organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(p-Tol­yl)-β-L-rhamno­pyran­osylamine 1.5-hydrate

CROSSMARK_Color_square_no_text.svg

aDipartimento di Scienze Chimiche, Facoltà di Farmacia, Università di Catania, Viale A. Doria 6, 95125 Catania, Italy, bDepartment of Chemical Crystallography, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England, and cDepartment of Organic Chemistry, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: fpunzo@unict.it

(Received 26 May 2005; accepted 10 June 2005; online 17 June 2005)

The title rhamnopyran­osylamine, C13H19NO4·1.5H2O, was isolated as an inter­mediate in the Amadori rearrangement of L-rhamnose with p-toluidine. Two independent mol­ecules and three water mol­ecules of crystallization comprise the asymmetric unit, and these components are held together via extensive hydrogen-bonding inter­actions.

Comment

The major non-enzymatic conjugation of proteins with carbohydrates occurs by the Amadori rearrangement (Amadori, 1925[Amadori, M. (1925). Atti Accad. Naz. Lincei, 2, 337-345.]; Hodge, 1955[Hodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169-205.]). Further chemistry of the Amadori products, in vivo, leads to advanced glycation end-products (AGEs; Lapolla et al., 2005[Lapolla, A., Traldi, P. & Fedele, D. (2005). Clin. Biochem. 38, 103-115.]). AGEs are a heterogeneous group of compounds, which accumulate in plasma and tissues, and are implicated in late onset diabetes (Smit & Lutgers, 2004[Smit, A. J. & Lutgers, H. L. (2004). Curr. Med. Chem. 11, 2767-2784.]) and amyloid pathologies (Horvat & Jakas, 2004[Horvat, S. & Jakas, A. (2004). J. Pept. Sci. 10, 119-137.]). At higher temperatures, the Amadori rearrangement is the first step in the Maillard reaction, the products of which are responsible for much of the flavour and colour generated during baking and roasting (Martins & Van Boekel, 2005[Martins, S. I. F. S. & Van Boekel, M. A. J. S. (2005). Food Chem. 90, 257-269.]; Kwak & Lim, 2004[Kwak, E. J. & Lim, S. I. (2004). Amino Acids, 27, 85-90.]; Mottram et al., 2002[Mottram, D. S., Wedzicha, B. L. & Dodson, A. T. (2002). Nature (London), 419, 448-449.]).

Studies of the Amadori reaction of L-rhamnose, (1)[link], with primary and secondary amines are in progress. Recently, the crystal structure of the product, (4)[link], of the Amadori reaction between L-rhamnose and dibenzyl­amine has been reported (Harding et al., 2005[Harding, C. C., Watkin, D. J., Hotchkiss, D. J., Cook, J. M. D. & Fleet, G. W. J. (2005). Acta Cryst. E61, o995-o997.]). In the reaction between (1)[link] and p-toluidine in acetic acid, to give the ketosamine, (4)[link], the initial product, (2)[link], was isolated as an inter­mediate (Funcke, 1978[Funcke, W. (1978). Justus Liebigs Ann. Chem. 12, 2009-2104.]). The solution NMR of (2)[link] is complex and indicates a mixture of forms; the formation of crystals allowed the unambiguous identification of the β-pyran­osylamine, (3)[link], as an early inter­mediate involved in the reaction.

[Scheme 1]

The title compound, (3)[link], crystallizes with two mol­ecules in the asymmetric unit, as well as three water mol­ecules of crystallization (Fig. 1[link] and Table 1[link]). An evident pseudo-translational symmetry exists, in which the pyran­ose rings are mostly superimposable while the aromatic rings are slightly tilted. This is shown by the torsion angle being 172.00 (15)° for C1—N11—C12—C13 in one mol­ecule and 153.87 (15)° for C101—N111—C112—C113 in the other.

No symmetry can be seen in the position of the three solvent mol­ecules. The final refinement suggested the presence of two H atoms bonded to a hydr­oxy O atom, namely atom O8 on one mol­ecule and O108 on the other, each with 50% site occupancy. In addition, two mol­ecules of water, viz. O37 and O38, carry three H atoms (one H atom with full occupancy and the other two with 50% occupancy) and the remaining water mol­ecules carries four H atoms (each with 50% occupancy). The occupancies of these H atoms were all set on the basis of symmetry and steric effects. The structure shows a complicated hydrogen-bonded network (Fig. 2[link] and Table 2[link]). This latter feature is mainly a result of inter­actions between mol­ecules of the title compound, between mol­ecules of the title compound and water, and among the water mol­ecules themselves. The basic building block of the structure can be thought of as a dimer in which two mol­ecules of the title compound are held together by the strong hydrogen bonds O9—H91⋯O110 and O109—H1091⋯O10iii (symmetry code as in Table 2[link]).

[Figure 1]
Figure 1
The asymmetric unit of (3), with displacement ellipsoids drawn at the 50% probability level. H-atom radii are arbitrary. The difference density synthesis suggested the presence of two H atoms bonded to O8 on one mol­ecule and O108 on the other, each with 50% site occupancy. Atoms O37 and O38 carry three H atoms with 33% site occupancy. Atom O39 carries four H atoms with 25% site occupancy. This abnormal water molecule geometry is needed to explain the complex hydrogen-bond network (see Comment).
[Figure 2]
Figure 2
Packing diagram of (3), viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Experimental

The title material was crystallized by dissolving it in methanol and allowing the slow evaporation of the solvent until pale-orange crystals formed.

Crystal data
  • C13H19NO4·1.5H2O

  • Mr = 280.32

  • Orthorhombic, P 21 21 21

  • a = 8.0521 (1) Å

  • b = 9.7110 (1) Å

  • c = 35.8868 (4) Å

  • V = 2806.13 (6) Å3

  • Z = 8

  • Dx = 1.327 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4116 reflections

  • θ = 5–30°

  • μ = 0.10 mm−1

  • T = 100 K

  • Block, orange

  • 0.45 × 0.30 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scan(DENZO/SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.96, Tmax = 0.98

  • 7406 measured reflections

  • 4232 independent reflections

  • 3788 reflections with I > 2σ(I)

  • Rint = 0.013

  • θmax = 29.1°

  • h = −10 → 11

  • k = −13 → 13

  • l = −48 → 49

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.096

  • S = 0.95

  • 4232 reflections

  • 352 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(F2) + 0.06 + 0.37P], where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

C1—C2 1.529 (2)
C1—O6 1.4476 (18)
C1—N11 1.413 (2)
C2—C3 1.528 (2)
C2—O10 1.4295 (19)
C3—C4 1.518 (2)
C3—O9 1.4372 (18)
C4—C5 1.533 (2)
C4—O8 1.4269 (19)
C5—O6 1.4311 (19)
C5—C7 1.512 (2)
N11—C12 1.401 (2)
C12—C13 1.394 (2)
C12—C17 1.397 (2)
C13—C14 1.392 (2)
C14—C15 1.393 (2)
C15—C16 1.390 (2)
C15—C18 1.507 (2)
C16—C17 1.390 (2)
C101—C102 1.535 (2)
C101—O106 1.4477 (19)
C101—N111 1.424 (2)
C102—C103 1.522 (2)
C102—O110 1.4373 (19)
C103—C104 1.521 (2)
C103—O109 1.4349 (18)
C104—C105 1.538 (2)
C104—O108 1.4303 (19)
C105—O106 1.4351 (19)
C105—C107 1.514 (2)
N111—C112 1.408 (2)
C112—C117 1.395 (2)
C112—C113 1.398 (2)
C117—C116 1.393 (2)
C116—C115 1.395 (2)
C115—C114 1.395 (2)
C115—C118 1.509 (2)
C114—C113 1.387 (2)
C2—C1—O6 110.54 (12)
C2—C1—N11 110.51 (13)
O6—C1—N11 109.40 (13)
C1—C2—C3 109.33 (13)
C1—C2—O10 109.69 (13)
C3—C2—O10 112.30 (12)
C2—C3—C4 110.65 (12)
C2—C3—O9 110.77 (13)
C4—C3—O9 109.89 (12)
C3—C4—C5 107.49 (12)
C3—C4—O8 109.94 (12)
C5—C4—O8 110.20 (13)
C4—C5—O6 107.93 (12)
C4—C5—C7 114.03 (13)
O6—C5—C7 107.52 (12)
C1—O6—C5 112.16 (12)
C1—N11—C12 122.72 (13)
N11—C12—C13 119.39 (14)
N11—C12—C17 121.78 (14)
C13—C12—C17 118.80 (14)
C12—C13—C14 120.25 (15)
C13—C14—C15 121.48 (15)
C14—C15—C16 117.58 (15)
C14—C15—C18 121.11 (15)
C16—C15—C18 121.30 (15)
C15—C16—C17 121.81 (15)
C12—C17—C16 119.99 (15)
C102—C101—O106 109.99 (12)
C102—C101—N111 109.26 (13)
O106—C101—N111 110.04 (13)
C101—C102—C103 109.14 (13)
C101—C102—O110 109.35 (13)
C103—C102—O110 111.85 (13)
C102—C103—C104 110.81 (13)
C102—C103—O109 110.89 (13)
C104—C103—O109 109.61 (13)
C103—C104—C105 107.62 (12)
C103—C104—O108 109.47 (12)
C105—C104—O108 109.90 (13)
C104—C105—O106 108.67 (12)
C104—C105—C107 112.91 (13)
O106—C105—C107 107.79 (13)
C101—O106—C105 112.69 (12)
C101—N111—C112 123.04 (13)
N111—C112—C117 122.81 (14)
N111—C112—C113 118.84 (14)
C117—C112—C113 118.27 (15)
C112—C117—C116 120.02 (15)
C117—C116—C115 122.10 (15)
C116—C115—C114 117.25 (15)
C116—C115—C118 121.96 (15)
C114—C115—C118 120.79 (15)
C115—C114—C113 121.27 (15)
C112—C113—C114 121.07 (15)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O37—H372⋯O9i 0.93 1.87 2.8000 (16) 175
O9—H91⋯O110 0.97 1.92 2.8610 (16) 164
O10—H101⋯O38ii 0.93 1.81 2.7162 (16) 167
O109—H1091⋯O10iii 0.98 1.88 2.8141 (17) 159
O38—H381⋯O109 0.93 1.83 2.7648 (16) 176
O110—H1101⋯O37 0.98 1.75 2.7273 (16) 172
O8—H82⋯O39iv 0.96 1.84 2.7531 (16) 161
O37—H373⋯O108v 0.98 1.86 2.7941 (16) 159
O108—H1082⋯O39i 1.02 1.86 2.8115 (16) 154
O108—H1081⋯O37iv 0.79 2.02 2.7941 (16) 166
O8—H81⋯O38vi 0.77 2.02 2.7795 (16) 167
O38—H382⋯O8vii 0.98 1.82 2.7795 (16) 166
O39—H392⋯O108ii 0.81 2.08 2.8115 (16) 150
O37—H371⋯O39 0.92 1.94 2.8378 (17) 164
O39—H391⋯O8v 0.89 2.03 2.7531 (16) 138
O39—H393⋯O37 0.81 2.04 2.8378 (17) 171
O38—H383⋯O39iv 0.88 1.99 2.8313 (17) 159
O39—H394⋯O38v 0.95 2.09 2.8313 (17) 134
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y-1, z; (iv) x-1, y, z; (v) x+1, y, z; (vi) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

H atoms were located in difference maps. Those attached to C atoms were repositioned geometrically, while those associated with water mol­ecules were located in the difference map during subsequent cycles of least-squares. H atoms were initially refined with soft restraints on the bonds to regularize their geometry (C—H = 0.97–1.00 Å, N—H = 0.93 Å and O—H = 0.77–1.02 Å), after which they were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C,N) for those bonded to C or N atoms, and Uiso(H) = 0.05 Å2 for those bonded to O atoms.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

N-(p-Tolyl)-β-L-rhamnopyranosylamine 1.5-hydrate top
Crystal data top
C13H19NO4·1.5H2ODx = 1.327 Mg m3
Mr = 280.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4116 reflections
a = 8.0521 (1) Åθ = 5–30°
b = 9.7110 (1) ŵ = 0.10 mm1
c = 35.8868 (4) ÅT = 100 K
V = 2806.13 (6) Å3Block, orange
Z = 80.45 × 0.30 × 0.20 mm
F(000) = 1208
Data collection top
Nonius KappaCCD
diffractometer
3788 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 29.1°, θmin = 5.2°
Absorption correction: multi-scan
(DENZO/SCALEPACK; Otwinowski & Minor, 1997)
h = 1011
Tmin = 0.96, Tmax = 0.98k = 1313
7406 measured reflectionsl = 4849
4232 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(F2) + 0.06 + 0.37P],
where P = [max(Fo2,0) + 2Fc2]/3
S = 0.95(Δ/σ)max = 0.001
4232 reflectionsΔρmax = 0.28 e Å3
352 parametersΔρmin = 0.30 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.37332 (19)0.91878 (17)0.87439 (4)0.0169
C20.42518 (19)0.86119 (16)0.83647 (4)0.0161
C30.2871 (2)0.76877 (17)0.82141 (4)0.0159
C40.12283 (19)0.84542 (16)0.82062 (4)0.0151
C50.08494 (19)0.89192 (17)0.86056 (4)0.0161
O60.21286 (13)0.98535 (12)0.87184 (3)0.0170
C70.0794 (2)0.96569 (19)0.86478 (5)0.0210
O80.00548 (15)0.75670 (12)0.80737 (3)0.0199
O90.32720 (15)0.72002 (12)0.78468 (3)0.0194
O100.46352 (14)0.97201 (12)0.81171 (3)0.0186
N110.49213 (17)1.01430 (15)0.88745 (4)0.0205
C120.49970 (19)1.05700 (16)0.92470 (4)0.0164
C130.6326 (2)1.13788 (17)0.93652 (5)0.0187
C140.6484 (2)1.17349 (17)0.97393 (5)0.0199
C150.5333 (2)1.12999 (17)1.00043 (4)0.0186
C160.3990 (2)1.05259 (17)0.98804 (4)0.0195
C170.3797 (2)1.01758 (17)0.95072 (4)0.0190
C180.5551 (2)1.1642 (2)1.04110 (5)0.0241
C1010.39909 (19)0.41598 (17)0.87693 (4)0.0164
C1020.4424 (2)0.36105 (17)0.83801 (4)0.0168
C1030.2995 (2)0.27287 (17)0.82383 (4)0.0165
C1040.13748 (19)0.35352 (17)0.82426 (4)0.0158
C1050.1068 (2)0.40134 (17)0.86455 (4)0.0164
O1060.24190 (13)0.48823 (12)0.87581 (3)0.0166
C1070.0523 (2)0.48288 (19)0.86882 (5)0.0209
O1080.00461 (15)0.26632 (12)0.81230 (3)0.0207
O1090.33204 (16)0.22422 (13)0.78679 (3)0.0210
O1100.47634 (14)0.47484 (12)0.81356 (3)0.0192
N1110.52717 (17)0.50647 (15)0.88914 (4)0.0191
C1120.53241 (19)0.56291 (16)0.92526 (4)0.0172
C1170.4662 (2)0.49596 (17)0.95628 (4)0.0192
C1160.4790 (2)0.55581 (17)0.99145 (5)0.0196
C1150.5575 (2)0.68222 (17)0.99707 (5)0.0200
C1140.6260 (2)0.74664 (17)0.96591 (5)0.0206
C1130.6144 (2)0.68817 (18)0.93073 (5)0.0209
C1180.5678 (2)0.74828 (18)1.03505 (5)0.0233
O370.75028 (14)0.40028 (13)0.77368 (3)0.0204
O380.26271 (14)0.39716 (12)0.72760 (3)0.0200
O391.00308 (15)0.57948 (14)0.74752 (3)0.0211
H110.36230.84160.89180.0215*
H210.52700.80590.83990.0208*
H310.27280.68850.83840.0206*
H410.13140.92640.80400.0205*
H510.08530.80890.87690.0199*
H710.09710.99030.89080.0271*
H720.17400.90600.85700.0271*
H730.08231.04990.84980.0271*
H1310.71401.17220.91840.0230*
H1410.74201.23020.98170.0243*
H1610.31311.02191.00580.0243*
H1710.27930.96480.94270.0239*
H1810.44851.17321.05450.0307*
H1820.61131.25271.04320.0307*
H1830.62441.09551.05430.0307*
H10110.39010.33750.89360.0210*
H10210.54580.30440.84010.0227*
H10310.28640.19250.84030.0216*
H10410.14750.43320.80710.0208*
H10510.10270.32040.88140.0205*
H10710.06180.51590.89430.0277*
H10720.14960.42650.86340.0277*
H10730.05100.56310.85220.0277*
H11710.41060.40510.95330.0248*
H11610.43280.50571.01270.0242*
H11410.68110.83730.96920.0251*
H11310.66310.73590.90920.0262*
H11810.68530.77431.04030.0293*
H11820.49770.83081.03600.0293*
H11830.52720.67851.05330.0293*
H3720.71750.34100.75460.0500*
H11110.55580.57090.87100.0500*
H910.37520.63040.78980.0500*
H1010.55000.95440.79530.0500*
H10910.37650.13080.78910.0500*
H1110.54871.06510.86960.0500*
H3810.29080.34140.74780.0500*
H11010.57250.45380.79760.0500*
H820.02250.70240.78610.0500*0.5000
H3730.82990.33420.78400.0500*0.5000
H10820.03780.20790.78980.0500*0.5000
H10810.07680.30200.80470.0500*0.5000
H810.08550.79160.80030.0500*0.5000
H3820.18460.33610.71490.0500*0.5000
H3920.96790.63940.73410.0500*0.5000
H3710.81590.46840.76360.0500*0.5000
H3911.05420.63750.76300.0500*0.5000
H3930.92400.53420.75390.0500*0.5000
H3830.20280.46680.73600.0500*0.5000
H3941.11940.56510.74430.0500*0.5000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0161 (7)0.0187 (7)0.0158 (7)0.0007 (6)0.0006 (6)0.0003 (6)
C20.0162 (7)0.0155 (7)0.0167 (7)0.0015 (6)0.0001 (6)0.0018 (6)
C30.0188 (7)0.0169 (7)0.0120 (7)0.0024 (6)0.0011 (6)0.0013 (6)
C40.0156 (7)0.0155 (7)0.0141 (7)0.0003 (6)0.0013 (5)0.0010 (6)
C50.0168 (7)0.0171 (7)0.0143 (7)0.0004 (6)0.0011 (6)0.0011 (6)
O60.0150 (5)0.0167 (5)0.0193 (6)0.0007 (4)0.0004 (4)0.0024 (5)
C70.0164 (7)0.0248 (8)0.0218 (8)0.0024 (7)0.0023 (6)0.0025 (7)
O80.0175 (6)0.0207 (6)0.0214 (6)0.0006 (5)0.0032 (5)0.0028 (5)
O90.0240 (6)0.0199 (5)0.0142 (5)0.0055 (5)0.0000 (5)0.0030 (4)
O100.0191 (5)0.0180 (5)0.0186 (5)0.0020 (5)0.0054 (4)0.0023 (4)
N110.0201 (6)0.0254 (7)0.0160 (6)0.0059 (6)0.0008 (5)0.0015 (6)
C120.0163 (7)0.0165 (7)0.0163 (7)0.0023 (6)0.0012 (6)0.0001 (6)
C130.0166 (7)0.0185 (7)0.0209 (8)0.0009 (6)0.0018 (6)0.0005 (6)
C140.0168 (7)0.0197 (7)0.0231 (8)0.0002 (6)0.0024 (6)0.0032 (6)
C150.0186 (7)0.0197 (7)0.0176 (7)0.0042 (6)0.0027 (6)0.0018 (6)
C160.0191 (7)0.0208 (8)0.0187 (7)0.0003 (7)0.0020 (6)0.0003 (6)
C170.0152 (7)0.0212 (8)0.0207 (7)0.0018 (6)0.0000 (6)0.0016 (6)
C180.0226 (8)0.0318 (9)0.0180 (8)0.0013 (8)0.0021 (6)0.0036 (7)
C1010.0141 (6)0.0185 (7)0.0167 (7)0.0008 (6)0.0009 (6)0.0008 (6)
C1020.0174 (7)0.0159 (7)0.0172 (7)0.0021 (6)0.0010 (6)0.0017 (6)
C1030.0185 (7)0.0153 (7)0.0158 (7)0.0027 (6)0.0018 (6)0.0001 (6)
C1040.0157 (7)0.0163 (7)0.0153 (7)0.0006 (6)0.0005 (6)0.0005 (6)
C1050.0158 (7)0.0176 (7)0.0157 (7)0.0008 (6)0.0009 (6)0.0010 (6)
O1060.0136 (5)0.0170 (5)0.0192 (6)0.0016 (4)0.0002 (4)0.0014 (5)
C1070.0162 (7)0.0247 (8)0.0219 (8)0.0029 (7)0.0010 (6)0.0009 (7)
O1080.0178 (6)0.0214 (5)0.0228 (6)0.0006 (5)0.0032 (5)0.0016 (5)
O1090.0278 (6)0.0196 (5)0.0156 (5)0.0066 (5)0.0008 (5)0.0033 (4)
O1100.0191 (5)0.0177 (5)0.0210 (5)0.0021 (5)0.0062 (4)0.0039 (5)
N1110.0159 (6)0.0223 (7)0.0191 (7)0.0018 (5)0.0001 (5)0.0007 (5)
C1120.0113 (6)0.0194 (7)0.0210 (7)0.0020 (6)0.0022 (6)0.0002 (6)
C1170.0158 (7)0.0192 (7)0.0227 (8)0.0002 (6)0.0007 (6)0.0003 (6)
C1160.0157 (7)0.0222 (8)0.0208 (7)0.0012 (6)0.0001 (6)0.0030 (6)
C1150.0163 (7)0.0218 (8)0.0220 (8)0.0037 (6)0.0029 (6)0.0011 (7)
C1140.0167 (7)0.0193 (8)0.0260 (8)0.0008 (6)0.0034 (7)0.0010 (7)
C1130.0176 (7)0.0224 (8)0.0226 (8)0.0004 (7)0.0003 (6)0.0025 (6)
C1180.0237 (8)0.0228 (9)0.0235 (8)0.0012 (7)0.0018 (7)0.0020 (7)
O370.0192 (5)0.0238 (6)0.0182 (5)0.0011 (5)0.0016 (4)0.0017 (5)
O380.0180 (5)0.0232 (6)0.0190 (5)0.0005 (5)0.0011 (4)0.0016 (5)
O390.0232 (6)0.0203 (6)0.0198 (6)0.0012 (5)0.0023 (5)0.0002 (4)
Geometric parameters (Å, º) top
C1—C21.529 (2)C102—O1101.4373 (19)
C1—O61.4476 (18)C102—H10211.000
C1—N111.413 (2)C103—C1041.521 (2)
C1—H110.979C103—O1091.4349 (18)
C2—C31.528 (2)C103—H10310.985
C2—O101.4295 (19)C104—C1051.538 (2)
C2—H210.987C104—O1081.4303 (19)
C3—C41.518 (2)C104—H10410.993
C3—O91.4372 (18)C105—O1061.4351 (19)
C3—H310.996C105—C1071.514 (2)
C4—C51.533 (2)C105—H10510.991
C4—O81.4269 (19)C107—H10710.971
C4—H410.989C107—H10720.975
C5—O61.4311 (19)C107—H10730.982
C5—C71.512 (2)O108—H10821.021
C5—H510.998O108—H10810.790
C7—H710.975O109—H10910.978
C7—H720.997O110—H11010.985
C7—H730.980N111—C1121.408 (2)
O8—H820.955N111—H11110.931
O8—H810.770C112—C1171.395 (2)
O9—H910.970C112—C1131.398 (2)
O10—H1010.927C117—C1161.393 (2)
N11—C121.401 (2)C117—H11710.996
N11—H1110.929C116—C1151.395 (2)
C12—C131.394 (2)C116—H11610.979
C12—C171.397 (2)C115—C1141.395 (2)
C13—C141.392 (2)C115—C1181.509 (2)
C13—H1310.983C114—C1131.387 (2)
C14—C151.393 (2)C114—H11410.993
C14—H1410.974C113—H11310.983
C15—C161.390 (2)C118—H11810.997
C15—C181.507 (2)C118—H11820.981
C16—C171.390 (2)C118—H11830.998
C16—H1610.987O37—H3720.933
C17—H1711.000O37—H3730.979
C18—H1810.987O37—H3710.920
C18—H1820.975O38—H3810.932
C18—H1830.990O38—H3820.977
C101—C1021.535 (2)O38—H3830.884
C101—O1061.4477 (19)O39—H3920.806
C101—N1111.424 (2)O39—H3910.891
C101—H10110.971O39—H3930.807
C102—C1031.522 (2)O39—H3940.954
C2—C1—O6110.54 (12)C101—C102—C103109.14 (13)
C2—C1—N11110.51 (13)C101—C102—O110109.35 (13)
O6—C1—N11109.40 (13)C103—C102—O110111.85 (13)
C2—C1—H11108.1C101—C102—H1021108.3
O6—C1—H11107.6C103—C102—H1021110.2
N11—C1—H11110.7O110—C102—H1021108.0
C1—C2—C3109.33 (13)C102—C103—C104110.81 (13)
C1—C2—O10109.69 (13)C102—C103—O109110.89 (13)
C3—C2—O10112.30 (12)C104—C103—O109109.61 (13)
C1—C2—H21108.3C102—C103—H1031109.0
C3—C2—H21109.2C104—C103—H1031108.1
O10—C2—H21107.9O109—C103—H1031108.4
C2—C3—C4110.65 (12)C103—C104—C105107.62 (12)
C2—C3—O9110.77 (13)C103—C104—O108109.47 (12)
C4—C3—O9109.89 (12)C105—C104—O108109.90 (13)
C2—C3—H31109.1C103—C104—H1041109.0
C4—C3—H31107.1C105—C104—H1041111.2
O9—C3—H31109.2O108—C104—H1041109.6
C3—C4—C5107.49 (12)C104—C105—O106108.67 (12)
C3—C4—O8109.94 (12)C104—C105—C107112.91 (13)
C5—C4—O8110.20 (13)O106—C105—C107107.79 (13)
C3—C4—H41109.9C104—C105—H1051109.8
C5—C4—H41110.0O106—C105—H1051108.6
O8—C4—H41109.3C107—C105—H1051109.0
C4—C5—O6107.93 (12)C101—O106—C105112.69 (12)
C4—C5—C7114.03 (13)C105—C107—H1071109.6
O6—C5—C7107.52 (12)C105—C107—H1072111.4
C4—C5—H51108.2H1071—C107—H1072108.1
O6—C5—H51110.1C105—C107—H1073110.1
C7—C5—H51109.1H1071—C107—H1073108.2
C1—O6—C5112.16 (12)H1072—C107—H1073109.4
C5—C7—H71109.9C104—O108—H1082111.7
C5—C7—H72111.4C104—O108—H1081117.7
H71—C7—H72107.3H1082—O108—H1081100.9
C5—C7—H73111.2C103—O109—H1091107.1
H71—C7—H73108.7C102—O110—H1101110.2
H72—C7—H73108.3C101—N111—C112123.04 (13)
C4—O8—H82115.4C101—N111—H1111112.3
C4—O8—H81116.7C112—N111—H1111111.9
H82—O8—H81100.3N111—C112—C117122.81 (14)
C3—O9—H91102.2N111—C112—C113118.84 (14)
C2—O10—H101114.7C117—C112—C113118.27 (15)
C1—N11—C12122.72 (13)C112—C117—C116120.02 (15)
C1—N11—H111116.8C112—C117—H1171119.9
C12—N11—H111118.8C116—C117—H1171120.1
N11—C12—C13119.39 (14)C117—C116—C115122.10 (15)
N11—C12—C17121.78 (14)C117—C116—H1161118.1
C13—C12—C17118.80 (14)C115—C116—H1161119.8
C12—C13—C14120.25 (15)C116—C115—C114117.25 (15)
C12—C13—H131120.1C116—C115—C118121.96 (15)
C14—C13—H131119.6C114—C115—C118120.79 (15)
C13—C14—C15121.48 (15)C115—C114—C113121.27 (15)
C13—C14—H141119.2C115—C114—H1141118.6
C15—C14—H141119.4C113—C114—H1141120.1
C14—C15—C16117.58 (15)C112—C113—C114121.07 (15)
C14—C15—C18121.11 (15)C112—C113—H1131119.2
C16—C15—C18121.30 (15)C114—C113—H1131119.7
C15—C16—C17121.81 (15)C115—C118—H1181109.2
C15—C16—H161120.1C115—C118—H1182110.3
C17—C16—H161118.1H1181—C118—H1182109.4
C12—C17—C16119.99 (15)C115—C118—H1183106.7
C12—C17—H171120.6H1181—C118—H1183111.1
C16—C17—H171119.5H1182—C118—H1183110.1
C15—C18—H181112.9H372—O37—H37393.3
C15—C18—H182108.9H372—O37—H371108.5
H181—C18—H182106.8H373—O37—H371104.1
C15—C18—H183112.3H381—O38—H38299.6
H181—C18—H183108.5H381—O38—H383108.2
H182—C18—H183107.2H382—O38—H383105.8
C102—C101—O106109.99 (12)H392—O39—H39194.5
C102—C101—N111109.26 (13)H392—O39—H393106.6
O106—C101—N111110.04 (13)H391—O39—H393122.1
C102—C101—H1011107.7H392—O39—H394112.2
O106—C101—H1011109.4H391—O39—H39473.4
N111—C101—H1011110.4H393—O39—H394136.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O37—H372···O9i0.931.872.8000 (16)175
O9—H91···O1100.971.922.8610 (16)164
O10—H101···O38ii0.931.812.7162 (16)167
O109—H1091···O10iii0.981.882.8141 (17)159
O38—H381···O1090.931.832.7648 (16)176
O110—H1101···O370.981.752.7273 (16)172
O8—H82···O39iv0.961.842.7531 (16)161
O37—H373···O108v0.981.862.7941 (16)159
O108—H1082···O39i1.021.862.8115 (16)154
O108—H1081···O37iv0.792.022.7941 (16)166
O8—H81···O38vi0.772.022.7795 (16)167
O38—H382···O8vii0.981.822.7795 (16)166
O39—H392···O108ii0.812.082.8115 (16)150
O37—H371···O390.921.942.8378 (17)164
O39—H391···O8v0.892.032.7531 (16)138
O39—H393···O370.812.042.8378 (17)171
O38—H383···O39iv0.881.992.8313 (17)159
O39—H394···O38v0.952.092.8313 (17)134
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x, y1, z; (iv) x1, y, z; (v) x+1, y, z; (vi) x, y+1/2, z+3/2; (vii) x, y1/2, z+3/2.
 

Footnotes

Visiting scientist at the Department of Chemical Crystallography, Chemical Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, England.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAmadori, M. (1925). Atti Accad. Naz. Lincei, 2, 337–345.  CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFuncke, W. (1978). Justus Liebigs Ann. Chem. 12, 2009–2104.  Google Scholar
First citationHarding, C. C., Watkin, D. J., Hotchkiss, D. J., Cook, J. M. D. & Fleet, G. W. J. (2005). Acta Cryst. E61, o995–o997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHodge, J. E. (1955). Adv. Carbohydr. Chem. 10, 169–205.  CrossRef PubMed CAS Web of Science Google Scholar
First citationHorvat, S. & Jakas, A. (2004). J. Pept. Sci. 10, 119–137.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKwak, E. J. & Lim, S. I. (2004). Amino Acids, 27, 85–90.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLapolla, A., Traldi, P. & Fedele, D. (2005). Clin. Biochem. 38, 103–115.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMartins, S. I. F. S. & Van Boekel, M. A. J. S. (2005). Food Chem. 90, 257–269.  Web of Science CrossRef CAS Google Scholar
First citationMottram, D. S., Wedzicha, B. L. & Dodson, A. T. (2002). Nature (London), 419, 448–449.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSmit, A. J. & Lutgers, H. L. (2004). Curr. Med. Chem. 11, 2767–2784.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds