metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

μ2-Aqua-bis­­(μ2-tri­fluoro­aceto-κ2O,O′)bis­­[bis­­(pyridine-κN)(tri­fluoro­acetato-κO)cobalt(II)]

CROSSMARK_Color_square_no_text.svg

aUniversity Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England, and bSynchrotron Radiation Department, CCLRC Daresbury Laboratories, Warrington, Cheshire WA4 4AD, England
*Correspondence e-mail: jb442@cam.ac.uk

(Received 17 June 2005; accepted 21 June 2005; online 30 June 2005)

The title complex, [Co2(C2F3O2)4(C5H5N)4(H2O)], crystallizes as a neutral dinuclear mol­ecule with two crystallographically distinct octa­hedrally coordinated CoII ions in the asymmetric unit. The metal ions are connected by two μ2-bridging trifluoro­acetate ions and a single μ2-bridging water mol­ecule. Each cobalt(II) coordination sphere is completed by a further trifluoroacetate ion, which coordinates in a monodentate manner, and also by two pyridine mol­ecules, resulting in local cis-CoN2O4 coordination. The water mol­ecule H atoms participate in intra­molecular O—H⋯O hydrogen bonds to the pendant O atoms of the monodentate trifluoro­acetate ligands.

Comment

Complexes of divalent transition metals with mixed N-donor and acetate-related ligands have been studied widely due to their close structural analogy with reduced non-heme iron(II) proteins (Hagen et al., 1993[Hagen, K. S, Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321-1324.]). During the course of investigations into possible complexes formed by cobalt(II), pyridine and acetate derivatives, the title compound, (I)[link] (Fig. 1[link]), was isolated. The red crystals consist of neutral dinuclear cobalt(II) mol­ecules in which each cobalt ion is coordinated (Table 1[link]) by two pyridine N atoms and one monodentate trifluoro­acetate ion. Two further trifluoro­acetate ions bridge the metal nuclei in a μ2-manner, and the coordination shell is completed by a single μ2-bridging water mol­ecule. The water mol­ecule H atoms make intra­molecular hydrogen bonds (Table 2[link]) to the uncoordinated O atoms of the non-bridging trifluoro­acetate ions.

[Scheme 1]

The overall mol­ecular architecture of (I)[link] is similar to that of related compounds (Corkery & Hockless, 1997[Corkery, R. W. & Hockless, D. C. R. (1997). Acta Cryst. C53, 840-843.]; Turpeinen et al., 1987[Turpeinen, U., Hamalainen, R. & Reedijk, J. (1987). Polyhedron, 6, 1603-1610.]; Hagen et al., 1993[Hagen, K. S, Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321-1324.]). The Co1—OW and Co2—OW distances of 2.190 (3) and 2.196 (3) Å, respectively, are the same within experimental uncertainty. The Co—N distances for the pyridine molecules (weak π acceptors) trans to the water O atom (π neutral) are significantly shorter than those trans to the fluoro­acetate O atoms (weak π donor) as a result of the well known trans influence [for example, Co1—N4 = 2.139 (4) Å versus Co1—N6 = 2.128 (4) Å]. The Co1—OW—Co2 angle is 116.86 (15)°, which is well within the expected range of values (e.g. Corkery & Hockless, 1997[Corkery, R. W. & Hockless, D. C. R. (1997). Acta Cryst. C53, 840-843.]; Turpeinen et al., 1997[Turpeinen, U., Hamalainen, R. & Reedijk, J. (1987). Polyhedron, 6, 1603-1610.]; Hagen et al., 1993[Hagen, K. S, Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321-1324.]). There is no evidence of inter­molecular hydrogen bonding or any other directional forces between the individual mol­ecules. In terms of crystal packing, the mol­ecules are arranged in layers in the ab plane (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing 50% displacement ellipsoids for the non-H atoms. The minor disorder components are indicated by dashed C—F bonds.
[Figure 2]
Figure 2
Packing diagrams for (I)[link], showing the layered arrangement of mol­ecules (left) and the plan of the layers (right).

Experimental

CoCl2·4H2O (0.502 g) was mixed with Na2CO3 (0.154 g) and distilled water (approximately 10 ml) was added with stirring. Following this, trifluoro­acetic acid (1 ml) was added dropwise. Pyridine (approximately 1 ml) was added and the mixture was reduced to dryness at 343 K on a rotary evaporator. Further pyridine (5 ml) was added and a pink precipitate was formed by addition of hexa­ne (30 ml). The precipitate was dissolved in chloro­form and mixed crystals (blue and red) were grown by vapour transport of diethyl ether. The blue crystals were shown to be pyridinium trichloro­pyridine­cobalt(II) (Hahn et al., 1997[Hahn, F. E., Scharn, D. & Lugger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.]) by X-ray single-crystal analysis and the red crystals the title compound, (I)[link].

Crystal data
  • [Co2(C2F3O2)4(C5H5N)4(H2O)]

  • Mr = 903.86

  • Triclinic, [P \overline 1]

  • a = 9.4211 (19) Å

  • b = 10.741 (2) Å

  • c = 19.185 (4) Å

  • α = 78.17 (3)°

  • β = 79.00 (3)°

  • γ = 76.00 (3)°

  • V = 1823.2 (6) Å3

  • Z = 2

  • Dx = 1.647 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 13594 reflections

  • θ = 1–27.5°

  • μ = 1.02 mm−1

  • T = 180 (2) K

  • Block, red

  • 0.28 × 0.10 × 0.10 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Thin–slice ω and φ scans

  • Absorption correction: multi-scan(SORTAV; Blessing 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.775, Tmax = 0.890

  • 19699 measured reflections

  • 8305 independent reflections

  • 6603 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 27.5°

  • h = −12 → 12

  • k = −13 → 13

  • l = −20 → 24

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.240

  • S = 1.05

  • 8305 reflections

  • 483 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.128P)2 + 5.9158P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.007

  • Δρmax = 1.69 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Co1—OW 2.190 (3)
Co1—O2A 2.070 (4)
Co1—O8A 2.092 (4)
Co1—O3B 2.098 (4)
Co1—N6 2.128 (4)
Co1—N4 2.139 (4)
Co2—OW 2.196 (3)
Co2—O1A 2.095 (4)
Co2—O3A 2.074 (4)
Co2—O2B 2.095 (4)
Co2—N5 2.124 (4)
Co2—N7 2.138 (4)
Co1—OW—Co2 116.86 (15)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
OW—H1⋯O8B 0.96 (5) 1.67 (5) 2.616 (5) 165 (5)
OW—H2⋯O1B 0.96 (5) 1.68 (5) 2.610 (5) 161 (4)

Difference maps indicated that the F atoms attached to C2B and C8B were disordered over two sets of positions. Refined occupancies (sum constrained to unity) of 0.667 (6):0.333 (6) and 0.601 (6):0.399 (6) resulted for the major and minor components of C2B and C8B, respectively. The disordered F atoms were modelled with isotropic displacement parameters. The F atoms around C1B and C3B may also be slightly disordered but this was not resolved in the present data. The water mol­ecule H atoms were located in a difference map and refined with distance restraints (O—H = 0.96 Å). Pyridine H atoms were placed in idealized locations (C—H = 0.93 Å) and refined as riding with the constraint Uiso(H) = 1.2Ueq(carrier) applied. The higest peak and depest hole in are located 1.51 Å from atom F1C and 0.49 Å from F2A, respectively.

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: program (ref, date)?; software used to prepare material for publication: SHELXL97.

µ2-Aqua-bis(µ2-trifluoroaceto-κ2O,O')bis[(trifluoroacetato- κO)bis(pyridine-κN)cobalt(II)] top
Crystal data top
[Co2(C2F3O2)4(C5H5N)4(H2O)]Z = 2
Mr = 903.86F(000) = 904
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4211 (19) ÅCell parameters from 13594 reflections
b = 10.741 (2) Åθ = 1–27.5°
c = 19.185 (4) ŵ = 1.03 mm1
α = 78.17 (3)°T = 180 K
β = 79.00 (3)°Block, red
γ = 76.00 (3)°0.28 × 0.10 × 0.10 mm
V = 1823.2 (6) Å3
Data collection top
Nonius KappaCCD
diffractometer
8305 independent reflections
Radiation source: fine-focus sealed tube6603 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Thin–slice ω and φ scansθmax = 27.5°, θmin = 1.1°
Absorption correction: multi-scan
(SORTAV; Blessing 1995)
h = 1212
Tmin = 0.775, Tmax = 0.890k = 1313
19699 measured reflectionsl = 2024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.240H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.128P)2 + 5.9158P]
where P = (Fo2 + 2Fc2)/3
8305 reflections(Δ/σ)max = 0.007
483 parametersΔρmax = 1.69 e Å3
16 restraintsΔρmin = 1.14 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
OW0.8111 (4)0.5602 (3)0.80300 (17)0.0325 (7)
H10.875 (5)0.495 (4)0.832 (3)0.049*
H20.731 (5)0.602 (4)0.835 (3)0.049*
Co10.75575 (7)0.43208 (6)0.74168 (3)0.03078 (19)
O1A0.7439 (4)0.8520 (4)0.8004 (2)0.0432 (8)
O1B0.6169 (4)0.7176 (4)0.8787 (2)0.0449 (9)
C1A0.6472 (6)0.8250 (5)0.8512 (3)0.0376 (10)
F1A0.4503 (6)0.9173 (5)0.9354 (3)0.108 (2)
F1C0.6181 (9)1.0246 (8)0.8887 (6)0.182 (5)
C1B0.5541 (10)0.9408 (7)0.8851 (5)0.081 (3)
F1B0.4701 (11)1.0206 (8)0.8345 (5)0.191 (5)
Co20.90291 (7)0.72589 (6)0.74067 (3)0.03106 (19)
O2A0.6358 (4)0.5935 (3)0.6830 (2)0.0441 (9)
O2B0.7542 (5)0.7579 (4)0.6672 (2)0.0480 (9)
C2A0.6589 (6)0.7035 (5)0.6582 (3)0.0359 (10)
C2B0.5493 (8)0.7866 (6)0.6081 (4)0.0609 (18)
F2A0.4625 (9)0.7260 (8)0.5897 (5)0.0837 (11)*0.667 (6)
F2B0.6149 (9)0.8563 (8)0.5503 (4)0.0837 (11)*0.667 (6)
F2C0.4552 (8)0.8798 (7)0.6448 (4)0.0837 (11)*0.667 (6)
F2D0.5610 (18)0.7183 (14)0.5521 (8)0.0837 (11)*0.333 (6)
F2E0.5702 (19)0.8963 (14)0.5738 (9)0.0837 (11)*0.333 (6)
F2F0.4173 (16)0.7542 (16)0.6202 (9)0.0837 (11)*0.333 (6)
O3B0.9538 (4)0.4397 (4)0.6707 (2)0.0486 (9)
O3A1.0612 (4)0.5987 (4)0.6834 (2)0.0435 (8)
C3A1.0552 (6)0.4995 (5)0.6616 (3)0.0351 (10)
F3B1.3030 (5)0.5039 (5)0.6050 (4)0.103 (2)
F3A1.2554 (6)0.3208 (5)0.6491 (4)0.122 (3)
C3B1.1984 (7)0.4383 (6)0.6168 (4)0.0582 (17)
F3C1.1738 (8)0.4187 (9)0.5557 (3)0.137 (3)
N40.5589 (5)0.4119 (4)0.8160 (2)0.0401 (9)
O8A0.8737 (4)0.2687 (3)0.8022 (2)0.0419 (8)
O8B0.9599 (5)0.3560 (4)0.8782 (2)0.0475 (9)
C8A0.9430 (6)0.2653 (5)0.8516 (3)0.0390 (11)
C8B1.0187 (10)0.1290 (7)0.8844 (4)0.077 (2)
C4A0.4348 (6)0.4159 (6)0.7909 (3)0.0486 (13)
H4A0.43320.43910.74050.058*
C4B0.3082 (7)0.3877 (7)0.8353 (4)0.0615 (17)
H4B0.22230.38980.81570.074*
C4E0.5572 (7)0.3835 (6)0.8873 (3)0.0507 (13)
H4E0.64400.38220.90600.061*
C4C0.3096 (8)0.3570 (8)0.9075 (5)0.071 (2)
H4C0.22460.33630.93910.085*
C4D0.4353 (8)0.3561 (8)0.9346 (4)0.0657 (18)
H4D0.43760.33680.98500.079*
N50.9907 (5)0.8835 (4)0.6762 (2)0.0359 (9)
C5A1.0482 (7)0.8827 (6)0.6064 (3)0.0495 (13)
H5A1.04420.81120.58530.059*
C5E0.9932 (6)0.9868 (5)0.7033 (3)0.0454 (12)
H5E0.95200.99020.75230.054*
C5B1.1123 (8)0.9795 (7)0.5641 (3)0.0597 (16)
H5B1.15480.97370.51560.072*
C5C1.1137 (8)1.0870 (7)0.5942 (4)0.0622 (16)*
C5D1.0530 (8)1.0900 (6)0.6637 (4)0.0597 (17)
H5D1.05131.16250.68530.072*
H5C1.15561.15510.56580.072*
N60.7082 (5)0.3138 (4)0.6763 (2)0.0361 (9)
C6A0.6750 (7)0.1987 (5)0.7047 (3)0.0457 (12)
H6A0.67880.16750.75450.055*
C6E0.7040 (8)0.3553 (6)0.6064 (3)0.0515 (14)
H6E0.73120.43580.58510.062*
C6B0.6350 (8)0.1223 (6)0.6646 (4)0.0558 (15)
H6B0.61410.03960.68630.067*
C6C0.6263 (9)0.1681 (7)0.5935 (4)0.0636 (18)
H6C0.59610.11880.56530.076*
C6D0.6613 (9)0.2861 (7)0.5629 (4)0.0653 (19)
H6D0.65660.31960.51340.078*
N71.0523 (5)0.7046 (4)0.8154 (2)0.0395 (9)
C7A1.0107 (7)0.6884 (6)0.8869 (3)0.0491 (13)
H7A0.91300.67710.90560.059*
C7E1.1934 (6)0.7171 (6)0.7901 (4)0.0492 (13)
H7E1.22600.72590.73970.059*
C7D1.2906 (7)0.7176 (8)0.8348 (5)0.0659 (19)
H7D1.38850.72750.81530.079*
C7B1.1037 (9)0.6876 (8)0.9345 (4)0.0683 (19)
H7B1.07080.67610.98490.082*
C7C1.2463 (9)0.7039 (8)0.9070 (5)0.072 (2)
H7C1.31240.70550.93840.086*
F8A1.0761 (11)0.1202 (10)0.9415 (5)0.0867 (12)*0.601 (6)
F8B0.9509 (11)0.0371 (8)0.8859 (5)0.0867 (12)*0.601 (6)
F8C1.1380 (10)0.0858 (9)0.8306 (5)0.0867 (12)*0.601 (6)
F8D0.9046 (14)0.0914 (13)0.9388 (7)0.0867 (12)*0.399 (6)
F8E1.0324 (16)0.0358 (12)0.8542 (7)0.0867 (12)*0.399 (6)
F8F1.1253 (15)0.1243 (15)0.9209 (8)0.0867 (12)*0.399 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
OW0.0359 (17)0.0322 (16)0.0318 (16)0.0106 (13)0.0049 (13)0.0069 (13)
Co10.0328 (3)0.0318 (3)0.0303 (3)0.0115 (2)0.0053 (2)0.0046 (2)
O1A0.042 (2)0.0395 (19)0.044 (2)0.0085 (15)0.0040 (16)0.0087 (15)
O1B0.041 (2)0.044 (2)0.050 (2)0.0133 (16)0.0034 (16)0.0105 (16)
C1A0.035 (2)0.043 (3)0.037 (2)0.009 (2)0.002 (2)0.012 (2)
F1A0.110 (4)0.076 (3)0.109 (4)0.014 (3)0.064 (3)0.032 (3)
F1C0.132 (6)0.155 (7)0.292 (11)0.070 (5)0.087 (7)0.176 (8)
C1B0.087 (6)0.048 (4)0.095 (6)0.020 (4)0.037 (5)0.026 (4)
F1B0.178 (8)0.113 (6)0.184 (8)0.073 (6)0.044 (7)0.003 (6)
Co20.0314 (3)0.0319 (3)0.0330 (3)0.0106 (2)0.0054 (2)0.0071 (2)
O2A0.050 (2)0.0360 (18)0.051 (2)0.0164 (16)0.0219 (18)0.0035 (15)
O2B0.054 (2)0.047 (2)0.053 (2)0.0246 (18)0.0252 (19)0.0020 (17)
C2A0.039 (3)0.038 (2)0.034 (2)0.010 (2)0.0078 (19)0.0083 (19)
C2B0.084 (5)0.048 (3)0.066 (4)0.036 (3)0.046 (4)0.014 (3)
O3B0.047 (2)0.053 (2)0.051 (2)0.0250 (18)0.0100 (17)0.0207 (18)
O3A0.0418 (19)0.0413 (19)0.052 (2)0.0151 (15)0.0032 (16)0.0197 (16)
C3A0.039 (2)0.032 (2)0.035 (2)0.0125 (19)0.0007 (19)0.0056 (18)
F3B0.067 (3)0.086 (3)0.158 (5)0.044 (3)0.055 (3)0.058 (3)
F3A0.071 (3)0.060 (3)0.198 (7)0.007 (2)0.032 (4)0.009 (3)
C3B0.053 (4)0.051 (3)0.072 (4)0.021 (3)0.016 (3)0.026 (3)
F3C0.117 (5)0.216 (8)0.094 (4)0.044 (5)0.039 (4)0.099 (5)
N40.034 (2)0.046 (2)0.042 (2)0.0141 (18)0.0018 (17)0.0067 (18)
O8A0.045 (2)0.0383 (18)0.044 (2)0.0053 (15)0.0149 (16)0.0056 (15)
O8B0.051 (2)0.042 (2)0.054 (2)0.0095 (17)0.0211 (18)0.0057 (17)
C8A0.035 (2)0.041 (3)0.039 (3)0.008 (2)0.007 (2)0.001 (2)
C8B0.107 (6)0.052 (4)0.082 (5)0.013 (4)0.055 (5)0.003 (3)
C4A0.038 (3)0.058 (3)0.053 (3)0.016 (2)0.005 (2)0.011 (3)
C4B0.036 (3)0.079 (5)0.075 (5)0.026 (3)0.001 (3)0.018 (4)
C4E0.051 (3)0.056 (3)0.040 (3)0.014 (3)0.001 (2)0.002 (2)
C4C0.050 (4)0.076 (5)0.082 (5)0.027 (3)0.021 (4)0.015 (4)
C4D0.059 (4)0.077 (5)0.051 (4)0.020 (3)0.013 (3)0.002 (3)
N50.038 (2)0.033 (2)0.039 (2)0.0112 (16)0.0059 (17)0.0057 (16)
C5A0.067 (4)0.045 (3)0.038 (3)0.018 (3)0.001 (3)0.010 (2)
C5E0.051 (3)0.042 (3)0.047 (3)0.019 (2)0.003 (2)0.015 (2)
C5B0.075 (4)0.058 (4)0.043 (3)0.022 (3)0.006 (3)0.007 (3)
C5D0.071 (4)0.041 (3)0.071 (4)0.027 (3)0.010 (3)0.019 (3)
N60.042 (2)0.036 (2)0.034 (2)0.0137 (17)0.0087 (17)0.0051 (16)
C6A0.060 (3)0.036 (3)0.045 (3)0.018 (2)0.011 (3)0.002 (2)
C6E0.078 (4)0.044 (3)0.039 (3)0.026 (3)0.010 (3)0.006 (2)
C6B0.068 (4)0.042 (3)0.067 (4)0.023 (3)0.014 (3)0.013 (3)
C6C0.085 (5)0.059 (4)0.063 (4)0.024 (3)0.022 (4)0.026 (3)
C6D0.101 (6)0.066 (4)0.041 (3)0.030 (4)0.019 (3)0.014 (3)
N70.034 (2)0.045 (2)0.042 (2)0.0100 (18)0.0127 (18)0.0066 (18)
C7A0.047 (3)0.062 (4)0.042 (3)0.013 (3)0.009 (2)0.014 (3)
C7E0.040 (3)0.056 (3)0.055 (3)0.016 (2)0.011 (2)0.006 (3)
C7D0.042 (3)0.078 (5)0.087 (5)0.023 (3)0.025 (3)0.010 (4)
C7B0.075 (5)0.086 (5)0.051 (4)0.009 (4)0.029 (3)0.020 (3)
C7C0.066 (4)0.082 (5)0.082 (5)0.015 (4)0.046 (4)0.015 (4)
Geometric parameters (Å, º) top
Co1—OW2.190 (3)C8B—F8D1.420 (13)
Co1—O2A2.070 (4)C8B—F8C1.430 (11)
Co1—O8A2.092 (4)C4A—C4B1.386 (8)
Co1—O3B2.098 (4)C4A—H4A0.9500
Co1—N62.128 (4)C4B—C4C1.358 (11)
Co1—N42.139 (4)C4B—H4B0.9500
Co2—OW2.196 (3)C4E—C4D1.373 (8)
Co2—O1A2.095 (4)C4E—H4E0.9500
Co2—O3A2.074 (4)C4C—C4D1.379 (11)
Co2—O2B2.095 (4)C4C—H4C0.9500
Co2—N52.124 (4)C4D—H4D0.9500
Co2—N72.138 (4)N5—C5E1.325 (7)
OW—H10.962 (10)N5—C5A1.346 (7)
OW—H20.961 (10)C5A—C5B1.369 (9)
O1A—C1A1.240 (6)C5A—H5A0.9500
O1B—C1A1.241 (6)C5E—C5D1.384 (8)
C1A—C1B1.526 (8)C5E—H5E0.9500
F1A—C1B1.270 (9)C5B—C5C1.395 (10)
F1C—C1B1.217 (10)C5B—H5B0.9500
C1B—F1B1.388 (14)C5C—C5D1.351 (10)
O2A—C2A1.235 (6)C5C—H5C0.9387
O2B—C2A1.238 (6)C5D—H5D0.9500
C2A—C2B1.538 (8)N6—C6E1.329 (7)
C2B—F2E1.267 (13)N6—C6A1.330 (7)
C2B—F2A1.295 (9)C6A—C6B1.388 (8)
C2B—F2F1.338 (13)C6A—H6A0.9500
C2B—F2B1.338 (9)C6E—C6D1.391 (8)
C2B—F2C1.381 (9)C6E—H6E0.9500
C2B—F2D1.392 (13)C6B—C6C1.362 (10)
F2D—F2F1.72 (2)C6B—H6B0.9500
O3B—C3A1.242 (6)C6C—C6D1.372 (10)
O3A—C3A1.239 (6)C6C—H6C0.9500
C3A—C3B1.533 (8)C6D—H6D0.9500
F3B—C3B1.306 (7)N7—C7A1.339 (7)
F3A—C3B1.320 (9)N7—C7E1.354 (7)
C3B—F3C1.303 (9)C7A—C7B1.377 (8)
N4—C4A1.335 (7)C7A—H7A0.9500
N4—C4E1.337 (7)C7E—C7D1.371 (9)
O8A—C8A1.239 (6)C7E—H7E0.9500
O8B—C8A1.243 (7)C7D—C7C1.355 (11)
C8A—C8B1.529 (9)C7D—H7D0.9500
C8B—F8E1.226 (12)C7B—C7C1.386 (12)
C8B—F8A1.287 (11)C7B—H7B0.9500
C8B—F8B1.293 (10)C7C—H7C0.9500
C8B—F8F1.315 (13)
Co1—OW—Co2116.86 (15)O8B—C8A—C8B115.5 (5)
Co1—OW—H198 (3)F8E—C8B—F8A122.6 (10)
Co2—OW—H1117 (3)F8E—C8B—F8B41.0 (7)
Co1—OW—H2116 (3)F8A—C8B—F8B114.4 (8)
Co2—OW—H2102 (3)F8E—C8B—F8F115.8 (11)
H1—OW—H2107 (5)F8A—C8B—F8F24.5 (7)
O2A—Co1—O8A179.02 (16)F8B—C8B—F8F127.1 (10)
O2A—Co1—O3B93.75 (17)F8E—C8B—F8D93.7 (10)
O8A—Co1—O3B87.23 (17)F8A—C8B—F8D79.2 (8)
O2A—Co1—N688.85 (15)F8B—C8B—F8D53.6 (7)
O8A—Co1—N691.20 (15)F8F—C8B—F8D103.2 (10)
O3B—Co1—N687.56 (16)F8E—C8B—F8C53.6 (8)
O2A—Co1—N489.42 (17)F8A—C8B—F8C106.4 (8)
O8A—Co1—N489.59 (17)F8B—C8B—F8C94.6 (7)
O3B—Co1—N4176.51 (17)F8F—C8B—F8C83.9 (9)
N6—Co1—N491.05 (17)F8D—C8B—F8C145.1 (8)
O2A—Co1—OW89.35 (14)F8E—C8B—C8A120.7 (8)
O8A—Co1—OW90.66 (13)F8A—C8B—C8A116.5 (7)
O3B—Co1—OW89.57 (14)F8B—C8B—C8A115.6 (7)
N6—Co1—OW176.51 (14)F8F—C8B—C8A115.5 (8)
N4—Co1—OW91.92 (15)F8D—C8B—C8A101.7 (8)
C1A—O1A—Co2128.6 (3)F8C—C8B—C8A105.8 (6)
O1B—C1A—O1A129.4 (5)N4—C4A—C4B122.8 (6)
O1B—C1A—C1B115.8 (5)N4—C4A—H4A118.6
O1A—C1A—C1B114.8 (5)C4B—C4A—H4A118.6
F1C—C1B—F1A118.0 (8)C4C—C4B—C4A118.7 (6)
F1C—C1B—F1B93.7 (9)C4C—C4B—H4B120.7
F1A—C1B—F1B99.2 (8)C4A—C4B—H4B120.7
F1C—C1B—C1A116.5 (7)N4—C4E—C4D122.8 (6)
F1A—C1B—C1A116.3 (6)N4—C4E—H4E118.6
F1B—C1B—C1A107.6 (8)C4D—C4E—H4E118.6
O3A—Co2—O1A178.90 (16)C4B—C4C—C4D119.4 (6)
O3A—Co2—O2B92.81 (17)C4B—C4C—H4C120.3
O1A—Co2—O2B88.01 (17)C4D—C4C—H4C120.3
O3A—Co2—N589.26 (16)C4E—C4D—C4C118.7 (7)
O1A—Co2—N591.51 (15)C4E—C4D—H4D120.6
O2B—Co2—N587.48 (16)C4C—C4D—H4D120.6
O3A—Co2—N789.36 (17)C5E—N5—C5A116.9 (5)
O1A—Co2—N789.85 (17)C5E—N5—Co2121.3 (4)
O2B—Co2—N7176.81 (16)C5A—N5—Co2121.9 (4)
N5—Co2—N790.22 (17)N5—C5A—C5B123.5 (5)
O3A—Co2—OW89.27 (14)N5—C5A—H5A118.3
O1A—Co2—OW89.99 (14)C5B—C5A—H5A118.3
O2B—Co2—OW90.54 (14)N5—C5E—C5D123.1 (5)
N5—Co2—OW177.47 (14)N5—C5E—H5E118.4
N7—Co2—OW91.82 (15)C5D—C5E—H5E118.4
C2A—O2A—Co1132.4 (3)C5A—C5B—C5C118.4 (6)
C2A—O2B—Co2136.1 (4)C5A—C5B—H5B120.8
O2A—C2A—O2B130.9 (5)C5C—C5B—H5B120.8
O2A—C2A—C2B114.1 (4)C5D—C5C—C5B118.5 (6)
O2B—C2A—C2B115.0 (4)C5D—C5C—H5C121.8
F2E—C2B—F2A122.0 (9)C5B—C5C—H5C119.7
F2E—C2B—F2F122.6 (11)C5C—C5D—C5E119.6 (6)
F2A—C2B—F2F32.1 (7)C5C—C5D—H5D120.2
F2E—C2B—F2B30.8 (7)C5E—C5D—H5D120.2
F2A—C2B—F2B111.0 (7)C6E—N6—C6A117.8 (5)
F2F—C2B—F2B130.4 (9)C6E—N6—Co1121.0 (3)
F2E—C2B—F2C73.1 (9)C6A—N6—Co1121.1 (4)
F2A—C2B—F2C104.6 (7)N6—C6A—C6B122.7 (5)
F2F—C2B—F2C74.8 (9)N6—C6A—H6A118.6
F2B—C2B—F2C103.7 (6)C6B—C6A—H6A118.6
F2E—C2B—F2D101.6 (11)N6—C6E—C6D122.9 (5)
F2A—C2B—F2D46.2 (7)N6—C6E—H6E118.6
F2F—C2B—F2D78.2 (10)C6D—C6E—H6E118.6
F2B—C2B—F2D75.4 (8)C6C—C6B—C6A118.7 (6)
F2C—C2B—F2D142.9 (9)C6C—C6B—H6B120.6
F2E—C2B—C2A119.8 (9)C6A—C6B—H6B120.6
F2A—C2B—C2A115.9 (6)C6B—C6C—C6D119.5 (6)
F2F—C2B—C2A114.7 (8)C6B—C6C—H6C120.2
F2B—C2B—C2A112.8 (6)C6D—C6C—H6C120.2
F2C—C2B—C2A107.7 (5)C6C—C6D—C6E118.3 (6)
F2D—C2B—C2A106.5 (8)C6C—C6D—H6D120.9
C2B—F2D—F2F49.5 (7)C6E—C6D—H6D120.9
C2B—F2F—F2D52.3 (7)C7A—N7—C7E117.6 (5)
C3A—O3B—Co1136.5 (3)C7A—N7—Co2123.1 (4)
C3A—O3A—Co2131.9 (3)C7E—N7—Co2119.1 (4)
O3A—C3A—O3B131.1 (5)N7—C7A—C7B122.8 (6)
O3A—C3A—C3B114.6 (5)N7—C7A—H7A118.6
O3B—C3A—C3B114.3 (4)C7B—C7A—H7A118.6
F3C—C3B—F3B109.6 (7)N7—C7E—C7D122.1 (6)
F3C—C3B—F3A103.9 (7)N7—C7E—H7E118.9
F3B—C3B—F3A105.8 (7)C7D—C7E—H7E118.9
F3C—C3B—C3A111.5 (6)C7C—C7D—C7E119.7 (7)
F3B—C3B—C3A114.2 (5)C7C—C7D—H7D120.1
F3A—C3B—C3A111.3 (6)C7E—C7D—H7D120.1
C4A—N4—C4E117.6 (5)C7A—C7B—C7C118.4 (7)
C4A—N4—Co1119.4 (4)C7A—C7B—H7B120.8
C4E—N4—Co1122.7 (4)C7C—C7B—H7B120.8
C8A—O8A—Co1128.1 (3)C7D—C7C—C7B119.3 (6)
O8A—C8A—O8B129.6 (5)C7D—C7C—H7C120.4
O8A—C8A—C8B114.9 (5)C7B—C7C—H7C120.4
Co2—OW—Co1—O2A51.18 (18)O8A—Co1—N4—C4E42.2 (5)
Co2—OW—Co1—O8A129.80 (18)N6—Co1—N4—C4E133.4 (5)
Co2—OW—Co1—O3B42.57 (19)OW—Co1—N4—C4E48.4 (5)
Co2—OW—Co1—N4140.58 (19)O3B—Co1—O8A—C8A88.9 (5)
Co2—O1A—C1A—O1B2.0 (9)N6—Co1—O8A—C8A176.4 (5)
Co2—O1A—C1A—C1B177.1 (5)N4—Co1—O8A—C8A92.5 (5)
O1B—C1A—C1B—F1C142.9 (10)OW—Co1—O8A—C8A0.6 (5)
O1A—C1A—C1B—F1C36.3 (13)Co1—O8A—C8A—O8B0.5 (9)
O1B—C1A—C1B—F1A3.5 (12)Co1—O8A—C8A—C8B179.4 (4)
O1A—C1A—C1B—F1A177.4 (8)O8A—C8A—C8B—F8E13.5 (13)
O1B—C1A—C1B—F1B113.5 (8)O8B—C8A—C8B—F8E166.5 (11)
O1A—C1A—C1B—F1B67.3 (9)O8A—C8A—C8B—F8A171.7 (8)
C1A—O1A—Co2—O2B92.7 (5)O8B—C8A—C8B—F8A8.3 (11)
C1A—O1A—Co2—N5179.9 (5)O8A—C8A—C8B—F8B33.0 (10)
C1A—O1A—Co2—N789.7 (5)O8B—C8A—C8B—F8B147.1 (8)
C1A—O1A—Co2—OW2.1 (5)O8A—C8A—C8B—F8F161.0 (9)
Co1—OW—Co2—O3A52.61 (18)O8B—C8A—C8B—F8F18.9 (12)
Co1—OW—Co2—O1A128.20 (18)O8A—C8A—C8B—F8D88.0 (8)
Co1—OW—Co2—O2B40.19 (19)O8B—C8A—C8B—F8D92.0 (8)
Co1—OW—Co2—N7141.95 (19)O8A—C8A—C8B—F8C70.2 (7)
O3B—Co1—O2A—C2A49.6 (5)O8B—C8A—C8B—F8C109.7 (6)
N6—Co1—O2A—C2A137.0 (5)C4E—N4—C4A—C4B2.3 (9)
N4—Co1—O2A—C2A131.9 (5)Co1—N4—C4A—C4B171.8 (5)
OW—Co1—O2A—C2A40.0 (5)N4—C4A—C4B—C4C1.2 (11)
O3A—Co2—O2B—C2A85.3 (6)C4A—N4—C4E—C4D1.4 (9)
O1A—Co2—O2B—C2A93.9 (6)Co1—N4—C4E—C4D172.4 (5)
N5—Co2—O2B—C2A174.5 (6)C4A—C4B—C4C—C4D0.7 (11)
OW—Co2—O2B—C2A4.0 (6)N4—C4E—C4D—C4C0.4 (11)
Co1—O2A—C2A—O2B9.2 (9)C4B—C4C—C4D—C4E1.5 (12)
Co1—O2A—C2A—C2B171.3 (4)O3A—Co2—N5—C5E145.3 (4)
Co2—O2B—C2A—O2A15.6 (10)O1A—Co2—N5—C5E33.9 (4)
Co2—O2B—C2A—C2B163.9 (5)O2B—Co2—N5—C5E121.9 (4)
O2A—C2A—C2B—F2E173.1 (11)N7—Co2—N5—C5E55.9 (4)
O2B—C2A—C2B—F2E7.3 (13)O3A—Co2—N5—C5A33.7 (5)
O2A—C2A—C2B—F2A10.0 (9)O1A—Co2—N5—C5A147.1 (5)
O2B—C2A—C2B—F2A170.5 (7)O2B—Co2—N5—C5A59.1 (5)
O2A—C2A—C2B—F2F25.6 (12)N7—Co2—N5—C5A123.1 (5)
O2B—C2A—C2B—F2F154.0 (10)C5E—N5—C5A—C5B2.4 (9)
O2A—C2A—C2B—F2B139.5 (6)Co2—N5—C5A—C5B176.7 (5)
O2B—C2A—C2B—F2B40.9 (8)C5A—N5—C5E—C5D0.8 (9)
O2A—C2A—C2B—F2C106.7 (6)Co2—N5—C5E—C5D178.2 (5)
O2B—C2A—C2B—F2C72.9 (7)N5—C5A—C5B—C5C2.3 (11)
O2A—C2A—C2B—F2D58.8 (9)C5A—C5B—C5C—C5D0.6 (11)
O2B—C2A—C2B—F2D121.6 (8)C5B—C5C—C5D—C5E0.8 (11)
F2E—C2B—F2D—F2F121.2 (12)N5—C5E—C5D—C5C0.7 (11)
F2A—C2B—F2D—F2F2.3 (11)O2A—Co1—N6—C6E37.2 (5)
F2B—C2B—F2D—F2F137.6 (9)O8A—Co1—N6—C6E143.8 (5)
F2C—C2B—F2D—F2F44.0 (14)O3B—Co1—N6—C6E56.6 (5)
C2A—C2B—F2D—F2F112.6 (9)N4—Co1—N6—C6E126.6 (5)
F2E—C2B—F2F—F2D96.4 (14)O2A—Co1—N6—C6A139.6 (4)
F2A—C2B—F2F—F2D3.1 (15)O8A—Co1—N6—C6A39.4 (4)
F2B—C2B—F2F—F2D59.0 (13)O3B—Co1—N6—C6A126.6 (4)
F2C—C2B—F2F—F2D154.3 (9)N4—Co1—N6—C6A50.2 (4)
C2A—C2B—F2F—F2D102.9 (9)C6E—N6—C6A—C6B0.8 (9)
O2A—Co1—O3B—C3A83.4 (6)Co1—N6—C6A—C6B176.1 (5)
O8A—Co1—O3B—C3A96.5 (6)C6A—N6—C6E—C6D2.4 (10)
N6—Co1—O3B—C3A172.1 (6)Co1—N6—C6E—C6D174.5 (6)
OW—Co1—O3B—C3A5.9 (6)N6—C6A—C6B—C6C1.4 (10)
O2B—Co2—O3A—C3A53.4 (5)C6A—C6B—C6C—C6D2.0 (11)
N5—Co2—O3A—C3A140.9 (5)C6B—C6C—C6D—C6E0.4 (12)
N7—Co2—O3A—C3A128.9 (5)N6—C6E—C6D—C6C1.9 (12)
OW—Co2—O3A—C3A37.1 (5)O3A—Co2—N7—C7A136.1 (5)
Co2—O3A—C3A—O3B4.9 (9)O1A—Co2—N7—C7A43.2 (5)
Co2—O3A—C3A—C3B176.5 (4)N5—Co2—N7—C7A134.7 (5)
Co1—O3B—C3A—O3A16.9 (10)OW—Co2—N7—C7A46.8 (5)
Co1—O3B—C3A—C3B161.7 (5)O3A—Co2—N7—C7E48.8 (4)
O3A—C3A—C3B—F3C128.4 (7)O1A—Co2—N7—C7E132.0 (4)
O3B—C3A—C3B—F3C52.7 (8)N5—Co2—N7—C7E40.5 (4)
O3A—C3A—C3B—F3B3.6 (9)OW—Co2—N7—C7E138.1 (4)
O3B—C3A—C3B—F3B177.6 (6)C7E—N7—C7A—C7B1.8 (9)
O3A—C3A—C3B—F3A116.1 (6)Co2—N7—C7A—C7B173.4 (5)
O3B—C3A—C3B—F3A62.8 (8)C7A—N7—C7E—C7D2.0 (9)
O2A—Co1—N4—C4A48.5 (4)Co2—N7—C7E—C7D173.4 (5)
O8A—Co1—N4—C4A131.5 (4)N7—C7E—C7D—C7C0.7 (11)
N6—Co1—N4—C4A40.3 (4)N7—C7A—C7B—C7C0.2 (11)
OW—Co1—N4—C4A137.8 (4)C7E—C7D—C7C—C7B1.0 (12)
O2A—Co1—N4—C4E137.7 (5)C7A—C7B—C7C—C7D1.2 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
OW—H1···O8B0.96 (5)1.67 (5)2.616 (5)165 (5)
OW—H2···O1B0.96 (5)1.68 (5)2.610 (5)161 (4)
 

Acknowledgements

JB is grateful to Jesus College, Cambridge for the award of a Junior Research Fellowship.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCorkery, R. W. & Hockless, D. C. R. (1997). Acta Cryst. C53, 840–843.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHagen, K. S, Lachicotte, R., Kitaygorodskiy, A. & Elbouadili, A. (1993). Angew. Chem. Int. Ed. Engl. 32, 1321–1324.  CSD CrossRef Web of Science Google Scholar
First citationHahn, F. E., Scharn, D. & Lugger, T. (1997). Z. Kristallogr. New Cryst. Struct. 212, 472.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurpeinen, U., Hamalainen, R. & Reedijk, J. (1987). Polyhedron, 6, 1603–1610.  CSD CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds