metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ2-Bicarbonato-κ2O,O′)[μ2-1,4,8,11,14,18,23,27-octa­aza-6,16,25(1,3)-tribenzenabi­cyclo­[9.9.9]nona­cosa­phane]dicopper(II) triperchlorate aceto­nitrile solvate

CROSSMARK_Color_square_no_text.svg

aUniversity of Southern Denmark, Department of Chemistry, Campusvej 55, 5230 Odense, Denmark, and bBiomedical Sciences, University of Ulster, Coleraine, BT52 1SA, Northern Ireland
*Correspondence e-mail: j.nelson@ulster.ac.uk

(Received 6 June 2005; accepted 13 June 2005; online 24 June 2005)

In the title complex, [Cu2(CHO3)(C36H54N8)](ClO4)3·C2H3N, at 180 K, the triamino caps of the dicopper(II) cryptate are approximately eclipsed and the benzene rings are arranged so as to form three arms of a twisted tris­kelion motif. The coordination geometry of one Cu atom is trigonal–bipyram­idal, while the second resembles more closely a square pyramid. The latter arrangement accommodates a perchlorate anion coordinated loosely to Cu to give a very distorted octa­hedral geometry. The cryptate complexes adopt an approximately hexa­gonal close-packed (hcp) arrangement.

Comment

The title complex, [C37H55Cu2N8O3]3+(ClO4)3·C2H3N, (I)[link], contains a dicopper(II) complex of the meta-xyl­yl-linked cryptand C36H54N8 (denoted hereinafter as L), in which the metal centres are bridged by a bicarbonate anion, HCO3 (Fig. 1[link]). The intra­complex Cu1⋯Cu2 separation is 6.0853 (11) Å. In projection along the Cu⋯Cu axis (Fig. 2[link]), the triamino caps at each end of the cryptate appear close to eclipsed, and the benzene rings adopt an arrangement that resembles three arms of a twisted tris­kelion motif. The C—OH bond of the bridging bicarbonate anion projects into a gap between two of the arms.

[Scheme 1]

The environments of atoms Cu1 and Cu2 differ significantly (Table 1[link]). For Cu1, the coordination geometry is trigonal–bipyramidal, with Cu1 lying 0.231 (2) Å (towards the centre of the complex) from the equatorial plane defined by atoms N2, N3 and N4. Atoms N1 and O2 lie in the axial coordination sites. For Cu2, the coordination geometry resembles more closely a square pyramid, with Cu2 lying 0.283 (2) Å from the basal plane defined by atoms N5, N6, N7 and O3. Atom N8 lies in the apical coordination site. The distortion towards square-pyramidal geometry for Cu2 reflects a `flattening' of this end of the cryptand away from the open side to which the bicarbonate C—OH bond projects. This accommodates a perchlorate anion, which approaches Cu2 [Cu2—O1A 3.035 (3) Å], suggesting a very distorted octa­hedral geometry (Fig. 3[link]). Atom O1A also accepts a hydrogen bond from the OH group of the bicarbonate anion [O1⋯O1A 2.935 (5) Å, H1⋯O1A 2.10 Å and O1—H1⋯O1A 173.8°].

We and others have previously described several comparable dicopper(II) cryptates, with various diatomic and poly­atomic anionic bridges. The conformation of L is observed to be dependent on the nature of the bridging group. In the cyanide-bridged complex [Cu2L(CN)](ClO4)3, the cryptate adopts regular C3h point symmetry, with a Cu⋯Cu separation of 5.081 (2) Å (Bond et al., 2005[Bond, A. D., Derossi, S., Harding, C. J., McInnes, E. J. L., McKee, V., McKenzie, C. J., Nelson, J. & Wolowska, J. (2005). Dalton Trans. In the press.]). With polyatomic bridging groups, such as methyl carbonate (Dussart et al., 2002[Dussart, Y., Harding, C. J., Dalgaard, P., McKenzie, C. J., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704-1713.]), imidazole (Pierre et al., 1995[Pierre, J.-L., Chautemps, P., Refaif, S., Beguin, C., Marzouki, A. E., Serratrice, G., Saint-Aman, E. & Rey, P. (1995). J. Am. Chem. Soc. 117, 1965-1973.]; Harding et al., 1995[Harding, C. J., Lu, Q., Malone, J. F., Marrs, D. J., Martin, N., McKee, V. & Nelson, J. (1995). J. Chem. Soc. Dalton Trans. pp. 1739-1747.]), cyanate and azide (Harding et al., 1996[Harding, C. J., Mabbs, F. E., McInnes, E. J. L., McKee, V. & Nelson, J. (1996). J. Chem. Soc. Dalton Trans. pp. 3227-3230.]), the Cu⋯Cu separation is much greater (and variable, ranging from ca 5.66 to 6.24 Å) and the threefold symmetry about the Cu⋯Cu axis is lost. In each case, the benzene rings of the cryptand adopt the tris­kelion arrangement observed in (I)[link] (Fig. 2[link]). Each of these cryptates is also flattened at one end in the manner of (I)[link], accommodating a perchlorate anion that approaches one Cu atom. In the carbonate-bridged complex, [Cu2L(CO3)](ClO4)2·2H2O (Dussart et al., 2002[Dussart, Y., Harding, C. J., Dalgaard, P., McKenzie, C. J., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704-1713.]), the cryptand adopts a less regular arrangement (Fig. 4[link]) in which one of the benzene rings is rotated ca 90° with respect to the arrangement observed in the other cases. This appears to be driven by the formation of hydrogen-bonded dimeric units via water mol­ecules that bridge the carboxyl­ate anions in neighbouring cryptates; the arrangement of the benzene rings facilitates edge-to-face inter­actions between cryptates. Flattening of the cryptate is not observed in this case.

In the crystal structure of (I)[link], the cryptate complexes lie in layers in the (202) planes (Fig. 5[link]), with the Cu⋯Cu vectors lying approximately perpendicular to the layer planes. Projection on to a single layer (Fig. 6[link]) highlights a combination of offset face-to-face and edge-to-face inter­actions between the benzene rings. If the cryptands are considered to be cylindrically symmetric, the layers are essentially close-packed in two dimensions. These layers stack in an ABAB manner (Fig. 5[link]), so that the overall packing arrangement approximates hexa­gonal close-packed (hcp). The perchlorate anions and aceto­nitrile molecules are situated between the cryptand layers.

[Figure 1]
Figure 1
The cryptate unit in (I)[link], showing displacement ellipsoids at the 50% probability level. H atoms are shown as spheres of arbitrary radii. The bicarbonate anion is highlighted in colour.
[Figure 2]
Figure 2
A projection of the cryptate in (I)[link] along the Cu1⋯Cu2 vector, showing the triamino caps in an approximately eclipsed orientation, and the benzene rings forming three arms of a tris­kelion-like motif. The C37—O1 bond of the bicarbonate bridge projects between two of the arms. H atoms have been omitted.
[Figure 3]
Figure 3
Detail of (I)[link], showing a perchlorate anion approaching atom Cu2, giving rise to a distorted octa­hedral arrangement. The same O atom (O1A) also accepts a hydrogen bond from the bicarbonate anion. To accommodate the perchlorate anion, the cryptate is `flattened' at the Cu2 end, reflected most clearly in the N6—Cu2—C7 and N2—Cu1—N3 angles (Table 1[link]). H atoms bound to C and N atoms have been omitted.
[Figure 4]
Figure 4
The hydrogen-bonded dimeric units in the carbonate-bridged cryptate [Cu2L(CO3)](ClO4)2·2H2O (Dussart et al., 2002[Dussart, Y., Harding, C. J., Dalgaard, P., McKenzie, C. J., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704-1713.]), illustrating the unusual arrangement of the benzene rings that facilitates edge-to-face inter­actions between cryptates. H atoms bound to C and N atoms have been omitted.
[Figure 5]
Figure 5
A projection of (I)[link] along the b direction, showing layers of cryptates lying in the (202) planes, with their Cu⋯Cu vectors approximately perpendicular to these planes. The perchlorate anions and acetonitrile solvent mol­ecules lie between the layers. H atoms have been omitted.
[Figure 6]
Figure 6
A projection on to a single layer in (202), showing face-to-face and edge-to-face arrangements between benzene rings in adjacent cryptands of (I)[link]. If the cryptands are considered to be cylindrically symmetric, the arrangement approximates hexa­gonal close-packed. H atoms have been omitted.

Experimental

A solution of Cu(ClO4)2·6H2O (178 mg, 0.48 mmol) dissolved in MeOH (5 ml) was added dropwise to the cryptand ligand, C36H54N8 (121 mg, 0.2 mmol), dissolved in methanol (5 ml). The dark blue–green solution became turbid immediately, and a blue-green powder was filtered off after 2 h. Slow recrystallization from acetonitrile over several days yielded green laths of the acetonitrile solvate of (I)[link]. The acetonitrile solvent in the crystal structure is not retained over the period required for CHN analysis, which agrees with an unsolvated complex. Spectroscopic analysis: IR (Nujol, ν, cm−1): 3436 (s), 2877 (w), 1635 (ms), 1450 (m), 1400 (sh), 1121 (vs), 801, 757, 702 (w), 627 (ms). CHN analysis {%, values in parentheses calculated for [C37H55Cu2N8O3](ClO4)3}: C 40.74 (40.96), H 5.00 (5.11), N 9.97 (10.32). It is notable that, when the recrystallization system incorporates methanol, the product of recrystallation is the methyl carbonate-bridged dicopper(II) cryptate, rather than the bicarbonate-bridged complex (Dussart et al., 2002[Dussart, Y., Harding, C. J., Dalgaard, P., McKenzie, C. J., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704-1713.]).

Crystal data
  • [Cu2(CHO3)(C36H54N8)](ClO4)3·C2H3N

  • Mr = 1126.37

  • Monoclinic, P 21 /n

  • a = 19.690 (4) Å

  • b = 8.862 (2) Å

  • c = 26.828 (5) Å

  • β = 100.721 (2)°

  • V = 4599.6 (16) Å3

  • Z = 4

  • Dx = 1.627 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2245 reflections

  • θ = 4.8–24.0°

  • μ = 1.18 mm−1

  • T = 180 (2) K

  • Lath, green

  • 0.24 × 0.10 × 0.02 mm

Data collection
  • Bruker–Nonius X8APEX-II CCD area-detector diffractometer

  • Thin–slice ω and φ scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.319, Tmax = 0.977

  • 16940 measured reflections

  • 8362 independent reflections

  • 5186 reflections with I > 2σ(I)

  • Rint = 0.058

  • θmax = 25.5°

  • h = −23 → 23

  • k = −10 → 6

  • l = −32 → 26

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.137

  • S = 0.99

  • 8362 reflections

  • 613 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0686P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Cu1—O2 1.938 (3)
Cu1—N1 2.054 (3)
Cu1—N3 2.097 (4)
Cu1—N2 2.153 (3)
Cu1—N4 2.167 (4)
Cu2—O3 1.957 (3)
Cu2—N5 2.054 (3)
Cu2—N6 2.070 (3)
Cu2—N7 2.084 (3)
Cu2—N8 2.256 (4)
C37—O3 1.241 (5)
C37—O2 1.257 (5)
C37—O1 1.370 (6)
O2—Cu1—N1 177.34 (14)
O2—Cu1—N3 96.54 (13)
N1—Cu1—N3 84.59 (14)
O2—Cu1—N2 97.41 (12)
N1—Cu1—N2 83.86 (13)
N3—Cu1—N2 125.14 (14)
O2—Cu1—N4 94.56 (12)
N1—Cu1—N4 82.82 (13)
N3—Cu1—N4 124.02 (14)
N2—Cu1—N4 107.32 (14)
O3—Cu2—N5 178.32 (14)
O3—Cu2—N6 94.51 (13)
N5—Cu2—N6 84.18 (14)
O3—Cu2—N7 97.17 (12)
N5—Cu2—N7 84.50 (13)
N6—Cu2—N7 145.49 (14)
O3—Cu2—N8 96.71 (13)
N5—Cu2—N8 82.65 (13)
N6—Cu2—N8 105.63 (14)
N7—Cu2—N8 105.08 (13)

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.95 Å for the benzene rings and C—H = 0.99 Å for the methyl­ene groups. In all cases, Uiso(H) = 1.2Ueq(C). All H atoms bound to N atoms could be distinguished in a difference Fourier map, but were included in calculated positions and allowed to ride, with N—H = 0.93 Å and Uiso(H) = 1.2Ueq(N). The calculated positions were in good agreement with those indicated by the difference Fourier map. The H atom of the bicarbonate bridge could not be distinguished, but the C37—O1 bond length, together with the requirement for charge balance, confirms the presence of the OH group. The H atom was placed in a calculated position in the plane of the HCO3 group, so as to form the best hydrogen bond (AFIX 83 in SHELXL97). It was subsequently allowed to ride, with Uiso(H) = 1.2Ueq(O).

Data collection: APEX2 (Bruker–Nonius, 2004[Bruker-Nonius (2004). APEX2. Version 1.0-22. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: APEX2 (Bruker Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

2-Bicarbonato-κ2O,O')[µ2-1,4,8,11,14,18,23,27-octaaza-6,16,25(1,3)- tribenzenabicyclo[9.9.9]nonacosaphane]dicopper(II) triperchlorate acetonitrile solvate top
Crystal data top
[Cu2(CHO3)(C36H55N8)](ClO4)3·C2H3NF(000) = 2336
Mr = 1126.37Dx = 1.627 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2245 reflections
a = 19.690 (4) Åθ = 4.8–24.0°
b = 8.862 (2) ŵ = 1.18 mm1
c = 26.828 (5) ÅT = 180 K
β = 100.721 (2)°Lath, green
V = 4599.6 (16) Å30.24 × 0.10 × 0.02 mm
Z = 4
Data collection top
Bruker Nonius X8APEX-II CCD area-detector
diffractometer
8362 independent reflections
Radiation source: fine-focus sealed tube5186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
thin–slice ω and φ scansθmax = 25.5°, θmin = 4.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2323
Tmin = 0.319, Tmax = 0.977k = 106
16940 measured reflectionsl = 3226
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0686P)2]
where P = (Fo2 + 2Fc2)/3
8362 reflections(Δ/σ)max = 0.001
613 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

12.4504 (0.0203) x - 1.9579 (0.0106) y + 16.4173 (0.0275) z = 3.6818 (0.0064)

* 0.0000 (0.0000) N2 * 0.0000 (0.0000) N3 * 0.0000 (0.0000) N4 0.2306 (0.0019) Cu1

Rms deviation of fitted atoms = 0.0000

5.8803 (0.0256) x + 8.3060 (0.0047) y - 6.2322 (0.0352) z = 3.8216 (0.0144)

Angle to previous plane (with approximate e.s.d.) = 81.27 (0.10)

* -0.3190 (0.0020) N5 * 0.2995 (0.0019) N6 * 0.2895 (0.0018) N7 * -0.2700 (0.0017) O3 - 0.2827 (0.0018) Cu2

Rms deviation of fitted atoms = 0.2950

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.29017 (2)0.27965 (6)0.051599 (19)0.02501 (16)
Cu20.53303 (2)0.21943 (6)0.227530 (18)0.02325 (15)
N10.20900 (17)0.3265 (4)0.00633 (13)0.0272 (9)
N20.34657 (17)0.2473 (4)0.00907 (13)0.0275 (9)
H2C0.36960.33710.01260.033*
N30.26675 (17)0.4895 (4)0.08035 (13)0.0259 (8)
H3C0.30850.53880.09150.031*
N40.23184 (16)0.0751 (4)0.05740 (13)0.0283 (9)
H4A0.24420.00560.03470.034*
N50.61463 (17)0.2021 (4)0.28730 (13)0.0268 (9)
N60.60866 (16)0.2030 (4)0.18355 (13)0.0263 (8)
H6B0.60980.29720.16850.032*
N70.48957 (17)0.3559 (4)0.27654 (12)0.0226 (8)
H7B0.46940.29250.29730.027*
N80.51275 (17)0.0192 (4)0.25014 (13)0.0265 (8)
H8A0.53340.08280.22980.032*
C10.2380 (2)0.3465 (6)0.05358 (16)0.0362 (12)
H1A0.25830.44860.05400.043*
H1B0.20070.33640.08370.043*
C20.2929 (2)0.2288 (6)0.05545 (16)0.0374 (12)
H2A0.27260.12640.05650.045*
H2B0.31340.24290.08610.045*
C30.3985 (2)0.1236 (5)0.00546 (17)0.0328 (11)
H3A0.40110.08760.04000.039*
H3B0.38350.03800.01360.039*
C40.4695 (2)0.1750 (5)0.02077 (16)0.0275 (11)
C50.5043 (2)0.2841 (6)0.00168 (17)0.0334 (11)
H5A0.48380.32550.03360.040*
C60.5688 (2)0.3327 (6)0.02246 (17)0.0344 (12)
H6A0.59220.40840.00710.041*
C70.5995 (2)0.2722 (5)0.06878 (17)0.0308 (11)
H7A0.64380.30610.08510.037*
C80.5652 (2)0.1616 (5)0.09137 (16)0.0266 (10)
C90.5004 (2)0.1141 (5)0.06697 (16)0.0261 (10)
H9A0.47680.03850.08220.031*
C100.5988 (2)0.0921 (5)0.14057 (16)0.0314 (11)
H10A0.64430.05070.13700.038*
H10B0.56990.00730.14860.038*
C110.6783 (2)0.1848 (6)0.21720 (17)0.0359 (12)
H11A0.71430.23320.20130.043*
H11B0.68970.07630.22200.043*
C120.6762 (2)0.2578 (6)0.26778 (17)0.0335 (12)
H12A0.71890.23290.29220.040*
H12B0.67370.36890.26380.040*
C130.1759 (2)0.4706 (5)0.00599 (18)0.0337 (11)
H13A0.15300.52100.02560.040*
H13B0.14060.44930.02690.040*
C140.2311 (2)0.5706 (5)0.03451 (16)0.0321 (11)
H14A0.26470.59730.01270.039*
H14B0.21030.66500.04450.039*
C150.2266 (2)0.4991 (6)0.12225 (16)0.0334 (11)
H15A0.18210.44570.11180.040*
H15B0.21620.60630.12800.040*
C160.2641 (2)0.4323 (5)0.17125 (16)0.0269 (10)
C170.2316 (2)0.3299 (6)0.19773 (18)0.0332 (11)
H17A0.18570.29810.18440.040*
C180.2657 (2)0.2739 (6)0.24361 (19)0.0378 (12)
H18A0.24290.20420.26180.045*
C190.3327 (2)0.3181 (5)0.26334 (17)0.0337 (12)
H19A0.35550.27850.29500.040*
C200.3667 (2)0.4195 (5)0.23735 (15)0.0240 (10)
C210.33109 (19)0.4778 (5)0.19178 (15)0.0237 (10)
H21A0.35310.55070.17420.028*
C220.4382 (2)0.4756 (5)0.25745 (16)0.0269 (10)
H22A0.45480.53190.23020.032*
H22B0.43620.54730.28540.032*
C230.5515 (2)0.4247 (5)0.30857 (15)0.0270 (10)
H23A0.53770.48210.33680.032*
H23B0.57400.49520.28810.032*
C240.6008 (2)0.3013 (5)0.32936 (16)0.0285 (11)
H24A0.64470.34590.34730.034*
H24B0.58090.24050.35410.034*
C250.1586 (2)0.1994 (5)0.01240 (17)0.0318 (11)
H25A0.17020.12610.03730.038*
H25B0.11150.23840.02530.038*
C260.1602 (2)0.1227 (5)0.03730 (17)0.0338 (11)
H26A0.14410.19270.06140.041*
H26B0.12930.03370.03270.041*
C270.2364 (2)0.0020 (6)0.10667 (17)0.0342 (11)
H27A0.20090.08220.10330.041*
H27B0.22630.07150.13210.041*
C280.3067 (2)0.0713 (5)0.12545 (16)0.0266 (10)
C290.3397 (2)0.1557 (5)0.09385 (17)0.0301 (11)
H29A0.31760.17320.05970.036*
C300.4050 (2)0.2151 (5)0.11157 (16)0.0295 (10)
H30A0.42770.27240.08960.035*
C310.4366 (2)0.1903 (5)0.16129 (16)0.0288 (11)
H31A0.48090.23270.17350.035*
C320.4052 (2)0.1050 (5)0.19334 (16)0.0253 (10)
C330.3398 (2)0.0469 (5)0.17505 (16)0.0280 (10)
H33A0.31720.01080.19700.034*
C340.4406 (2)0.0725 (6)0.24700 (16)0.0336 (11)
H34A0.41400.00540.26160.040*
H34B0.44090.16530.26760.040*
C350.5536 (2)0.0310 (5)0.30222 (16)0.0324 (11)
H35A0.55970.13840.31220.039*
H35B0.52900.02030.32640.039*
C360.6228 (2)0.0412 (5)0.30366 (17)0.0330 (11)
H36A0.65000.03580.33860.040*
H36B0.64830.01440.28100.040*
C370.4188 (2)0.2857 (6)0.13148 (18)0.0345 (11)
O10.43582 (16)0.4221 (4)0.11308 (12)0.0421 (9)
H10.47250.45420.13110.051*
O20.36435 (14)0.2276 (3)0.10716 (10)0.0265 (7)
O30.45657 (14)0.2315 (4)0.16947 (11)0.0354 (8)
Cl10.61258 (6)0.62957 (13)0.17221 (4)0.0338 (3)
O1A0.56061 (16)0.5227 (4)0.18270 (13)0.0437 (9)
O1B0.58808 (19)0.6973 (4)0.12405 (13)0.0569 (11)
O1C0.6221 (2)0.7443 (4)0.21059 (15)0.0614 (11)
O1D0.67583 (16)0.5502 (4)0.17237 (15)0.0548 (10)
Cl20.79585 (6)0.17227 (15)0.09276 (5)0.0429 (3)
O2A0.8661 (2)0.1466 (9)0.1035 (3)0.158 (3)
O2B0.7664 (2)0.0698 (5)0.12314 (15)0.0713 (12)
O2C0.7673 (3)0.1472 (5)0.04070 (15)0.0830 (14)
O2D0.7788 (3)0.3188 (5)0.1048 (2)0.118 (2)
Cl30.45995 (6)0.21127 (16)0.41217 (4)0.0390 (3)
O3A0.43582 (19)0.1711 (5)0.36017 (13)0.0659 (12)
O3B0.4050 (2)0.2112 (7)0.43867 (15)0.0942 (18)
O3C0.5109 (2)0.1071 (5)0.43351 (17)0.0931 (17)
O3D0.4919 (2)0.3542 (5)0.41699 (18)0.0860 (14)
N1S0.0634 (2)0.2256 (6)0.13863 (18)0.0577 (13)
C1S0.0288 (2)0.2294 (6)0.1001 (2)0.0420 (13)
C2S0.0136 (3)0.2325 (7)0.0497 (2)0.0579 (17)
H2S10.00220.31370.02980.087*
H2S20.06200.25010.05230.087*
H2S30.00970.13550.03290.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0223 (3)0.0258 (3)0.0253 (3)0.0021 (2)0.0002 (2)0.0031 (2)
Cu20.0232 (3)0.0232 (3)0.0224 (3)0.0022 (2)0.0018 (2)0.0004 (2)
N10.0254 (19)0.030 (2)0.0245 (19)0.0030 (16)0.0009 (15)0.0033 (17)
N20.0280 (19)0.026 (2)0.029 (2)0.0006 (16)0.0080 (16)0.0078 (17)
N30.0274 (19)0.021 (2)0.029 (2)0.0012 (16)0.0042 (15)0.0029 (17)
N40.0245 (18)0.027 (2)0.032 (2)0.0020 (16)0.0038 (15)0.0024 (18)
N50.0253 (18)0.025 (2)0.0274 (19)0.0013 (16)0.0016 (15)0.0007 (17)
N60.0235 (18)0.026 (2)0.029 (2)0.0046 (16)0.0064 (15)0.0004 (17)
N70.0289 (18)0.018 (2)0.0205 (18)0.0007 (15)0.0035 (14)0.0028 (16)
N80.034 (2)0.019 (2)0.025 (2)0.0005 (16)0.0026 (16)0.0001 (16)
C10.036 (3)0.046 (3)0.026 (2)0.003 (2)0.001 (2)0.002 (2)
C20.034 (3)0.055 (4)0.024 (2)0.002 (2)0.005 (2)0.005 (2)
C30.033 (2)0.028 (3)0.037 (3)0.005 (2)0.006 (2)0.011 (2)
C40.027 (2)0.028 (3)0.029 (2)0.0036 (19)0.0078 (19)0.013 (2)
C50.037 (3)0.038 (3)0.027 (2)0.005 (2)0.012 (2)0.001 (2)
C60.037 (3)0.034 (3)0.036 (3)0.006 (2)0.017 (2)0.002 (2)
C70.029 (2)0.027 (3)0.037 (3)0.004 (2)0.008 (2)0.007 (2)
C80.032 (2)0.021 (3)0.028 (2)0.005 (2)0.0086 (19)0.007 (2)
C90.031 (2)0.019 (3)0.033 (3)0.0033 (19)0.017 (2)0.005 (2)
C100.038 (3)0.025 (3)0.031 (3)0.009 (2)0.008 (2)0.003 (2)
C110.024 (2)0.045 (4)0.037 (3)0.005 (2)0.003 (2)0.003 (2)
C120.021 (2)0.042 (3)0.036 (3)0.001 (2)0.0003 (19)0.001 (2)
C130.028 (2)0.032 (3)0.038 (3)0.006 (2)0.000 (2)0.000 (2)
C140.032 (2)0.030 (3)0.033 (3)0.007 (2)0.003 (2)0.006 (2)
C150.030 (2)0.035 (3)0.035 (3)0.004 (2)0.005 (2)0.006 (2)
C160.025 (2)0.028 (3)0.028 (2)0.0081 (19)0.0058 (18)0.006 (2)
C170.021 (2)0.037 (3)0.043 (3)0.001 (2)0.011 (2)0.004 (2)
C180.037 (3)0.039 (3)0.041 (3)0.003 (2)0.017 (2)0.008 (2)
C190.037 (3)0.036 (3)0.028 (2)0.005 (2)0.006 (2)0.005 (2)
C200.026 (2)0.024 (3)0.024 (2)0.0045 (18)0.0078 (18)0.004 (2)
C210.023 (2)0.023 (3)0.028 (2)0.0014 (18)0.0103 (18)0.004 (2)
C220.032 (2)0.023 (3)0.025 (2)0.0040 (19)0.0051 (19)0.003 (2)
C230.031 (2)0.026 (3)0.023 (2)0.0011 (19)0.0029 (18)0.005 (2)
C240.034 (2)0.028 (3)0.020 (2)0.000 (2)0.0046 (18)0.005 (2)
C250.023 (2)0.034 (3)0.036 (3)0.005 (2)0.0035 (19)0.010 (2)
C260.023 (2)0.031 (3)0.046 (3)0.002 (2)0.004 (2)0.005 (2)
C270.029 (2)0.037 (3)0.036 (3)0.001 (2)0.007 (2)0.002 (2)
C280.028 (2)0.019 (3)0.034 (3)0.0073 (19)0.0098 (19)0.001 (2)
C290.037 (3)0.025 (3)0.027 (2)0.010 (2)0.001 (2)0.001 (2)
C300.041 (3)0.020 (3)0.030 (2)0.002 (2)0.015 (2)0.007 (2)
C310.033 (2)0.020 (3)0.034 (3)0.0000 (19)0.006 (2)0.001 (2)
C320.031 (2)0.018 (3)0.028 (2)0.0065 (19)0.0078 (19)0.000 (2)
C330.032 (2)0.023 (3)0.032 (3)0.005 (2)0.0135 (19)0.000 (2)
C340.036 (3)0.034 (3)0.031 (3)0.006 (2)0.007 (2)0.003 (2)
C350.047 (3)0.019 (3)0.029 (3)0.000 (2)0.001 (2)0.008 (2)
C360.042 (3)0.022 (3)0.030 (3)0.007 (2)0.006 (2)0.000 (2)
C370.038 (3)0.027 (3)0.041 (3)0.007 (2)0.013 (2)0.000 (2)
O10.0435 (19)0.031 (2)0.052 (2)0.0041 (16)0.0103 (16)0.0004 (17)
O20.0198 (14)0.0296 (19)0.0277 (16)0.0006 (13)0.0014 (12)0.0029 (14)
O30.0290 (16)0.052 (2)0.0232 (17)0.0126 (15)0.0007 (13)0.0001 (16)
Cl10.0342 (6)0.0262 (7)0.0418 (7)0.0002 (5)0.0093 (5)0.0002 (6)
O1A0.0425 (19)0.031 (2)0.062 (2)0.0001 (15)0.0214 (17)0.0116 (18)
O1B0.062 (2)0.067 (3)0.042 (2)0.001 (2)0.0093 (18)0.023 (2)
O1C0.069 (3)0.047 (3)0.064 (3)0.002 (2)0.000 (2)0.022 (2)
O1D0.0333 (18)0.048 (3)0.083 (3)0.0060 (17)0.0085 (18)0.003 (2)
Cl20.0365 (7)0.0338 (8)0.0586 (8)0.0039 (5)0.0095 (6)0.0065 (6)
O2A0.039 (3)0.251 (8)0.190 (6)0.044 (4)0.040 (3)0.124 (6)
O2B0.085 (3)0.079 (3)0.056 (2)0.027 (2)0.028 (2)0.004 (2)
O2C0.155 (4)0.050 (3)0.044 (2)0.021 (3)0.019 (3)0.008 (2)
O2D0.173 (5)0.029 (3)0.122 (4)0.020 (3)0.052 (4)0.023 (3)
Cl30.0349 (6)0.0486 (9)0.0333 (6)0.0048 (6)0.0057 (5)0.0077 (6)
O3A0.062 (2)0.103 (4)0.030 (2)0.003 (2)0.0010 (18)0.009 (2)
O3B0.053 (3)0.181 (6)0.055 (3)0.048 (3)0.025 (2)0.026 (3)
O3C0.104 (4)0.065 (3)0.086 (3)0.024 (3)0.045 (3)0.006 (3)
O3D0.104 (4)0.046 (3)0.111 (4)0.019 (3)0.030 (3)0.005 (3)
N1S0.058 (3)0.076 (4)0.039 (3)0.009 (3)0.009 (2)0.000 (3)
C1S0.036 (3)0.051 (4)0.044 (3)0.003 (2)0.020 (2)0.002 (3)
C2S0.045 (3)0.085 (5)0.042 (3)0.002 (3)0.005 (3)0.009 (3)
Geometric parameters (Å, º) top
Cu1—O21.938 (3)C15—H15B0.990
Cu1—N12.054 (3)C16—C171.381 (6)
Cu1—N32.097 (4)C16—C211.391 (5)
Cu1—N22.153 (3)C17—C181.380 (6)
Cu1—N42.167 (4)C17—H17A0.950
Cu2—O31.957 (3)C18—C191.384 (6)
Cu2—N52.054 (3)C18—H18A0.950
Cu2—N62.070 (3)C19—C201.385 (6)
Cu2—N72.084 (3)C19—H19A0.950
Cu2—N82.256 (4)C20—C211.391 (5)
N1—C251.490 (5)C20—C221.495 (5)
N1—C11.495 (5)C21—H21A0.950
N1—C131.498 (6)C22—H22A0.990
N2—C21.484 (5)C22—H22B0.990
N2—C31.490 (5)C23—C241.500 (6)
N2—H2C0.930C23—H23A0.990
N3—C141.483 (5)C23—H23B0.990
N3—C151.492 (5)C24—H24A0.990
N3—H3C0.930C24—H24B0.990
N4—C261.475 (5)C25—C261.492 (6)
N4—C271.475 (5)C25—H25A0.990
N4—H4A0.930C25—H25B0.990
N5—C121.492 (5)C26—H26A0.990
N5—C361.492 (6)C26—H26B0.990
N5—C241.495 (5)C27—C281.513 (6)
N6—C101.500 (5)C27—H27A0.990
N6—C111.504 (5)C27—H27B0.990
N6—H6B0.930C28—C291.380 (6)
N7—C231.485 (5)C28—C331.385 (6)
N7—C221.489 (5)C29—C301.388 (6)
N7—H7B0.930C29—H29A0.950
N8—C351.481 (5)C30—C311.381 (6)
N8—C341.484 (5)C30—H30A0.950
N8—H8A0.930C31—C321.376 (6)
C1—C21.510 (7)C31—H31A0.950
C1—H1A0.990C32—C331.389 (6)
C1—H1B0.990C32—C341.506 (6)
C2—H2A0.990C33—H33A0.950
C2—H2B0.990C34—H34A0.990
C3—C41.513 (6)C34—H34B0.990
C3—H3A0.990C35—C361.499 (6)
C3—H3B0.990C35—H35A0.990
C4—C91.385 (6)C35—H35B0.990
C4—C51.386 (6)C36—H36A0.990
C5—C61.383 (6)C36—H36B0.990
C5—H5A0.950C37—O31.241 (5)
C6—C71.385 (6)C37—O21.257 (5)
C6—H6A0.950C37—O11.370 (6)
C7—C81.392 (6)O1—H10.840
C7—H7A0.950Cl1—O1B1.425 (3)
C8—C91.386 (6)Cl1—O1D1.429 (3)
C8—C101.495 (6)Cl1—O1C1.434 (4)
C9—H9A0.950Cl1—O1A1.459 (3)
C10—H10A0.990Cl2—O2A1.378 (4)
C10—H10B0.990Cl2—O2D1.394 (5)
C11—C121.511 (6)Cl2—O2B1.414 (4)
C11—H11A0.990Cl2—O2C1.423 (4)
C11—H11B0.990Cl3—O3B1.400 (4)
C12—H12A0.990Cl3—O3C1.404 (4)
C12—H12B0.990Cl3—O3D1.410 (4)
C13—C141.497 (6)Cl3—O3A1.433 (4)
C13—H13A0.990N1S—C1S1.127 (6)
C13—H13B0.990C1S—C2S1.452 (7)
C14—H14A0.990C2S—H2S10.980
C14—H14B0.990C2S—H2S20.980
C15—C161.504 (6)C2S—H2S30.980
C15—H15A0.990
O2—Cu1—N1177.34 (14)N3—C14—H14B109.9
O2—Cu1—N396.54 (13)C13—C14—H14B109.9
N1—Cu1—N384.59 (14)H14A—C14—H14B108.3
O2—Cu1—N297.41 (12)N3—C15—C16113.2 (3)
N1—Cu1—N283.86 (13)N3—C15—H15A108.9
N3—Cu1—N2125.14 (14)C16—C15—H15A108.9
O2—Cu1—N494.56 (12)N3—C15—H15B108.9
N1—Cu1—N482.82 (13)C16—C15—H15B108.9
N3—Cu1—N4124.02 (14)H15A—C15—H15B107.8
N2—Cu1—N4107.32 (14)C17—C16—C21118.9 (4)
O3—Cu2—N5178.32 (14)C17—C16—C15120.6 (4)
O3—Cu2—N694.51 (13)C21—C16—C15120.4 (4)
N5—Cu2—N684.18 (14)C18—C17—C16120.0 (4)
O3—Cu2—N797.17 (12)C18—C17—H17A120.0
N5—Cu2—N784.50 (13)C16—C17—H17A120.0
N6—Cu2—N7145.49 (14)C17—C18—C19120.7 (4)
O3—Cu2—N896.71 (13)C17—C18—H18A119.6
N5—Cu2—N882.65 (13)C19—C18—H18A119.6
N6—Cu2—N8105.63 (14)C18—C19—C20120.5 (4)
N7—Cu2—N8105.08 (13)C18—C19—H19A119.8
C25—N1—C1110.5 (3)C20—C19—H19A119.8
C25—N1—C13111.1 (3)C19—C20—C21118.1 (4)
C1—N1—C13109.6 (4)C19—C20—C22123.0 (4)
C25—N1—Cu1109.8 (3)C21—C20—C22118.7 (4)
C1—N1—Cu1107.4 (2)C20—C21—C16121.7 (4)
C13—N1—Cu1108.3 (2)C20—C21—H21A119.1
C2—N2—C3110.3 (3)C16—C21—H21A119.1
C2—N2—Cu1105.2 (2)N7—C22—C20114.9 (4)
C3—N2—Cu1119.6 (3)N7—C22—H22A108.5
C2—N2—H2C107.1C20—C22—H22A108.5
C3—N2—H2C107.1N7—C22—H22B108.5
Cu1—N2—H2C107.1C20—C22—H22B108.5
C14—N3—C15111.2 (3)H22A—C22—H22B107.5
C14—N3—Cu1103.1 (3)N7—C23—C24108.7 (4)
C15—N3—Cu1120.7 (3)N7—C23—H23A109.9
C14—N3—H3C107.0C24—C23—H23A109.9
C15—N3—H3C107.0N7—C23—H23B109.9
Cu1—N3—H3C107.0C24—C23—H23B109.9
C26—N4—C27110.8 (3)H23A—C23—H23B108.3
C26—N4—Cu1102.6 (3)N5—C24—C23110.1 (3)
C27—N4—Cu1120.4 (3)N5—C24—H24A109.6
C26—N4—H4A107.4C23—C24—H24A109.6
C27—N4—H4A107.4N5—C24—H24B109.6
Cu1—N4—H4A107.4C23—C24—H24B109.6
C12—N5—C36111.7 (3)H24A—C24—H24B108.1
C12—N5—C24110.2 (3)N1—C25—C26110.1 (3)
C36—N5—C24111.4 (3)N1—C25—H25A109.6
C12—N5—Cu2105.7 (3)C26—C25—H25A109.6
C36—N5—Cu2109.1 (3)N1—C25—H25B109.6
C24—N5—Cu2108.7 (2)C26—C25—H25B109.6
C10—N6—C11111.4 (3)H25A—C25—H25B108.2
C10—N6—Cu2118.7 (3)N4—C26—C25108.5 (4)
C11—N6—Cu2109.7 (3)N4—C26—H26A110.0
C10—N6—H6B105.3C25—C26—H26A110.0
C11—N6—H6B105.3N4—C26—H26B110.0
Cu2—N6—H6B105.3C25—C26—H26B110.0
C23—N7—C22109.8 (3)H26A—C26—H26B108.4
C23—N7—Cu2102.4 (2)N4—C27—C28112.7 (3)
C22—N7—Cu2121.9 (2)N4—C27—H27A109.0
C23—N7—H7B107.3C28—C27—H27A109.0
C22—N7—H7B107.3N4—C27—H27B109.0
Cu2—N7—H7B107.3C28—C27—H27B109.0
C35—N8—C34112.2 (3)H27A—C27—H27B107.8
C35—N8—Cu2103.2 (2)C29—C28—C33119.0 (4)
C34—N8—Cu2119.9 (3)C29—C28—C27121.4 (4)
C35—N8—H8A107.0C33—C28—C27119.6 (4)
C34—N8—H8A107.0C28—C29—C30120.4 (4)
Cu2—N8—H8A107.0C28—C29—H29A119.8
N1—C1—C2109.6 (4)C30—C29—H29A119.8
N1—C1—H1A109.8C31—C30—C29119.6 (4)
C2—C1—H1A109.8C31—C30—H30A120.2
N1—C1—H1B109.8C29—C30—H30A120.2
C2—C1—H1B109.8C32—C31—C30121.1 (4)
H1A—C1—H1B108.2C32—C31—H31A119.5
N2—C2—C1107.4 (4)C30—C31—H31A119.5
N2—C2—H2A110.2C31—C32—C33118.6 (4)
C1—C2—H2A110.2C31—C32—C34121.4 (4)
N2—C2—H2B110.2C33—C32—C34120.1 (4)
C1—C2—H2B110.2C28—C33—C32121.4 (4)
H2A—C2—H2B108.5C28—C33—H33A119.3
N2—C3—C4111.9 (4)C32—C33—H33A119.3
N2—C3—H3A109.2N8—C34—C32112.5 (3)
C4—C3—H3A109.2N8—C34—H34A109.1
N2—C3—H3B109.2C32—C34—H34A109.1
C4—C3—H3B109.2N8—C34—H34B109.1
H3A—C3—H3B107.9C32—C34—H34B109.1
C9—C4—C5119.4 (4)H34A—C34—H34B107.8
C9—C4—C3120.9 (4)N8—C35—C36109.0 (4)
C5—C4—C3119.7 (4)N8—C35—H35A109.9
C6—C5—C4119.9 (4)C36—C35—H35A109.9
C6—C5—H5A120.0N8—C35—H35B109.9
C4—C5—H5A120.0C36—C35—H35B109.9
C5—C6—C7120.6 (4)H35A—C35—H35B108.3
C5—C6—H6A119.7N5—C36—C35110.7 (3)
C7—C6—H6A119.7N5—C36—H36A109.5
C6—C7—C8119.8 (4)C35—C36—H36A109.5
C6—C7—H7A120.1N5—C36—H36B109.5
C8—C7—H7A120.1C35—C36—H36B109.5
C9—C8—C7119.1 (4)H36A—C36—H36B108.1
C9—C8—C10120.6 (4)O3—C37—O2126.2 (5)
C7—C8—C10120.2 (4)O3—C37—O1119.2 (4)
C4—C9—C8121.2 (4)O2—C37—O1114.6 (4)
C4—C9—H9A119.4C37—O1—H1109.5
C8—C9—H9A119.4C37—O2—Cu1138.6 (3)
C8—C10—N6112.5 (4)C37—O3—Cu2158.3 (3)
C8—C10—H10A109.1O1B—Cl1—O1D110.9 (2)
N6—C10—H10A109.1O1B—Cl1—O1C109.2 (2)
C8—C10—H10B109.1O1D—Cl1—O1C110.4 (2)
N6—C10—H10B109.1O1B—Cl1—O1A108.5 (2)
H10A—C10—H10B107.8O1D—Cl1—O1A108.8 (2)
N6—C11—C12108.6 (3)O1C—Cl1—O1A108.9 (2)
N6—C11—H11A110.0O2A—Cl2—O2D112.4 (4)
C12—C11—H11A110.0O2A—Cl2—O2B106.1 (3)
N6—C11—H11B110.0O2D—Cl2—O2B108.8 (4)
C12—C11—H11B110.0O2A—Cl2—O2C112.1 (4)
H11A—C11—H11B108.3O2D—Cl2—O2C107.8 (3)
N5—C12—C11109.5 (4)O2B—Cl2—O2C109.6 (3)
N5—C12—H12A109.8O3B—Cl3—O3C110.7 (3)
C11—C12—H12A109.8O3B—Cl3—O3D109.1 (3)
N5—C12—H12B109.8O3C—Cl3—O3D106.3 (3)
C11—C12—H12B109.8O3B—Cl3—O3A110.3 (2)
H12A—C12—H12B108.2O3C—Cl3—O3A108.4 (3)
C14—C13—N1108.3 (3)O3D—Cl3—O3A112.0 (3)
C14—C13—H13A110.0N1S—C1S—C2S177.9 (6)
N1—C13—H13A110.0C1S—C2S—H2S1109.5
C14—C13—H13B110.0C1S—C2S—H2S2109.5
N1—C13—H13B110.0H2S1—C2S—H2S2109.5
H13A—C13—H13B108.4C1S—C2S—H2S3109.4
N3—C14—C13108.8 (4)H2S1—C2S—H2S3109.5
N3—C14—H14A109.9H2S2—C2S—H2S3109.5
C13—C14—H14A109.9
N3—Cu1—N1—C25126.3 (3)C3—C4—C9—C8179.5 (4)
N2—Cu1—N1—C25107.4 (3)C7—C8—C9—C40.1 (6)
N4—Cu1—N1—C251.0 (3)C10—C8—C9—C4178.4 (4)
N3—Cu1—N1—C1113.5 (3)C9—C8—C10—N6115.6 (4)
N2—Cu1—N1—C112.7 (3)C7—C8—C10—N666.2 (5)
N4—Cu1—N1—C1121.1 (3)C11—N6—C10—C8138.0 (4)
N3—Cu1—N1—C134.8 (3)Cu2—N6—C10—C893.1 (4)
N2—Cu1—N1—C13131.1 (3)C10—N6—C11—C12160.8 (4)
N4—Cu1—N1—C13120.5 (3)Cu2—N6—C11—C1227.3 (4)
O2—Cu1—N2—C2160.4 (3)C36—N5—C12—C1170.8 (4)
N1—Cu1—N2—C217.2 (3)C24—N5—C12—C11164.9 (3)
N3—Cu1—N2—C296.2 (3)Cu2—N5—C12—C1147.7 (4)
N4—Cu1—N2—C263.3 (3)N6—C11—C12—N550.3 (5)
O2—Cu1—N2—C335.9 (3)C25—N1—C13—C14153.9 (4)
N1—Cu1—N2—C3141.7 (3)C1—N1—C13—C1483.7 (4)
N3—Cu1—N2—C3139.3 (3)Cu1—N1—C13—C1433.2 (4)
N4—Cu1—N2—C361.2 (3)C15—N3—C14—C1381.3 (4)
O2—Cu1—N3—C14158.4 (2)Cu1—N3—C14—C1349.5 (4)
N1—Cu1—N3—C1424.0 (3)N1—C13—C14—N357.0 (5)
N2—Cu1—N3—C1454.5 (3)C14—N3—C15—C16174.1 (4)
N4—Cu1—N3—C14101.6 (3)Cu1—N3—C15—C1665.0 (4)
O2—Cu1—N3—C1576.8 (3)N3—C15—C16—C17130.3 (4)
N1—Cu1—N3—C15100.8 (3)N3—C15—C16—C2152.7 (6)
N2—Cu1—N3—C15179.4 (3)C21—C16—C17—C180.4 (7)
N4—Cu1—N3—C1523.2 (3)C15—C16—C17—C18177.5 (4)
O2—Cu1—N4—C26152.7 (3)C16—C17—C18—C190.6 (7)
N1—Cu1—N4—C2626.8 (3)C17—C18—C19—C200.0 (7)
N3—Cu1—N4—C2651.6 (3)C18—C19—C20—C211.5 (7)
N2—Cu1—N4—C26108.1 (3)C18—C19—C20—C22177.9 (4)
O2—Cu1—N4—C2729.1 (3)C19—C20—C21—C162.6 (6)
N1—Cu1—N4—C27150.4 (3)C22—C20—C21—C16179.1 (4)
N3—Cu1—N4—C2772.0 (3)C17—C16—C21—C202.1 (6)
N2—Cu1—N4—C27128.3 (3)C15—C16—C21—C20179.2 (4)
N6—Cu2—N5—C1225.1 (3)C23—N7—C22—C20163.5 (3)
N7—Cu2—N5—C12122.3 (3)Cu2—N7—C22—C2077.0 (4)
N8—Cu2—N5—C12131.7 (3)C19—C20—C22—N748.5 (6)
N6—Cu2—N5—C3695.1 (3)C21—C20—C22—N7135.1 (4)
N7—Cu2—N5—C36117.5 (3)C22—N7—C23—C24177.3 (3)
N8—Cu2—N5—C3611.5 (3)Cu2—N7—C23—C2451.9 (4)
N6—Cu2—N5—C24143.3 (3)C12—N5—C24—C2391.4 (4)
N7—Cu2—N5—C244.1 (3)C36—N5—C24—C23144.1 (4)
N8—Cu2—N5—C24110.1 (3)Cu2—N5—C24—C2323.9 (4)
O3—Cu2—N6—C1048.1 (3)N7—C23—C24—N552.3 (5)
N5—Cu2—N6—C10130.9 (3)C1—N1—C25—C26147.7 (4)
N7—Cu2—N6—C10157.7 (3)C13—N1—C25—C2690.4 (4)
N8—Cu2—N6—C1050.2 (3)Cu1—N1—C25—C2629.4 (4)
O3—Cu2—N6—C11177.7 (3)C27—N4—C26—C25179.9 (4)
N5—Cu2—N6—C111.2 (3)Cu1—N4—C26—C2550.3 (4)
N7—Cu2—N6—C1172.6 (4)N1—C25—C26—N455.4 (5)
N8—Cu2—N6—C1179.5 (3)C26—N4—C27—C28172.3 (4)
O3—Cu2—N7—C23149.8 (2)Cu1—N4—C27—C2868.1 (4)
N5—Cu2—N7—C2330.3 (2)N4—C27—C28—C2946.3 (6)
N6—Cu2—N7—C2341.0 (4)N4—C27—C28—C33132.0 (4)
N8—Cu2—N7—C23111.2 (2)C33—C28—C29—C300.0 (6)
O3—Cu2—N7—C2226.9 (3)C27—C28—C29—C30178.4 (4)
N5—Cu2—N7—C22153.3 (3)C28—C29—C30—C310.5 (7)
N6—Cu2—N7—C2282.0 (4)C29—C30—C31—C321.3 (7)
N8—Cu2—N7—C22125.8 (3)C30—C31—C32—C331.5 (6)
O3—Cu2—N8—C35164.2 (3)C30—C31—C32—C34177.6 (4)
N5—Cu2—N8—C3517.3 (3)C29—C28—C33—C320.2 (6)
N6—Cu2—N8—C3599.2 (3)C27—C28—C33—C32178.2 (4)
N7—Cu2—N8—C3564.9 (3)C31—C32—C33—C281.0 (6)
O3—Cu2—N8—C3438.7 (3)C34—C32—C33—C28178.1 (4)
N5—Cu2—N8—C34142.9 (3)C35—N8—C34—C32162.9 (4)
N6—Cu2—N8—C34135.3 (3)Cu2—N8—C34—C3275.9 (4)
N7—Cu2—N8—C3460.6 (3)C31—C32—C34—N848.1 (6)
C25—N1—C1—C278.5 (4)C33—C32—C34—N8131.0 (4)
C13—N1—C1—C2158.7 (3)C34—N8—C35—C36173.4 (4)
Cu1—N1—C1—C241.3 (4)Cu2—N8—C35—C3643.0 (4)
C3—N2—C2—C1173.7 (4)C12—N5—C36—C35156.3 (4)
Cu1—N2—C2—C143.5 (4)C24—N5—C36—C3580.1 (4)
N1—C1—C2—N258.3 (5)Cu2—N5—C36—C3539.9 (4)
C2—N2—C3—C4149.0 (4)N8—C35—C36—N557.9 (5)
Cu1—N2—C3—C489.0 (4)O3—C37—O2—Cu1174.2 (3)
N2—C3—C4—C9114.9 (4)O1—C37—O2—Cu15.4 (7)
N2—C3—C4—C565.3 (5)N3—Cu1—O2—C3750.9 (4)
C9—C4—C5—C61.0 (7)N2—Cu1—O2—C3775.9 (4)
C3—C4—C5—C6179.2 (4)N4—Cu1—O2—C37176.0 (4)
C4—C5—C6—C70.7 (7)O2—C37—O3—Cu2175.6 (5)
C5—C6—C7—C80.1 (7)O1—C37—O3—Cu24.0 (11)
C6—C7—C8—C90.2 (6)N6—Cu2—O3—C3769.4 (8)
C6—C7—C8—C10178.1 (4)N7—Cu2—O3—C3778.1 (8)
C5—C4—C9—C80.7 (6)N8—Cu2—O3—C37175.7 (8)
 

Acknowledgements

JN thanks the Department of Chemistry at the University of Southern Denmark for hospitality and the Velux Foundation for funding during her stay in Odense. ADB and CJM are grateful to the Danish Natural Science Research Council (SNF) and Carlsbergfondet (Denmark) for provision of the X-ray equipment. JN also acknowledges the assistance of a Leverhulme Emeritus Fellowship during the preparation of this manuscript.

References

First citationBond, A. D., Derossi, S., Harding, C. J., McInnes, E. J. L., McKee, V., McKenzie, C. J., Nelson, J. & Wolowska, J. (2005). Dalton Trans. In the press.  Google Scholar
First citationBruker (2003). SAINT. Version 7.06a. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2004). APEX2. Version 1.0-22. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationDussart, Y., Harding, C. J., Dalgaard, P., McKenzie, C. J., Kadirvelraj, R., McKee, V. & Nelson, J. (2002). J. Chem. Soc. Dalton Trans. pp. 1704–1713.  Web of Science CSD CrossRef Google Scholar
First citationHarding, C. J., Lu, Q., Malone, J. F., Marrs, D. J., Martin, N., McKee, V. & Nelson, J. (1995). J. Chem. Soc. Dalton Trans. pp. 1739–1747.  CSD CrossRef Web of Science Google Scholar
First citationHarding, C. J., Mabbs, F. E., McInnes, E. J. L., McKee, V. & Nelson, J. (1996). J. Chem. Soc. Dalton Trans. pp. 3227–3230.  CSD CrossRef Web of Science Google Scholar
First citationPierre, J.-L., Chautemps, P., Refaif, S., Beguin, C., Marzouki, A. E., Serratrice, G., Saint-Aman, E. & Rey, P. (1995). J. Am. Chem. Soc. 117, 1965–1973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds