metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propane-1,3-diaminium bis­­(di­hydrogenarsenate)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 31 May 2005; accepted 2 June 2005; online 10 June 2005)

The title compound, (C3H12N2)[H2AsO4]2, contains a network of propane-1,3-diaminium cations and dihydrogenarsenate anions [mean As—O = 1.682 (2) Å]. The crystal packing involves anion-to-anion O—H⋯O hydrogen bonds, resulting in double chains of dihydrogenarsenate tetra­hedra. Cation-to-anion N—H⋯O hydrogen bonds generate a three-dimensional overall structure. One C atom occupies a special position with twofold symmetry.

Comment

The title compound, C3H12N22+·2[H2AsO4)], (I)[link], (Fig. 1[link]), was prepared as part of our ongoing structural studies of hydrogen-bonding inter­actions in protonated-amine (di)hydrogen arsenates (Lee & Harrison, 2003a[Lee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739-m741.],b[Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.],c[Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.]; Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]; Todd & Harrison, 2005a[Todd, M. J. & Harrison, W. T. A. (2005a). Acta Cryst. E61, m1024-m1026.]).

[Scheme 1]

The [H2AsO4] dihydrogenarsenate group in (I)[link] has normal tetra­hedral geometry [mean As—O = 1.682 (2) Å], with the protonated As1—O1 and As1—O2 vertices showing their expected lengthening relative to the unprotonated As1—O3 and As1—O4 bonds, which have formal partial double-bond character (Table 1[link]). The propane-1,3-diaminium cation, which is generated by twofold symmetry from the atoms of the asymmetric unit (C2 occupies a special position with site symmetry 2), shows no unusual geometrical features.

As well as electrostatic attractions, the component species in (I)[link] inter­act by means of a network of cation-to-anion N—H⋯O and anion-to-anion O—H⋯O hydrogen bonds (Table 2[link]). The [H2AsO4] units are linked into polymeric double chains (Fig. 2[link]) propagating along [010] by way of inversion-symmetry-generated pairs of O2—H2⋯O4iii and O1—H1⋯O4ii bonds (see Table 2[link] for symmetry codes). The first of these bonds results in `dimers' of dihydrogenarsenate tetra­hedra, which in turn are linked into double chains by the second hydrogen bond. In graph-set notation (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), these bonding patterns correspond to R22(8) and R44(12) loops, respectively. This scheme results in every [H2AsO4] group in the chain forming two hydrogen bonds to its neighbours and accepting two hydrogen bonds from its neighbours. The As⋯Asiii (via O2—H2⋯O4iii) and As⋯Asii (via O1—H1⋯O4ii) separations are 4.5325 (4) and 4.6549 (4) Å, respectively (symmetry codes as in Table 2[link]).

The organic species inter­acts with the dihydrogenarsenate anions by way of three N—H⋯O hydrogen bonds [mean H⋯O = 2.00 Å, mean N—H⋯O = 158° and mean N⋯O = 2.892 (3) Å], such that the [010] dihydrogenarsenate double chains are crosslinked in the a and c directions to result in a three-dimensional network (Fig. 3[link]). A PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) analysis of (I)[link] indicated the presence of two short C—H⋯O contacts (Table 2[link]) although their structural significance is not clear.

The hydrogen-bonded tetra­hedral double chains in (I)[link] are different from the motifs seen in related structures. In bis­(cyclo­heptyl­aminium) hydrogenarsenate monohydrate (Todd & Harrison, 2005a[Todd, M. J. & Harrison, W. T. A. (2005a). Acta Cryst. E61, m1024-m1026.]) and bis­(benzyl­ammonium) hydrogen­arsenate monohydrate (Lee & Harrison, 2003c[Lee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151-m1153.]), hydrogen-bonded dimers of [HAsO4]2− units occur, with the dimers bridged into double chains by inter­vening water mol­ecules. In piperidinum dihydrogenarsenate (Lee & Harrison, 2003b[Lee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959-m960.]) and t-butyl­ammonium dihydrogenarsenate (Wilkinson & Harrison, 2004[Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359-m1361.]), single chains of [H2AsO4] anions occur with each adjacent dihydrogenarsenate pair linked by a pair of hydrogen bonds. In propane-1,3-diaminium hydrogenarsenate monohydate (Todd & Harrison, 2005b[Todd, M. J. & Harrison, W. T. A. (2005b). Acta Cryst. E61. Submitted]), containing the same cation as (I)[link] but prepared at higher pH, yet another hydrogen-bonded chain motif occurs.

[Figure 1]
Figure 1
View of (I)[link], showing 50% probability displacement ellipsoids (H atoms are drawn as spheres of arbitrary radii and the hydrogen bond is indicated by dashed lines). Symmetry code as in Table 1[link].
[Figure 2]
Figure 2
Detail of a hydrogen-bonded (dashed lines) dihydrogenarsenate double chain in (I)[link]. Symmetry codes as in Table 2[link].
[Figure 3]
Figure 3
Projection of the unit cell contents of (I)[link] on to (010). Dashed lines indicate hydrogen bonds.

Experimental

0.5 M aqueous propane-1,3-diamine solution (10 ml) was added to 0.5 M aqueous H3AsO4 solution (10 ml) to result in a clear solution. A mass of plate- and slab-like crystals of (I)[link] grew as the water evaporated over the course of a few days.

Crystal data
  • (C3H12N2)[AsH2O4]2

  • Mr = 358.02

  • Monoclinic, I 2/a

  • a = 15.5563 (8) Å

  • b = 4.6549 (2) Å

  • c = 15.0454 (7) Å

  • β = 103.399 (1)°

  • V = 1059.83 (9) Å3

  • Z = 4

  • Dx = 2.244 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3458 reflections

  • θ = 2.7–32.5°

  • μ = 6.33 mm−1

  • T = 293 (2) K

  • Plate, colourless

  • 0.50 × 0.19 × 0.03 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.144, Tmax = 0.833

  • 5128 measured reflections

  • 1899 independent reflections

  • 1667 reflections with I > 2σ(I)

  • Rint = 0.044

  • θmax = 32.5°

  • h = −23 → 23

  • k = −7 → 5

  • l = −22 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.02

  • 1899 reflections

  • 71 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0677P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 1.07 e Å−3

  • Δρmin = −1.49 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.0037 (6)

Table 1
Selected geometric parameters (Å, °)[link]

As1—O3 1.6375 (17)
As1—O4 1.6669 (16)
As1—O1 1.7071 (17)
As1—O2 1.7180 (18)
N1—C1—C2—C1i 179.5 (3)
Symmetry code: (i) [-x+{\script{3\over 2}}, y, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4ii 0.83 1.82 2.608 (3) 159
O2—H2⋯O4iii 0.90 1.74 2.603 (3) 161
N1—H3⋯O3iv 0.89 1.89 2.740 (3) 160
N1—H4⋯O4 0.89 2.13 2.967 (3) 156
N1—H5⋯O3v 0.89 1.97 2.818 (3) 158
C1—H7⋯O2vi 0.97 2.48 3.389 (3) 156
C2—H8⋯O2v 0.97 2.52 3.482 (3) 174
Symmetry codes: (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (vi) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].

The I-centred unit cell was chosen in preference to the C-centred setting (space group C2/c) to avoid a very obtuse β angle of 127° (Mighell, 2003[Mighell, A. D. (2003). Acta Cryst. B59, 300-302.]). The O-bound H atoms were found in difference maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bonded to C and N atoms were placed in idealized positions (C—H = 0.97 Å and N—H = 0.89 Å) and refined as riding, allowing for free rotation of the –NH3 group. The constraint Uiso(H) = 1.2Ueq(carrier) was applied in all cases. The highest difference peak is 0.95 Å from O3 and the deepestdifference hole is 1.20 Å from As1.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Propane-1,3-diaminium bis(dihydrogenarsenate) top
Crystal data top
(C3H12N2)[AsH2O4]2F(000) = 712
Mr = 358.02Dx = 2.244 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 3458 reflections
a = 15.5563 (8) Åθ = 2.7–32.5°
b = 4.6549 (2) ŵ = 6.33 mm1
c = 15.0454 (7) ÅT = 293 K
β = 103.399 (1)°Plate, colourless
V = 1059.83 (9) Å30.50 × 0.19 × 0.03 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
1899 independent reflections
Radiation source: fine-focus sealed tube1667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 32.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2323
Tmin = 0.144, Tmax = 0.833k = 75
5128 measured reflectionsl = 2217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difmap (O-H) and geom (others)
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
1899 reflectionsΔρmax = 1.07 e Å3
71 parametersΔρmin = 1.49 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
As10.610145 (14)0.09809 (4)0.190204 (14)0.01589 (11)
O10.55861 (13)0.1697 (4)0.23548 (14)0.0284 (4)
H10.57530.33850.23640.034*
O20.70063 (13)0.0671 (4)0.16560 (14)0.0250 (4)
H20.74840.02810.19660.030*
O30.54520 (12)0.2119 (5)0.09502 (11)0.0304 (4)
O40.64362 (12)0.3454 (3)0.27093 (12)0.0212 (3)
N10.58882 (16)0.1073 (4)0.43221 (15)0.0242 (4)
H30.54300.00660.40970.029*
H40.59750.22570.38870.029*
H50.57780.20940.47830.029*
C10.66881 (18)0.0695 (5)0.46541 (19)0.0262 (5)
H60.67820.19080.41610.031*
H70.65990.19340.51430.031*
C20.75000.1146 (7)0.50000.0252 (7)
H80.74050.23700.54900.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
As10.01398 (14)0.01850 (15)0.01456 (14)0.00068 (6)0.00202 (9)0.00031 (6)
O10.0256 (9)0.0181 (7)0.0455 (11)0.0000 (7)0.0163 (8)0.0041 (7)
O20.0154 (8)0.0319 (9)0.0282 (9)0.0004 (6)0.0061 (7)0.0091 (6)
O30.0263 (9)0.0458 (10)0.0166 (7)0.0110 (8)0.0004 (6)0.0049 (7)
O40.0193 (7)0.0216 (7)0.0223 (8)0.0016 (6)0.0039 (6)0.0038 (6)
N10.0206 (10)0.0326 (11)0.0184 (9)0.0023 (7)0.0025 (8)0.0023 (6)
C10.0214 (11)0.0290 (11)0.0253 (12)0.0015 (9)0.0007 (9)0.0031 (9)
C20.0181 (15)0.0301 (16)0.0251 (16)0.0000.0004 (12)0.000
Geometric parameters (Å, º) top
As1—O31.6375 (17)N1—H40.8900
As1—O41.6669 (16)N1—H50.8900
As1—O11.7071 (17)C1—C21.515 (3)
As1—O21.7180 (18)C1—H60.9700
O1—H10.8265C1—H70.9700
O2—H20.8979C2—C1i1.515 (3)
N1—C11.479 (3)C2—H80.9700
N1—H30.8900
O3—As1—O4116.04 (9)H3—N1—H5109.5
O3—As1—O1109.49 (10)H4—N1—H5109.5
O4—As1—O1108.06 (9)N1—C1—C2111.72 (19)
O3—As1—O2109.06 (9)N1—C1—H6109.3
O4—As1—O2109.45 (9)C2—C1—H6109.3
O1—As1—O2104.07 (8)N1—C1—H7109.3
As1—O1—H1121.7C2—C1—H7109.3
As1—O2—H2106.8H6—C1—H7107.9
C1—N1—H3109.5C1—C2—C1i111.1 (3)
C1—N1—H4109.5C1—C2—H8109.4
H3—N1—H4109.5C1i—C2—H8109.4
C1—N1—H5109.5
N1—C1—C2—C1i179.5 (3)
Symmetry code: (i) x+3/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4ii0.831.822.608 (3)159
O2—H2···O4iii0.901.742.603 (3)161
N1—H3···O3iv0.891.892.740 (3)160
N1—H4···O40.892.132.967 (3)156
N1—H5···O3v0.891.972.818 (3)158
C1—H7···O2vi0.972.483.389 (3)156
C2—H8···O2v0.972.523.482 (3)174
Symmetry codes: (ii) x, y1, z; (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y+1/2, z+1/2; (vi) x, y1/2, z+1/2.
 

Acknowledgements

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003a). Acta Cryst. E59, m739–m741.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003b). Acta Cryst. E59, m959–m960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, C. & Harrison, W. T. A. (2003c). Acta Cryst. E59, m1151–m1153.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMighell, A. D. (2003). Acta Cryst. B59, 300–302.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodd, M. J. & Harrison, W. T. A. (2005a). Acta Cryst. E61, m1024–m1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTodd, M. J. & Harrison, W. T. A. (2005b). Acta Cryst. E61. Submitted  Google Scholar
First citationWilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359–m1361.  Web of Science CSD CrossRef IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds