metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans,trans,trans-Diaceto­nitriledi­bromo­bis­(4-fluoro­aniline)nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, England
*Correspondence e-mail: jxf@leicester.ac.uk

(Received 19 May 2005; accepted 27 May 2005; online 10 June 2005)

The structure of the centrosymmetric title compound, [(4-F-C6H4NH2)2(MeCN)2NiBr2] or [NiBr2(C6H6FN)2(C2H3N)2], reveals each of the pairs of bromide, acetonitrile and 4-fluoro­aniline ligands arranged trans to each other with a near octa­hedral geometry at the Ni atom.

Comment

While fluorinated anilines, C6FxHyNH2 (x = 1 and y = 4; x = 2 and y = 3; x = 5 and y = 0), have been extensively used as precursors to Schiff base ligands, crystallographically characterized examples of transition metal complexes containing the bound aniline itself are rare (Padmanabhan et al., 1985[Padmanabhan, V. M., Patel, R. P. & Ranganathan, T. N. (1985). Acta Cryst. C41, 1305-1309.]; Visalakshi & Patel, 1994[Visalakshi, R. & Patel, R. P. (1994). Synth. React. Inorg. Met.-Org. Chem. 24, 1043-1053.]).

[Scheme 1]

We report here the synthesis and crystal structure of trans,trans,trans-[(4-F-C6H4NH2)2(MeCN)2NiBr2], (I)[link]. The Ni atom is located on a centre of symmetry. The geometry at the Ni atom is approximately octa­hedral, the largest deviation from the ideal bond angles being observed for N1—Ni1—N2 [83.79 (8)°]. The bond distances at nickel are: Ni1—Br1 = 2.5634 (3) Å, Ni1—N1 = 2.0915 (18) Å and Ni1—N2 = 2.0629 (19) Å. Each Br atom is surrounded by H atoms with three intra- and four inter­molecular H⋯Br distances in the range 2.58–3.25 Å. The structure of (I)[link] resembles the trans disposition of ligand pairs found in trans,trans,trans-[(H2O)2(MeCN)2NiCl2] (Piggot et al., 2004[Piggot, P. M. T., Hall, L. A., White, A. J. P., Williams, D. J. & Thompson, L. K. (2004). Inorg. Chem. 43, 1167-1174.]).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom numbering scheme and 50% displacement ellipsoids. The mol­ecule is located on a centre of symmetry [primed atoms are generated by (−x, 1 − y, 1 − z)].

Experimental

Under a nitro­gen atmosphere, 4-fluoro­aniline (0.02 g, 0.18 mmol) was added to a solution of (DME)NiBr2 (DME = 1,2-dimethoxyethane) (0.05 g, 0.16 mmol) in dichloro­methane (20 ml) and the reaction mixture stirred for 12 h at room temperature. The volatiles were removed under reduced pressure and the residue dried overnight. Extraction of the residue into hot acetonitrile and prolonged standing of the solution at room temperature gave pale-green crystals of the title compound suitable for single-crystal X-ray diffraction analysis (0.02 g, 23% yield).

Crystal data
  • [NiBr2(C6H6FN)2(C2H3N)2]

  • Mr = 522.87

  • Monoclinic, P 21 /c

  • a = 11.4533 (14) Å

  • b = 12.9875 (15) Å

  • c = 6.2590 (7) Å

  • β = 99.191 (2)°

  • V = 919.07 (19) Å3

  • Z = 2

  • Dx = 1.889 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4651 reflections

  • θ = 2.4–28.8°

  • μ = 5.43 mm−1

  • T = 150 (2) K

  • Plate, pale green

  • 0.32 × 0.19 × 0.09 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.315, Tmax = 0.613

  • 7593 measured reflections

  • 1995 independent reflections

  • 1823 reflections with I > 2σ(I)

  • Rint = 0.052

  • θmax = 27.0°

  • h = −14 → 14

  • k = −16 → 16

  • l = −7 → 7

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.02

  • 1995 reflections

  • 116 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0421P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.92 2.71 3.5498 (19) 152
N1—H1B⋯Br1ii 0.92 2.58 3.4789 (19) 167
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

All H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 and N—H = 0.92 Å. For meth­yl H atoms, Uiso(H) values were set at 1.5Ueq of the C atom and at 1.2Ueq for all other H atoms.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick. G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick. G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 2000[Bruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

trans-trans-trans-Dibromobis(4-fluoroaniline)bis(acetonitrile)nickel(II) top
Crystal data top
[NiBr2(C6H6FN)2(C2H3N)2]F(000) = 516
Mr = 522.87Dx = 1.889 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4651 reflections
a = 11.4533 (14) Åθ = 2.4–28.8°
b = 12.9875 (15) ŵ = 5.43 mm1
c = 6.2590 (7) ÅT = 150 K
β = 99.191 (2)°Plate, pale green
V = 919.07 (19) Å30.32 × 0.19 × 0.09 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
1995 independent reflections
Radiation source: fine-focus sealed tube1823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
φ and ω scansθmax = 27.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.315, Tmax = 0.613k = 1616
7593 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0421P)2]
where P = (Fo2 + 2Fc2)/3
1995 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.57 e Å3
Special details top

Experimental. absorption correction based on 5283 reflections (SADABS); Rint 0.126 before correction and 0.031 after correction.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.02345 (2)0.632904 (16)0.20705 (3)0.02041 (10)
Ni10.00000.50000.50000.01528 (12)
N20.15001 (18)0.44011 (14)0.3156 (3)0.0198 (4)
C10.2126 (2)0.38636 (17)0.3677 (4)0.0196 (5)
C70.2080 (2)0.38921 (18)0.1966 (4)0.0207 (5)
F10.57305 (15)0.37955 (12)0.4412 (3)0.0459 (5)
N10.08695 (17)0.38864 (14)0.3421 (3)0.0184 (4)
H1A0.06270.32530.38420.022*
H1B0.05930.39470.19640.022*
C20.2695 (2)0.42016 (18)0.2041 (4)0.0246 (5)
H20.22460.44460.07300.030*
C60.2778 (2)0.35105 (18)0.5588 (4)0.0258 (6)
H60.23870.32830.67320.031*
C80.2798 (2)0.3224 (2)0.0440 (4)0.0267 (5)
H8A0.28540.35120.10200.040*
H8B0.35920.31690.08270.040*
H8C0.24350.25400.04790.040*
C30.3910 (2)0.4190 (2)0.2280 (4)0.0309 (6)
H30.43070.44280.11530.037*
C40.4534 (2)0.38288 (19)0.4180 (5)0.0313 (6)
C50.3993 (3)0.34882 (19)0.5833 (4)0.0312 (6)
H50.44470.32390.71340.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02936 (17)0.01745 (14)0.01536 (14)0.00154 (8)0.00643 (10)0.00117 (8)
Ni10.0186 (2)0.0147 (2)0.0128 (2)0.00185 (15)0.00356 (15)0.00117 (14)
N20.0219 (10)0.0195 (10)0.0184 (9)0.0021 (8)0.0045 (8)0.0004 (8)
C10.0247 (13)0.0146 (10)0.0204 (11)0.0007 (9)0.0061 (9)0.0030 (9)
C70.0218 (12)0.0229 (11)0.0183 (11)0.0014 (10)0.0061 (10)0.0039 (10)
F10.0261 (9)0.0440 (10)0.0688 (13)0.0103 (7)0.0109 (9)0.0030 (8)
N10.0226 (10)0.0172 (9)0.0160 (9)0.0012 (8)0.0051 (8)0.0006 (7)
C20.0313 (14)0.0200 (12)0.0239 (12)0.0035 (10)0.0088 (10)0.0028 (10)
C60.0340 (15)0.0209 (12)0.0230 (12)0.0019 (10)0.0057 (11)0.0018 (10)
C80.0269 (14)0.0285 (13)0.0241 (12)0.0079 (11)0.0022 (10)0.0053 (11)
C30.0332 (15)0.0264 (13)0.0374 (15)0.0024 (11)0.0184 (12)0.0011 (11)
C40.0239 (14)0.0234 (13)0.0474 (17)0.0040 (10)0.0086 (12)0.0043 (11)
C50.0372 (16)0.0240 (13)0.0305 (14)0.0102 (11)0.0005 (12)0.0025 (10)
Geometric parameters (Å, º) top
Br1—Ni12.5634 (3)N1—H1B0.9200
Ni1—N22.0629 (19)C2—C31.376 (4)
Ni1—N2i2.063 (2)C2—H20.9500
Ni1—N1i2.0915 (18)C6—C51.376 (4)
Ni1—N12.0915 (18)C6—H60.9500
Ni1—Br1i2.5634 (3)C8—H8A0.9800
N2—C71.129 (3)C8—H8B0.9800
C1—C21.371 (3)C8—H8C0.9800
C1—C61.383 (3)C3—C41.369 (4)
C1—N11.422 (3)C3—H30.9500
C7—C81.445 (3)C4—C51.362 (4)
F1—C41.356 (3)C5—H50.9500
N1—H1A0.9200
N2—Ni1—N2i180.00 (10)Ni1—N1—H1B107.1
N2—Ni1—N1i96.21 (8)H1A—N1—H1B106.8
N2i—Ni1—N1i83.79 (8)C1—C2—C3120.6 (2)
N2—Ni1—N183.79 (8)C1—C2—H2119.7
N2i—Ni1—N196.21 (8)C3—C2—H2119.7
N1i—Ni1—N1180.00 (9)C5—C6—C1120.0 (3)
N2—Ni1—Br1i88.46 (5)C5—C6—H6120.0
N2i—Ni1—Br1i91.54 (5)C1—C6—H6120.0
N1i—Ni1—Br1i90.88 (5)C7—C8—H8A109.5
N1—Ni1—Br1i89.12 (5)C7—C8—H8B109.5
N2—Ni1—Br191.54 (5)H8A—C8—H8B109.5
N2i—Ni1—Br188.46 (5)C7—C8—H8C109.5
N1i—Ni1—Br189.12 (5)H8A—C8—H8C109.5
N1—Ni1—Br190.88 (5)H8B—C8—H8C109.5
Br1i—Ni1—Br1180.0C4—C3—C2118.5 (2)
C7—N2—Ni1160.0 (2)C4—C3—H3120.8
C2—C1—C6119.8 (2)C2—C3—H3120.8
C2—C1—N1120.1 (2)F1—C4—C5118.9 (3)
C6—C1—N1120.1 (2)F1—C4—C3118.8 (3)
N2—C7—C8178.6 (3)C5—C4—C3122.2 (3)
C1—N1—Ni1120.71 (14)C4—C5—C6118.9 (2)
C1—N1—H1A107.1C4—C5—H5120.6
Ni1—N1—H1A107.1C6—C5—H5120.6
C1—N1—H1B107.1
N1—Ni1—N2—C71.8 (5)N1—C1—C2—C3179.5 (2)
Br1i—Ni1—N2—C787.5 (5)C2—C1—C6—C50.7 (4)
Br1—Ni1—N2—C792.5 (5)N1—C1—C6—C5180.0 (2)
C2—C1—N1—Ni1105.1 (2)C1—C2—C3—C40.4 (4)
C6—C1—N1—Ni174.2 (2)C2—C3—C4—F1178.7 (2)
N2—Ni1—N1—C1172.55 (17)C2—C3—C4—C50.4 (4)
N2i—Ni1—N1—C17.45 (17)F1—C4—C5—C6179.2 (2)
Br1i—Ni1—N1—C198.90 (16)C3—C4—C5—C60.2 (4)
Br1—Ni1—N1—C181.10 (16)C1—C6—C5—C40.7 (4)
C6—C1—C2—C30.2 (4)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.922.713.5498 (19)152
N1—H1B···Br1iii0.922.583.4789 (19)167
Symmetry codes: (ii) x, y1/2, z+1/2; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the University of Leicester for financial assistance.

References

First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPadmanabhan, V. M., Patel, R. P. & Ranganathan, T. N. (1985). Acta Cryst. C41, 1305–1309.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPiggot, P. M. T., Hall, L. A., White, A. J. P., Williams, D. J. & Thompson, L. K. (2004). Inorg. Chem. 43, 1167–1174.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick. G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationVisalakshi, R. & Patel, R. P. (1994). Synth. React. Inorg. Met.-Org. Chem. 24, 1043–1053.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds