metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The α polymorph of racemic tris­­(2,4-penta­nedionato-κ2O,O′)vanadium(III), redetermined at 120 K

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 8 June 2005; accepted 10 June 2005; online 17 June 2005)

In the α polymorph of the title compound, [V(C5H7O2)3], the mol­ecules lie in general positions with no crystallographically imposed symmetry, but with approximate D3 (32) mol­ecular symmetry.

Comment

The title compound, (I)[link] (Fig. 1[link]), crystallizes in two structurally characterized polymorphs, an orthorhombic form in space group Pbca, denoted α, and a monoclinic form in space group P21/n, denoted β (Morosin & Montgomery, 1969[Morosin, B. & Montgomery, H. (1969). Acta Cryst. B25, 1354-1359.]). The orthorhombic α form has been structurally characterized only at ambient temperature (Morosin & Montgomery, 1969[Morosin, B. & Montgomery, H. (1969). Acta Cryst. B25, 1354-1359.]; Filgueiras et al., 2001[Filgueiras, C. A. L., Horn, A., Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. E57, m157-m158.]), but neither report mentioned the mol­ecular stereochemistry. We have now taken the opportunity to redetermine the structure of this phase using diffraction data collected at 120 K: the unit-cell dimensions and space group confirm that the same phase is present at 120 K as at ambient temperature.

[Scheme 1]

In the α polymorph of compound (I)[link] the mol­ecules lie in general positions in space group Pbca, but the local mol­ecular symmetry is very close to the ideal D3 (32) expected for isolated mol­ecules. Although the compound is racemic, the mol­ecules are chiral, but the centrosymmetric space group accommodates equal numbers of the Λ and Δ enantiomorphs: the selected reference mol­ecule (Fig. 1[link]) has Λ configuration. The corresponding bond distances within the three independent ligands show some modest variation, as exemplified by the V—O and O—C distances (Table 1[link]); likewise the ligand bite angles O—V—O within the rings show minor variation. While two of the three rings are effectively planar, that including atoms O11 and O13 shows a minor puckering, and this ring is best described as forming a boat conformer with a total puckering amplitude of 0.199 (2) Å, with the maximum displacement from the mean ring plane found for the V atom of 0.138 (2) Å.

Within each domain 0 < x < 0.5 and 0.5 < x < 1.0 there are four mol­ecules, two of each enantiomer, with the Λ and Δ forms alternating, in chess-board fashion, on an approximately square grid (Fig. 2[link]).

[Figure 1]
Figure 1
The Λ enantiomorph of compound (I)[link] in the α polymorph, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Projection on to (100) of the domain 0 < x < 0.5 in the α polymorph of compound (I)[link], showing the alternation of Λ and Δ enantiomorphs. For the sake of clarity, the H atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign ($) are at the symmetry positions (x, [{1\over 2}]y, −[{1\over 2}] + z), ([{1\over 2}]x, [{1\over 2}] + y, z) and ([{1\over 2}]x, 1 − y, −[{1\over 2}] + z), respectively.

Experimental

The title compound was prepared from VO(CH3COCHCOCH3)2, according to the published procedure of Grdenić & Korpar-Čolig (1964[Grdenić, D. & Korpar-Čolig, B. (1964). Inorg. Chem. 3, 1328-1329.]), except that powdered tin was employed as the reducing agent rather than powdered zinc [m.p. 457 K; literature m.p. (Grdenić & Korpar-Čolig, 1964[Grdenić, D. & Korpar-Čolig, B. (1964). Inorg. Chem. 3, 1328-1329.]) 457 K].

Crystal data
  • [V(C5H7O2)3]

  • Mr = 348.26

  • Orthorhombic, P b c a

  • a = 13.3920 (7) Å

  • b = 16.4043 (6) Å

  • c = 15.1901 (10) Å

  • V = 3337.1 (3) Å3

  • Z = 8

  • Dx = 1.386 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3824 reflections

  • θ = 3.2–27.5°

  • μ = 0.62 mm−1

  • T = 120 (2) K

  • Plate, brown

  • 0.22 × 0.18 × 0.03 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.859, Tmax = 0.982

  • 30601 measured reflections

  • 3824 independent reflections

  • 1876 reflections with I > 2σ(I)

  • Rint = 0.174

  • θmax = 27.5°

  • h = −17 → 17

  • k = −21 → 21

  • l = −19 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.135

  • S = 1.00

  • 3824 reflections

  • 205 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2837P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

V1—O11 1.998 (2)
V1—O13 1.983 (2)
V1—O21 1.971 (2)
V1—O23 2.006 (2)
V1—O31 1.986 (2)
V1—O33 1.959 (2)
C11—O11 1.272 (4)
C13—O13 1.279 (4)
C21—O21 1.283 (4)
C23—O23 1.263 (4)
C31—O31 1.271 (4)
C33—O33 1.284 (4)
O11—V1—O13 86.30 (10)
O21—V1—O23 88.35 (9)
O31—V1—O33 88.74 (9)

All H atoms were located in difference maps, and then treated as riding atoms, with C—H distances 0.95 Å and Uiso(H) = 1.2Ueq(C) for the ring CH atoms, and C—H distances 0.98 Å and Uiso(H) = 1.5Ueq(C) for the meth­yl groups.

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

α-Tris(2,4-pentanedionato-κ2O,O')vanadium(III) top
Crystal data top
[V(C5H7O2)3]F(000) = 1456
Mr = 348.26Dx = 1.386 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3824 reflections
a = 13.3920 (7) Åθ = 3.2–27.5°
b = 16.4043 (6) ŵ = 0.62 mm1
c = 15.1901 (10) ÅT = 120 K
V = 3337.1 (3) Å3Plate, brown
Z = 80.22 × 0.18 × 0.03 mm
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
3824 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode1876 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.174
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.2°
π and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2121
Tmin = 0.859, Tmax = 0.982l = 1918
30601 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0529P)2 + 0.2837P]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.47 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.27195 (4)0.25489 (3)0.64183 (3)0.02443 (18)
O110.18295 (16)0.33275 (14)0.70562 (13)0.0298 (6)
O130.34058 (17)0.35266 (14)0.59448 (14)0.0325 (6)
O210.19802 (16)0.16706 (13)0.70173 (14)0.0302 (6)
O230.37185 (15)0.25153 (14)0.74014 (14)0.0289 (5)
O310.17568 (16)0.25354 (14)0.54240 (13)0.0298 (5)
O330.35710 (16)0.17987 (14)0.57521 (15)0.0311 (6)
C110.1690 (3)0.4085 (2)0.6926 (2)0.0333 (9)
C120.2281 (3)0.4557 (2)0.6374 (2)0.0424 (10)
C130.3122 (3)0.4271 (2)0.5946 (2)0.0351 (9)
C140.0859 (3)0.4467 (2)0.7451 (3)0.0495 (11)
C150.3795 (3)0.4855 (2)0.5466 (3)0.0515 (12)
C210.2160 (3)0.1329 (2)0.7760 (2)0.0353 (9)
C220.2988 (3)0.1485 (2)0.8267 (3)0.0396 (10)
C230.3745 (2)0.2049 (2)0.8063 (2)0.0302 (8)
C240.1377 (3)0.0738 (3)0.8056 (3)0.0565 (12)
C250.4643 (3)0.2109 (2)0.8651 (2)0.0414 (10)
C310.1806 (3)0.2154 (2)0.4697 (2)0.0306 (9)
C320.2614 (3)0.1652 (2)0.4453 (2)0.0351 (9)
C330.3428 (3)0.1500 (2)0.4981 (2)0.0325 (9)
C340.0925 (3)0.2243 (2)0.4089 (2)0.0407 (10)
C350.4259 (3)0.0943 (2)0.4668 (3)0.0453 (10)
H120.20960.51100.62860.051*
H14A0.02650.41190.74230.074*
H14B0.07010.50050.72070.074*
H14C0.10690.45270.80660.074*
H15A0.44050.49410.58090.077*
H15B0.34500.53770.53870.077*
H15C0.39670.46290.48880.077*
H220.30550.11880.88010.047*
H24A0.07300.10160.80900.085*
H24B0.15530.05240.86380.085*
H24C0.13340.02870.76340.085*
H25A0.51270.16880.84890.062*
H25B0.44380.20310.92650.062*
H25C0.49490.26480.85850.062*
H320.25950.14040.38880.042*
H34A0.04390.18110.42130.061*
H34B0.11490.22000.34770.061*
H34C0.06110.27760.41830.061*
H35A0.49060.12000.47840.068*
H35B0.41880.08470.40340.068*
H35C0.42210.04230.49820.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0213 (3)0.0267 (3)0.0253 (3)0.0004 (3)0.0020 (2)0.0012 (3)
O110.0275 (14)0.0328 (15)0.0292 (13)0.0027 (11)0.0039 (11)0.0025 (11)
O130.0265 (15)0.0313 (15)0.0397 (15)0.0002 (11)0.0071 (11)0.0062 (12)
O210.0240 (14)0.0321 (14)0.0344 (14)0.0060 (11)0.0020 (11)0.0026 (12)
O230.0237 (13)0.0328 (14)0.0301 (12)0.0023 (12)0.0002 (10)0.0028 (12)
O310.0219 (13)0.0413 (14)0.0263 (12)0.0029 (12)0.0021 (10)0.0020 (12)
O330.0272 (14)0.0334 (14)0.0328 (13)0.0030 (11)0.0003 (11)0.0042 (11)
C110.030 (2)0.036 (2)0.034 (2)0.0041 (18)0.0074 (17)0.0050 (18)
C120.049 (3)0.029 (2)0.049 (2)0.007 (2)0.001 (2)0.009 (2)
C130.041 (2)0.037 (2)0.028 (2)0.0016 (19)0.0065 (17)0.0070 (17)
C140.041 (3)0.053 (3)0.054 (2)0.018 (2)0.004 (2)0.011 (2)
C150.059 (3)0.038 (2)0.058 (3)0.012 (2)0.003 (2)0.015 (2)
C210.037 (2)0.030 (2)0.039 (2)0.0023 (18)0.0025 (18)0.0054 (17)
C220.039 (3)0.038 (2)0.041 (2)0.0022 (19)0.0074 (18)0.0146 (19)
C230.025 (2)0.036 (2)0.030 (2)0.0050 (17)0.0022 (16)0.0060 (18)
C240.054 (3)0.060 (3)0.056 (3)0.028 (2)0.002 (2)0.019 (2)
C250.028 (2)0.058 (3)0.037 (2)0.0038 (19)0.0062 (17)0.004 (2)
C310.026 (2)0.039 (2)0.027 (2)0.0084 (18)0.0018 (16)0.0032 (17)
C320.032 (2)0.041 (2)0.032 (2)0.0017 (19)0.0025 (17)0.0097 (17)
C330.032 (2)0.024 (2)0.042 (2)0.0025 (17)0.0081 (18)0.0029 (17)
C340.030 (2)0.065 (3)0.027 (2)0.0012 (19)0.0008 (16)0.0005 (18)
C350.038 (3)0.039 (2)0.060 (3)0.0076 (19)0.004 (2)0.015 (2)
Geometric parameters (Å, º) top
V1—O111.998 (2)C21—C221.375 (5)
V1—O131.983 (2)C21—C241.497 (5)
V1—O211.971 (2)C22—C231.407 (5)
V1—O232.006 (2)C22—H220.95
V1—O311.986 (2)C23—C251.502 (4)
V1—O331.959 (2)C24—H24A0.98
C11—O111.272 (4)C24—H24B0.98
C13—O131.279 (4)C24—H24C0.98
C21—O211.283 (4)C25—H25A0.98
C23—O231.263 (4)C25—H25B0.98
C31—O311.271 (4)C25—H25C0.98
C33—O331.284 (4)C31—C321.409 (5)
C11—C121.387 (5)C31—C341.506 (5)
C11—C141.507 (5)C32—C331.377 (5)
C12—C131.383 (5)C32—H320.95
C12—H120.95C33—C351.516 (5)
C13—C151.504 (5)C34—H34A0.98
C14—H14A0.98C34—H34B0.98
C14—H14B0.98C34—H34C0.98
C14—H14C0.98C35—H35A0.98
C15—H15A0.98C35—H35B0.98
C15—H15B0.98C35—H35C0.98
C15—H15C0.98
O33—V1—O2194.10 (10)C21—C22—C23125.5 (3)
O33—V1—O1392.92 (10)C21—C22—H22117.3
O21—V1—O13172.45 (10)C23—C22—H22117.3
O21—V1—O3190.96 (9)O23—C23—C22123.6 (3)
O13—V1—O3191.96 (10)O23—C23—C25117.1 (3)
O33—V1—O11177.91 (9)C22—C23—C25119.3 (3)
O21—V1—O1186.78 (9)C23—O23—V1128.9 (2)
O11—V1—O1386.30 (10)C21—C24—H24A109.5
O31—V1—O1189.35 (9)C21—C24—H24B109.5
O33—V1—O2388.80 (9)H24A—C24—H24B109.5
O21—V1—O2388.35 (9)C21—C24—H24C109.5
O31—V1—O3388.74 (9)H24A—C24—H24C109.5
O13—V1—O2389.03 (9)H24B—C24—H24C109.5
O31—V1—O23177.39 (10)C23—C25—H25A109.5
O11—V1—O2393.12 (9)C23—C25—H25B109.5
O11—C11—C12123.7 (3)H25A—C25—H25B109.5
O11—C11—C14115.6 (3)C23—C25—H25C109.5
C12—C11—C14120.6 (3)H25A—C25—H25C109.5
C11—O11—V1129.5 (2)H25B—C25—H25C109.5
C13—C12—C11124.0 (3)O31—C31—C32123.8 (3)
C13—C12—H12118.0O31—C31—C34116.4 (3)
C11—C12—H12118.0C32—C31—C34119.8 (3)
O13—C13—C12124.5 (3)C31—O31—V1129.2 (2)
O13—C13—C15115.4 (3)C33—C32—C31124.1 (3)
C12—C13—C15120.0 (4)C33—C32—H32117.9
C13—O13—V1129.3 (2)C31—C32—H32117.9
C11—C14—H14A109.5O33—C33—C32125.4 (3)
C11—C14—H14B109.5O33—C33—C35114.0 (3)
H14A—C14—H14B109.5C32—C33—C35120.5 (3)
C11—C14—H14C109.5C33—O33—V1128.7 (2)
H14A—C14—H14C109.5C31—C34—H34A109.5
H14B—C14—H14C109.5C31—C34—H34B109.5
C13—C15—H15A109.5H34A—C34—H34B109.5
C13—C15—H15B109.5C31—C34—H34C109.5
H15A—C15—H15B109.5H34A—C34—H34C109.5
C13—C15—H15C109.5H34B—C34—H34C109.5
H15A—C15—H15C109.5C33—C35—H35A109.5
H15B—C15—H15C109.5C33—C35—H35B109.5
O21—C21—C22124.2 (3)H35A—C35—H35B109.5
O21—C21—C24114.6 (3)C33—C35—H35C109.5
C22—C21—C24121.2 (3)H35A—C35—H35C109.5
C21—O21—V1129.2 (2)H35B—C35—H35C109.5
C12—C11—O11—V111.0 (5)C21—C22—C23—O234.2 (6)
C14—C11—O11—V1172.0 (2)C21—C22—C23—C25175.6 (4)
O21—V1—O11—C11166.3 (3)C22—C23—O23—V15.6 (5)
O13—V1—O11—C1116.7 (3)C25—C23—O23—V1174.2 (2)
O31—V1—O11—C1175.3 (3)O33—V1—O23—C2392.0 (3)
O23—V1—O11—C11105.5 (3)O21—V1—O23—C232.1 (3)
O11—C11—C12—C134.1 (6)O13—V1—O23—C23175.1 (3)
C14—C11—C12—C13172.7 (3)O11—V1—O23—C2388.8 (3)
C11—C12—C13—O136.3 (6)C32—C31—O31—V11.0 (5)
C11—C12—C13—C15171.3 (3)C34—C31—O31—V1177.4 (2)
C12—C13—O13—V16.8 (5)O33—V1—O31—C310.2 (3)
C15—C13—O13—V1175.5 (2)O21—V1—O31—C3194.2 (3)
O33—V1—O13—C13163.6 (3)O13—V1—O31—C3192.7 (3)
O31—V1—O13—C1374.8 (3)O11—V1—O31—C31179.0 (3)
O11—V1—O13—C1314.5 (3)O31—C31—C32—C331.8 (6)
O23—V1—O13—C13107.6 (3)C34—C31—C32—C33176.6 (3)
C22—C21—O21—V15.2 (5)C31—C32—C33—O331.1 (6)
C24—C21—O21—V1174.0 (3)C31—C32—C33—C35179.3 (3)
O33—V1—O21—C2191.9 (3)C32—C33—O33—V10.3 (5)
O31—V1—O21—C21179.3 (3)C35—C33—O33—V1179.3 (2)
O11—V1—O21—C2190.0 (3)O21—V1—O33—C3391.6 (3)
O23—V1—O21—C213.2 (3)O13—V1—O33—C3391.1 (3)
O21—C21—C22—C231.4 (6)O31—V1—O33—C330.8 (3)
C24—C21—C22—C23177.6 (4)O23—V1—O33—C33179.9 (3)
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFilgueiras, C. A. L., Horn, A., Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2001). Acta Cryst. E57, m157–m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrdenić, D. & Korpar-Čolig, B. (1964). Inorg. Chem. 3, 1328–1329.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationMorosin, B. & Montgomery, H. (1969). Acta Cryst. B25, 1354–1359.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds