)
C10—C151.397 (15)C11B—C12B1.394 (19)
C11—C121.389 (16)C11B—H11B0.9500
C11—H110.9500C12B—C13B1.37 (2)
C12—C131.391 (16)C12B—H12B0.9500
C12—H120.9500C13B—C14B1.40 (2)
C13—C141.380 (16)C13B—H13B0.9500
C13—H130.9500C14B—C15B1.351 (18)
C14—C151.401 (16)C14B—H14B0.9500
C14—H140.9500C15B—H15B0.9500
C15—H150.9500C16B—C21B1.380 (17)
C16—C171.391 (15)C16B—C17B1.393 (15)
C16—C211.396 (15)C17B—C18B1.402 (16)
C17—C181.391 (16)C17B—H17B0.9500
C17—H170.9500C18B—C19B1.353 (18)
C18—C191.379 (17)C18B—H18B0.9500
C18—H180.9500C19B—C20B1.378 (19)
C19—C201.342 (16)C19B—H19B0.9500
C19—H190.9500C20B—C21B1.439 (19)
C20—C211.387 (16)C20B—H20B0.9500
C20—H200.9500C21B—H21B0.9500
C21—H210.9500C22B—C23B1.384 (15)
C22—C271.353 (15)C22B—C27B1.385 (16)
C22—C231.418 (16)C23B—C24B1.383 (16)
C23—C241.397 (17)C23B—H23B0.9500
C23—H230.9500C24B—C25B1.360 (16)
C24—C251.303 (17)C24B—H24B0.9500
C24—H240.9500C25B—C26B1.384 (17)
C25—C261.408 (18)C25B—H25B0.9500
C25—H250.9500C26B—C27B1.372 (17)
C26—C271.404 (17)C26B—H26B0.9500
C26—H260.9500C27B—H27B0.9500
C27—H270.9500C28B—C29B1.379 (15)
C28—C291.377 (15)C28B—C33B1.397 (17)
C28—C331.395 (15)C29B—C30B1.399 (16)
C29—C301.420 (18)C29B—H29B0.9500
C29—H290.9500C30B—C31B1.371 (19)
C30—C311.383 (17)C30B—H30B0.9500
C30—H300.9500C31B—C32B1.39 (2)
C31—C321.350 (16)C31B—H31B0.9500
C31—H310.9500C32B—C33B1.40 (2)
C32—C331.368 (16)C32B—H32B0.9500
C32—H320.9500C33B—H33B0.9500
C33—H330.9500N1S—C1S1.19 (4)
Ni1B—S1B2.253 (3)C1S—C2S1.53 (4)
P2—Ni—P192.40 (12)P1B—Ni1B—S1B86.56 (12)
P2—Ni—S288.81 (11)P2B—Ni1B—S1B158.60 (12)
P1—Ni—S2163.84 (12)P1B—Ni1B—S2B166.29 (12)
P2—Ni—S1164.48 (12)P2B—Ni1B—S2B90.07 (12)
P1—Ni—S189.66 (11)S1B—Ni1B—S2B85.77 (11)
S2—Ni—S185.03 (10)P1B—Ni1B—Cl1B88.41 (11)
P2—Ni—Cl89.02 (11)P2B—Ni1B—Cl1B94.63 (11)
P1—Ni—Cl89.14 (11)S1B—Ni1B—Cl1B106.73 (11)
S2—Ni—Cl107.00 (11)S2B—Ni1B—Cl1B104.68 (10)
S1—Ni—Cl106.39 (11)N3B—Fe1B—N2B90.3 (5)
N3—Fe—N296.7 (5)N3B—Fe1B—N1B175.0 (4)
N3—Fe—N1178.3 (5)N2B—Fe1B—N1B94.6 (4)
N2—Fe—N184.9 (4)N3B—Fe1B—S3B93.3 (4)
N3—Fe—S391.9 (4)N2B—Fe1B—S3B90.0 (4)
N2—Fe—S387.9 (3)N1B—Fe1B—S3B87.4 (3)
N1—Fe—S388.4 (3)N3B—Fe1B—S1B93.6 (4)
N3—Fe—S290.2 (4)N2B—Fe1B—S1B93.0 (4)
N2—Fe—S2172.9 (3)N1B—Fe1B—S1B85.4 (2)
N1—Fe—S288.1 (3)S3B—Fe1B—S1B172.44 (12)
S3—Fe—S293.53 (13)N3B—Fe1B—S2B86.9 (4)
N3—Fe—S193.5 (4)N2B—Fe1B—S2B175.8 (4)
N2—Fe—S195.1 (3)N1B—Fe1B—S2B88.1 (2)
N1—Fe—S186.0 (3)S3B—Fe1B—S2B93.28 (11)
S3—Fe—S1173.46 (14)S1B—Fe1B—S2B84.11 (11)
S2—Fe—S182.78 (11)C2B—S1B—Ni1B108.2 (4)
C2—S1—Ni107.8 (4)C2B—S1B—Fe1B100.1 (4)
C2—S1—Fe99.6 (4)Ni1B—S1B—Fe1B94.75 (11)
Ni—S1—Fe95.55 (11)C4B—S2B—Ni1B109.6 (4)
C4—S2—Ni108.4 (4)C4B—S2B—Fe1B97.3 (4)
C4—S2—Fe97.0 (4)Ni1B—S2B—Fe1B94.52 (11)
Ni—S2—Fe96.27 (12)O2B—S3B—O1B114.7 (4)
O2—S3—O1113.9 (7)O2B—S3B—C6B105.9 (5)
O2—S3—C6105.4 (7)O1B—S3B—C6B105.0 (5)
O1—S3—C6105.7 (7)O2B—S3B—Fe1B116.6 (3)
O2—S3—Fe118.1 (5)O1B—S3B—Fe1B111.9 (3)
O1—S3—Fe112.8 (5)C6B—S3B—Fe1B100.8 (4)
C6—S3—Fe98.6 (5)C10B—P1B—C7B103.2 (5)
C16—P1—C7104.6 (5)C10B—P1B—C16B103.3 (5)
C16—P1—C10103.7 (5)C7B—P1B—C16B105.6 (6)
C7—P1—C10103.0 (5)C10B—P1B—Ni1B113.8 (4)
C16—P1—Ni113.5 (4)C7B—P1B—Ni1B116.2 (4)
C7—P1—Ni117.1 (4)C16B—P1B—Ni1B113.4 (4)
C10—P1—Ni113.5 (4)C9B—P2B—C28B107.1 (6)
C28—P2—C9104.6 (5)C9B—P2B—C22B102.1 (5)
C28—P2—C22103.2 (5)C28B—P2B—C22B101.3 (5)
C9—P2—C22104.0 (5)C9B—P2B—Ni1B114.7 (4)
C28—P2—Ni114.8 (4)C28B—P2B—Ni1B115.7 (4)
C9—P2—Ni115.4 (4)C22B—P2B—Ni1B114.4 (4)
C22—P2—Ni113.5 (4)C1B—N1B—C5B107.2 (8)
C3—N1—C5109.4 (9)C1B—N1B—C3B108.2 (8)
C3—N1—C1111.7 (10)C5B—N1B—C3B109.6 (8)
C5—N1—C1104.8 (9)C1B—N1B—Fe1B108.7 (6)
C3—N1—Fe113.5 (8)C5B—N1B—Fe1B109.1 (6)
C5—N1—Fe109.2 (7)C3B—N1B—Fe1B113.9 (6)
C1—N1—Fe107.8 (8)O3B—N2B—Fe1B176.3 (10)
O3—N2—Fe149.3 (14)O4B—N3B—Fe1B177.2 (10)
O4—N3—Fe175.1 (10)N1B—C1B—C2B112.3 (9)
C2—C1—N1115.0 (12)N1B—C1B—H1B1109.1
C2—C1—H1A108.5C2B—C1B—H1B1109.1
N1—C1—H1A108.5N1B—C1B—H1B2109.1
C2—C1—H1B108.5C2B—C1B—H1B2109.1
N1—C1—H1B108.5H1B1—C1B—H1B2107.9
H1A—C1—H1B107.5C1B—C2B—S1B110.0 (7)
C1—C2—S1111.0 (9)C1B—C2B—H2B1109.7
C1—C2—H2A109.4S1B—C2B—H2B1109.7
S1—C2—H2A109.4C1B—C2B—H2B2109.7
C1—C2—H2B109.4S1B—C2B—H2B2109.7
S1—C2—H2B109.4H2B1—C2B—H2B2108.2
H2A—C2—H2B108.0C4B—C3B—N1B114.3 (9)
C4—C3—N1119.3 (11)C4B—C3B—H3B1108.7
C4—C3—H3A107.5N1B—C3B—H3B1108.7
N1—C3—H3A107.5C4B—C3B—H3B2108.7
C4—C3—H3B107.5N1B—C3B—H3B2108.7
N1—C3—H3B107.5H3B1—C3B—H3B2107.6
H3A—C3—H3B107.0C3B—C4B—S2B111.2 (8)
C3—C4—S2112.1 (9)C3B—C4B—H4B1109.4
C3—C4—H4A109.2S2B—C4B—H4B1109.4
S2—C4—H4A109.2C3B—C4B—H4B2109.4
C3—C4—H4B109.2S2B—C4B—H4B2109.4
S2—C4—H4B109.2H4B1—C4B—H4B2108.0
H4A—C4—H4B107.9N1B—C5B—C6B110.8 (9)
N1—C5—C6105.9 (10)N1B—C5B—H5B1109.5
N1—C5—H5A110.6C6B—C5B—H5B1109.5
C6—C5—H5A110.6N1B—C5B—H5B2109.5
N1—C5—H5B110.6C6B—C5B—H5B2109.5
C6—C5—H5B110.6H5B1—C5B—H5B2108.1
H5A—C5—H5B108.7C5B—C6B—S3B107.9 (8)
C5—C6—S3108.9 (9)C5B—C6B—H6B1110.1
C5—C6—H6A109.9S3B—C6B—H6B1110.1
S3—C6—H6A109.9C5B—C6B—H6B2110.1
C5—C6—H6B109.9S3B—C6B—H6B2110.1
S3—C6—H6B109.9H6B1—C6B—H6B2108.4
H6A—C6—H6B108.3C8B—C7B—P1B114.3 (8)
C8—C7—P1114.1 (8)C8B—C7B—H7B1108.7
C8—C7—H7A108.7P1B—C7B—H7B1108.7
P1—C7—H7A108.7C8B—C7B—H7B2108.7
C8—C7—H7B108.7P1B—C7B—H7B2108.7
P1—C7—H7B108.7H7B1—C7B—H7B2107.6
H7A—C7—H7B107.6C9B—C8B—C7B112.9 (10)
C9—C8—C7112.6 (10)C9B—C8B—H8B1109.0
C9—C8—H8A109.1C7B—C8B—H8B1109.0
C7—C8—H8A109.1C9B—C8B—H8B2109.0
C9—C8—H8B109.1C7B—C8B—H8B2109.0
C7—C8—H8B109.1H8B1—C8B—H8B2107.8
H8A—C8—H8B107.8C8B—C9B—P2B114.7 (8)
C8—C9—P2113.1 (8)C8B—C9B—H9B1108.6
C8—C9—H9A109.0P2B—C9B—H9B1108.6
P2—C9—H9A109.0C8B—C9B—H9B2108.6
C8—C9—H9B109.0P2B—C9B—H9B2108.6
P2—C9—H9B109.0H9B1—C9B—H9B2107.6
H9A—C9—H9B107.8C11B—C10B—C15B115.5 (11)
C11—C10—C15119.8 (11)C11B—C10B—P1B122.5 (9)
C11—C10—P1121.0 (9)C15B—C10B—P1B121.7 (9)
C15—C10—P1119.1 (8)C10B—C11B—C12B122.8 (13)
C10—C11—C12120.1 (11)C10B—C11B—H11B118.6
C10—C11—H11119.9C12B—C11B—H11B118.6
C12—C11—H11119.9C13B—C12B—C11B120.3 (15)
C11—C12—C13121.2 (12)C13B—C12B—H12B119.9
C11—C12—H12119.4C11B—C12B—H12B119.9
C13—C12—H12119.4C12B—C13B—C14B117.5 (16)
C14—C13—C12118.2 (12)C12B—C13B—H13B121.2
C14—C13—H13120.9C14B—C13B—H13B121.2
C12—C13—H13120.9C15B—C14B—C13B122.2 (15)
C13—C14—C15121.4 (12)C15B—C14B—H14B118.9
C13—C14—H14119.3C13B—C14B—H14B118.9
C15—C14—H14119.3C14B—C15B—C10B121.6 (13)
C10—C15—C14119.1 (11)C14B—C15B—H15B119.2
C10—C15—H15120.4C10B—C15B—H15B119.2
C14—C15—H15120.4C21B—C16B—C17B119.1 (11)
C17—C16—C21116.3 (11)C21B—C16B—P1B122.3 (9)
C17—C16—P1120.2 (9)C17B—C16B—P1B118.6 (9)
C21—C16—P1123.5 (8)C16B—C17B—C18B122.2 (12)
C18—C17—C16122.8 (12)C16B—C17B—H17B118.9
C18—C17—H17118.6C18B—C17B—H17B118.9
C16—C17—H17118.6C19B—C18B—C17B118.3 (13)
C19—C18—C17118.4 (12)C19B—C18B—H18B120.9
C19—C18—H18120.8C17B—C18B—H18B120.9
C17—C18—H18120.8C18B—C19B—C20B122.0 (15)
C20—C19—C18120.3 (13)C18B—C19B—H19B119.0
C20—C19—H19119.9C20B—C19B—H19B119.0
C18—C19—H19119.9C19B—C20B—C21B119.7 (15)
C19—C20—C21121.5 (13)C19B—C20B—H20B120.1
C19—C20—H20119.2C21B—C20B—H20B120.1
C21—C20—H20119.2C16B—C21B—C20B118.7 (13)
C20—C21—C16120.7 (11)C16B—C21B—H21B120.6
C20—C21—H21119.7C20B—C21B—H21B120.6
C16—C21—H21119.7C23B—C22B—C27B118.6 (11)
C27—C22—C23120.7 (11)C23B—C22B—P2B119.3 (9)
C27—C22—P2120.2 (9)C27B—C22B—P2B122.1 (9)
C23—C22—P2118.9 (9)C22B—C23B—C24B120.1 (11)
C24—C23—C22117.5 (12)C22B—C23B—H23B119.9
C24—C23—H23121.2C24B—C23B—H23B119.9
C22—C23—H23121.2C25B—C24B—C23B121.2 (12)
C25—C24—C23121.2 (14)C25B—C24B—H24B119.4
C25—C24—H24119.4C23B—C24B—H24B119.4
C23—C24—H24119.4C24B—C25B—C26B118.8 (13)
C24—C25—C26123.1 (15)C24B—C25B—H25B120.6
C24—C25—H25118.5C26B—C25B—H25B120.6
C26—C25—H25118.5C27B—C26B—C25B120.7 (13)
C27—C26—C25116.7 (13)C27B—C26B—H26B119.6
C27—C26—H26121.7C25B—C26B—H26B119.6
C25—C26—H26121.7C26B—C27B—C22B120.5 (13)
C22—C27—C26120.8 (12)C26B—C27B—H27B119.7
C22—C27—H27119.6C22B—C27B—H27B119.7
C26—C27—H27119.6C29B—C28B—C33B118.5 (12)
C29—C28—C33117.8 (11)C29B—C28B—P2B118.4 (9)
C29—C28—P2119.4 (9)C33B—C28B—P2B123.0 (10)
C33—C28—P2122.9 (8)C28B—C29B—C30B120.8 (12)
C28—C29—C30119.8 (12)C28B—C29B—H29B119.6
C28—C29—H29120.1C30B—C29B—H29B119.6
C30—C29—H29120.1C31B—C30B—C29B120.5 (13)
C31—C30—C29119.9 (13)C31B—C30B—H30B119.7
C31—C30—H30120.1C29B—C30B—H30B119.7
C29—C30—H30120.1C30B—C31B—C32B120.0 (16)
C32—C31—C30119.9 (13)C30B—C31B—H31B120.0
C32—C31—H31120.1C32B—C31B—H31B120.0
C30—C31—H31120.1C31B—C32B—C33B119.4 (16)
C31—C32—C33120.5 (13)C31B—C32B—H32B120.3
C31—C32—H32119.8C33B—C32B—H32B120.3
C33—C32—H32119.8C28B—C33B—C32B120.8 (14)
C32—C33—C28122.2 (11)C28B—C33B—H33B119.6
C32—C33—H33118.9C32B—C33B—H33B119.6
C28—C33—H33118.9N1S—C1S—C2S168 (4)
P1B—Ni1B—P2B92.95 (12)
Fe—S1—C2—C16.3 (9)Fe1B—S1B—C2B—C1B10.1 (8)
S1—C2—C1—N137.0 (14)S1B—C2B—C1B—N1B41.4 (10)
C2—C1—N1—Fe52.0 (13)C2B—C1B—N1B—Fe1B55.4 (9)
Fe—S2—C4—C331.3 (9)Fe1B—S2B—C4B—C3B36.7 (7)
S2—C4—C3—N133.9 (14)S2B—C4B—C3B—N1B43.8 (11)
C4—C3—N1—Fe15.8 (14)C4B—C3B—N1B—Fe1B26.4 (11)
Fe—S3—C6—C525.3 (9)Fe1B—S3B—C6B—C5B24.8 (8)
S3—C6—C5—N153.5 (11)S3B—C6B—C5B—N1B50.6 (10)
C6—C5—N1—Fe57.2 (10)C6B—C5B—N1B—Fe1B53.0 (9)
Ni—P1—C7—C854.9 (9)Ni1B—P1B—C7B—C8B55.9 (10)
P1—C7—C8—C969.6 (11)P1B—C7B—C8B—C9B68.7 (12)
C7—C8—C9—P272.8 (11)C7B—C8B—C9B—P2B71.4 (12)
C8—C9—P2—Ni60.9 (8)C8B—C9B—P2B—Ni1B59.8 (10)
Bond lengths (Å) and angles (°) in idealized NO ligands and in complex (I) top
BentLinearMolecule AMolecule AMolecule BMolecule B
EquatorialAxialEquatorialAxial
M—N—O149175149.1 (14)175.1 (10)176.4 (10)177.3 (10)
M—N1.9921.7591.991 (12)1.759 (12)1.779 (12)1.794 (12)
N—O1.0231.1771.023 (16)1.177 (12)1.157 (12)1.158 (12)
 

Acknowledgements

The authors thank the Biotechnology and Biological Sciences Research Council and the John Innes Foundation (SED) for financial support.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDavies, S. C., Evans, D. J., Hughes, D. L., Konkol, M., Richards, R. L., Sanders, J. R. & Sobota, P. (2002). J. Chem. Soc. Dalton Trans. pp. 2473–2482.  Web of Science CSD CrossRef Google Scholar
First citationDuff, S. E., Hitchcock, P. B., Davies, S. C., Barclay, J. E. & Evans, D. J. (2005). Acta Cryst. E61, m1316–m1319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEvans, D. J. & Pickett, C. J. (2003). Chem. Soc. Rev. 32, 268–275.  Web of Science CrossRef PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1986). SHELXS86. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSmith, M. C., Barclay, J. E., Cramer, S. P., Davies, S. C., Gu, W.-W., Hughes, D. L., Longhurst, S. & Evans, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2641–2647.  Web of Science CSD CrossRef Google Scholar
First citationSmith, M. C., Barclay, J. E., Davies, S. C., Hughes, D. L. & Evans, D. J. (2003). Dalton Trans. pp. 4147–4151.  Web of Science CSD CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds