organic compounds
(2R,3S,4S,5R)-Methyl 5-cyano-2,3:4,5-di-O-isopropylidene-2,3,4,5-tetrahydroxypentanoate
aChemical Crystallography, Chemical Research Laboratory, University of Oxford, Oxford OX1 3TA, England, and bDepartment of Organic Chemistry, Chemical Research Laboratory, Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk
The title nitrile, C13H19NO6, a formal oxidation product, was unexpectedly isolated during hydrogenation of an azide precursor in the presence of palladium black.
Comment
The azide group is synthetically important due to its ability to be reduced under a variety of conditions, thus permitting the controlled introduction of an amine functionality (Scriven & Turnbull, 1988). Further reagents for the reduction of to form and continue to be discovered (Fazio & Wong, 2003); ruthenium(III) has been shown to be an efficient promoter for the formation of from and thioacids (Shangguan et al., 2003). Although catalytic hydrogenation is a particularly useful method of azide reduction, often providing excellent yields whilst leaving other sensitive functionalities intact, surprising complications are still discovered; thus catalytic reduction of a series of bicyclic (RN3) resulted in the formation of a number of azoamines (RN=N—NH2) arising from simple addition of hydrogen to the terminal nitrogen of the azide (Beacham et al., 1998). When the azido ester (1) was hydrogenated in the presence of palladium black in 1,4-dioxan, the majority of the products were derived from the amino ester (2) (Mayes, Simon et al., 2004; Mayes, Stetz, Watterson et al., 2004; Mayes, Stetz, Ansell & Fleet, 2004). However, significant amounts of the nitrile (3) were also formed during the reduction; this is unexpected, since the formation of the nitrile appears to be a formal oxidation occurring under reducing conditions. Although previous examples of the catalytic decomposition of primary to have been reported (Hayashi et al., 1976; Kappe, 1990; Kotsuki et al., 1997), this is the first example of the formation of a nitrile being formed under hydrogenation conditions. The structure of the unexpected product (3), including the at C-5 (atom C13) bearing the nitrile, was firmly established by X-ray crystallographic analysis (Fig. 1); the arises from the use of D-galactose as the original starting material.
The ab plane (Fig. 2). One face of the layer is relatively flat and consists of nitrile and methyl groups facing an identical face of the next layer. The other face of the layer is pleated, with the methyl carboxylate groups of one layer interleaving with the corresponding groups on the adjacent face. There are no unexpectedly short O-methyl or N-methyl contacts.
of (3) is unexceptional, consisting of layers of molecules lying parallel to theExperimental
The azide ester (1) was hydrogenated in the presence of palladium black in 1,4-dioxan (Mayes, Simon et al., 2004) and the title material crystallized from ethyl acetate/hexane.
Crystal data
|
Refinement
|
|
In the absence of significant Uiso(H) = 1.2–1.5Ueq(parent atom)], after which they were refined with riding constraints.
Friedel pairs were merged, and the is arbitrarily assigned. The relatively large ratio of minimum to maximum corrections applied in the multiscan process (1:1.11) reflect changes in the illuminated volume of the crystal. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å) and displacement parameters [Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536805023834/cf6447sup1.cif
contains datablocks 3, global. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S1600536805023834/cf64473sup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C13H19NO6 | F(000) = 304 |
Mr = 285.30 | Dx = 1.280 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.4312 (3) Å | Cell parameters from 1417 reflections |
b = 5.4469 (1) Å | θ = 3–27° |
c = 13.0536 (5) Å | µ = 0.10 mm−1 |
β = 93.4825 (10)° | T = 190 K |
V = 740.31 (4) Å3 | Block, colourless |
Z = 2 | 0.80 × 0.50 × 0.30 mm |
Nonius KappaCCD diffractometer | 1848 reflections with I > −3σ(I) |
Graphite monochromator | Rint = 0.020 |
ω scans | θmax = 27.5°, θmin = 4.7° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −13→13 |
Tmin = 0.87, Tmax = 0.97 | k = −6→7 |
4978 measured reflections | l = −16→16 |
1848 independent reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(F2) + ( 0.03P)2 + 0.15P] where P = [max(Fo2,0) + 2Fc2]/3 |
wR(F2) = 0.069 | (Δ/σ)max = 0.000365 |
S = 0.99 | Δρmax = 0.18 e Å−3 |
1848 reflections | Δρmin = −0.15 e Å−3 |
182 parameters | Extinction correction: Larson 1970 Crystallographic Computing eq 22 |
1 restraint | Extinction coefficient: 160 (30) |
Primary atom site location: structure-invariant direct methods |
x | y | z | Uiso*/Ueq | ||
C1 | 0.65764 (17) | 0.6699 (5) | 1.04143 (13) | 0.0426 | |
O2 | 0.71146 (10) | 0.6530 (3) | 0.94132 (9) | 0.0372 | |
C3 | 0.62621 (14) | 0.6379 (3) | 0.86076 (12) | 0.0272 | |
O4 | 0.51203 (10) | 0.6423 (3) | 0.86742 (9) | 0.0389 | |
C5 | 0.69562 (14) | 0.6225 (3) | 0.76183 (11) | 0.0250 | |
O6 | 0.61174 (11) | 0.5653 (2) | 0.67559 (9) | 0.0284 | |
C7 | 0.61457 (16) | 0.3048 (3) | 0.65796 (13) | 0.0275 | |
C8 | 0.49552 (15) | 0.1822 (4) | 0.69526 (14) | 0.0354 | |
C9 | 0.63211 (18) | 0.2588 (4) | 0.54558 (13) | 0.0396 | |
O10 | 0.72462 (10) | 0.2156 (2) | 0.71971 (9) | 0.0296 | |
C11 | 0.79554 (14) | 0.4185 (3) | 0.76192 (12) | 0.0240 | |
C12 | 0.90623 (14) | 0.4853 (3) | 0.69547 (12) | 0.0249 | |
C13 | 1.00643 (15) | 0.2819 (3) | 0.69727 (13) | 0.0289 | |
C14 | 1.07823 (16) | 0.2771 (4) | 0.60205 (14) | 0.0384 | |
N15 | 1.13337 (18) | 0.2738 (4) | 0.52965 (14) | 0.0613 | |
O16 | 1.08841 (12) | 0.3413 (2) | 0.78462 (9) | 0.0320 | |
C17 | 1.09141 (16) | 0.6051 (3) | 0.79421 (13) | 0.0291 | |
C18 | 1.20660 (15) | 0.7121 (4) | 0.74499 (14) | 0.0371 | |
C19 | 1.0856 (2) | 0.6692 (5) | 0.90635 (14) | 0.0486 | |
O20 | 0.97635 (10) | 0.6886 (2) | 0.73847 (9) | 0.0317 | |
H11 | 0.7301 | 0.6879 | 1.0916 | 0.0619* | |
H12 | 0.6097 | 0.5201 | 1.0535 | 0.0644* | |
H13 | 0.6005 | 0.8096 | 1.0434 | 0.0632* | |
H51 | 0.7344 | 0.7826 | 0.7521 | 0.0275* | |
H81 | 0.5034 | 0.0085 | 0.6846 | 0.0524* | |
H82 | 0.4877 | 0.2168 | 0.7692 | 0.0517* | |
H83 | 0.4225 | 0.2499 | 0.6549 | 0.0524* | |
H91 | 0.6504 | 0.0870 | 0.5351 | 0.0585* | |
H92 | 0.7051 | 0.3564 | 0.5250 | 0.0583* | |
H93 | 0.5536 | 0.3026 | 0.5039 | 0.0582* | |
H111 | 0.8278 | 0.3770 | 0.8310 | 0.0273* | |
H121 | 0.8747 | 0.5279 | 0.6267 | 0.0290* | |
H131 | 0.9680 | 0.1242 | 0.7065 | 0.0337* | |
H181 | 1.2034 | 0.8935 | 0.7523 | 0.0530* | |
H182 | 1.2828 | 0.6540 | 0.7793 | 0.0551* | |
H183 | 1.2058 | 0.6714 | 0.6734 | 0.0540* | |
H191 | 1.0804 | 0.8469 | 0.9130 | 0.0725* | |
H192 | 1.1623 | 0.6100 | 0.9426 | 0.0726* | |
H193 | 1.0081 | 0.5924 | 0.9306 | 0.0724* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0387 (9) | 0.0557 (12) | 0.0331 (8) | 0.0046 (10) | 0.0010 (7) | −0.0069 (10) |
O2 | 0.0275 (5) | 0.0516 (8) | 0.0322 (6) | 0.0015 (6) | −0.0013 (4) | −0.0073 (6) |
C3 | 0.0267 (7) | 0.0211 (8) | 0.0336 (8) | 0.0008 (7) | 0.0005 (6) | −0.0007 (7) |
O4 | 0.0250 (5) | 0.0508 (8) | 0.0408 (6) | 0.0015 (6) | 0.0026 (5) | −0.0050 (7) |
C5 | 0.0230 (7) | 0.0199 (8) | 0.0318 (8) | −0.0001 (6) | −0.0009 (6) | 0.0025 (7) |
O6 | 0.0312 (6) | 0.0210 (6) | 0.0322 (6) | 0.0029 (5) | −0.0045 (5) | 0.0017 (5) |
C7 | 0.0261 (8) | 0.0215 (8) | 0.0346 (8) | 0.0015 (6) | −0.0016 (6) | 0.0014 (7) |
C8 | 0.0285 (7) | 0.0304 (9) | 0.0473 (10) | −0.0042 (8) | 0.0022 (7) | −0.0009 (8) |
C9 | 0.0445 (10) | 0.0384 (10) | 0.0357 (9) | −0.0002 (9) | 0.0008 (7) | −0.0034 (8) |
O10 | 0.0265 (5) | 0.0184 (6) | 0.0431 (6) | −0.0008 (5) | −0.0050 (5) | 0.0031 (5) |
C11 | 0.0243 (7) | 0.0188 (7) | 0.0288 (7) | −0.0002 (6) | 0.0000 (6) | 0.0030 (6) |
C12 | 0.0251 (7) | 0.0200 (8) | 0.0296 (7) | 0.0011 (6) | 0.0018 (6) | 0.0025 (6) |
C13 | 0.0248 (7) | 0.0244 (8) | 0.0376 (8) | 0.0005 (7) | 0.0014 (6) | −0.0035 (7) |
C14 | 0.0315 (8) | 0.0381 (11) | 0.0455 (10) | −0.0015 (8) | 0.0024 (7) | −0.0165 (9) |
N15 | 0.0566 (10) | 0.0740 (15) | 0.0553 (11) | −0.0094 (11) | 0.0200 (9) | −0.0304 (11) |
O16 | 0.0331 (6) | 0.0235 (6) | 0.0385 (7) | 0.0049 (5) | −0.0052 (5) | 0.0002 (5) |
C17 | 0.0284 (8) | 0.0234 (8) | 0.0352 (8) | 0.0021 (6) | −0.0006 (7) | −0.0018 (7) |
C18 | 0.0252 (7) | 0.0365 (10) | 0.0491 (10) | −0.0020 (8) | −0.0008 (7) | −0.0053 (8) |
C19 | 0.0621 (12) | 0.0453 (12) | 0.0385 (10) | −0.0004 (11) | 0.0035 (9) | −0.0087 (10) |
O20 | 0.0234 (5) | 0.0189 (6) | 0.0525 (7) | 0.0002 (5) | 0.0003 (5) | 0.0012 (5) |
C1—O2 | 1.456 (2) | O10—C11 | 1.4222 (18) |
C1—H11 | 0.975 | C11—C12 | 1.530 (2) |
C1—H12 | 0.975 | C11—H111 | 0.970 |
C1—H13 | 0.968 | C12—C13 | 1.522 (2) |
O2—C3 | 1.3378 (18) | C12—O20 | 1.4235 (19) |
C3—O4 | 1.1996 (19) | C12—H121 | 0.965 |
C3—C5 | 1.521 (2) | C13—C14 | 1.490 (2) |
C5—O6 | 1.4178 (18) | C13—O16 | 1.420 (2) |
C5—C11 | 1.523 (2) | C13—H131 | 0.958 |
C5—H51 | 0.973 | C14—N15 | 1.136 (2) |
O6—C7 | 1.438 (2) | O16—C17 | 1.443 (2) |
C7—C8 | 1.516 (2) | C17—C18 | 1.513 (2) |
C7—C9 | 1.510 (2) | C17—C19 | 1.510 (2) |
C7—O10 | 1.4461 (19) | C17—O20 | 1.439 (2) |
C8—H81 | 0.961 | C18—H181 | 0.993 |
C8—H82 | 0.992 | C18—H182 | 0.943 |
C8—H83 | 0.972 | C18—H183 | 0.960 |
C9—H91 | 0.966 | C19—H191 | 0.974 |
C9—H92 | 0.980 | C19—H192 | 0.960 |
C9—H93 | 0.985 | C19—H193 | 0.980 |
O2—C1—H11 | 106.5 | O10—C11—C12 | 110.98 (12) |
O2—C1—H12 | 108.7 | C5—C11—H111 | 111.7 |
H11—C1—H12 | 111.2 | O10—C11—H111 | 108.8 |
O2—C1—H13 | 110.2 | C12—C11—H111 | 110.6 |
H11—C1—H13 | 110.9 | C11—C12—C13 | 111.06 (12) |
H12—C1—H13 | 109.3 | C11—C12—O20 | 110.43 (12) |
C1—O2—C3 | 115.80 (12) | C13—C12—O20 | 102.95 (11) |
O2—C3—O4 | 123.87 (15) | C11—C12—H121 | 111.0 |
O2—C3—C5 | 110.05 (12) | C13—C12—H121 | 112.6 |
O4—C3—C5 | 126.05 (14) | O20—C12—H121 | 108.5 |
C3—C5—O6 | 112.57 (12) | C12—C13—C14 | 112.31 (15) |
C3—C5—C11 | 113.63 (13) | C12—C13—O16 | 103.07 (13) |
O6—C5—C11 | 103.27 (12) | C14—C13—O16 | 111.41 (13) |
C3—C5—H51 | 106.5 | C12—C13—H131 | 111.2 |
O6—C5—H51 | 109.5 | C14—C13—H131 | 108.9 |
C11—C5—H51 | 111.3 | O16—C13—H131 | 109.8 |
C5—O6—C7 | 109.03 (12) | C13—C14—N15 | 179.74 (19) |
O6—C7—C8 | 110.98 (15) | C13—O16—C17 | 107.76 (13) |
O6—C7—C9 | 108.91 (15) | O16—C17—C18 | 111.13 (16) |
C8—C7—C9 | 112.88 (15) | O16—C17—C19 | 108.22 (16) |
O6—C7—O10 | 105.41 (13) | C18—C17—C19 | 113.72 (16) |
C8—C7—O10 | 108.12 (13) | O16—C17—O20 | 104.95 (13) |
C9—C7—O10 | 110.29 (13) | C18—C17—O20 | 108.84 (14) |
C7—C8—H81 | 107.9 | C19—C17—O20 | 109.61 (14) |
C7—C8—H82 | 110.2 | C17—C18—H181 | 108.1 |
H81—C8—H82 | 110.0 | C17—C18—H182 | 109.7 |
C7—C8—H83 | 106.8 | H181—C18—H182 | 108.7 |
H81—C8—H83 | 111.5 | C17—C18—H183 | 111.3 |
H82—C8—H83 | 110.3 | H181—C18—H183 | 109.0 |
C7—C9—H91 | 109.5 | H182—C18—H183 | 110.0 |
C7—C9—H92 | 108.5 | C17—C19—H191 | 108.8 |
H91—C9—H92 | 108.9 | C17—C19—H192 | 108.5 |
C7—C9—H93 | 110.5 | H191—C19—H192 | 109.9 |
H91—C9—H93 | 108.8 | C17—C19—H193 | 107.3 |
H92—C9—H93 | 110.6 | H191—C19—H193 | 110.1 |
C7—O10—C11 | 109.36 (12) | H192—C19—H193 | 112.1 |
C5—C11—O10 | 103.10 (11) | C17—O20—C12 | 110.26 (12) |
C5—C11—C12 | 111.47 (12) |
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Beacham, A. R., Smelt, K. H., Biggadike, K., Britten, C. J., Hackett, L., Winchester, B. G., Nash, R. J., Griffiths, R. C. & Fleet, G. W. J. (1998). Tetrahedron Lett. 39, 151–154. Web of Science CrossRef CAS Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Fazio, F. & Wong, C.-H. (2003). Tetrahedron Lett. 44, 9083–9085. Web of Science CrossRef CAS Google Scholar
Hayashi, H., Ohno, A. & Oka, S. (1976). Bull. Chem. Soc. Jpn, 49, 506–509. CrossRef CAS Google Scholar
Kappe, C. O. (1990). Liebigs Ann. Chem. pp. 505–507. CrossRef Google Scholar
Kotsuki, H., Ohishi, T. & Araki, T. (1997). Tetrahedron Lett. 38, 2129–2132. CrossRef CAS Web of Science Google Scholar
Mayes, B. A., Simon, L., Watkin, D. J., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 157–162. Web of Science CSD CrossRef CAS Google Scholar
Mayes, B. A., Stetz, R. J. E., Ansell, C. W. G. & Fleet, G. W. J. (2004). Tetrahedron Lett. 45, 153–156. Web of Science CrossRef CAS Google Scholar
Mayes, B. A., Stetz, R. J. E., Watterson, M. P., Edwards, A. A., Ansell, C. W. G., Tranter, G. E. & Fleet, G. W. J. (2004). Tetrahedron Asymmetry, 15, 627–638. Web of Science CrossRef CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Scriven, E. F. V. & Turnbull, K. (1988). Chem. Rev. 88, 297–368. CrossRef CAS Web of Science Google Scholar
Shangguan, N., Katukojvala, S., Greenberg, R. & Williams, L. J. (2003). J. Am. Chem. Soc. 125, 7754–7755. Web of Science CrossRef PubMed CAS Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.