metal-organic compounds
[Co(H2O)6]{[Co(C4H4N2)(H2O)2][V2O2(pmida)2]}·2H2O [H4pmida is N-(phosphonomethyl)iminodiacetic acid]: the first two-dimensional hybrid framework containing [V2O2(pmida)2]4− building blocks
aDepartment of Chemistry, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal, bDepartment of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warszawa, Poland, and cDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, England
*Correspondence e-mail: fpaz@dq.ua.pt
The μ2-pyrazine-bis[μ3-N-(phosphonomethyl)iminodiacetato]cobalt(II)divanadate(IV) dihydrate, {[Co(H2O)6][CoV2(C3H4O8P)2(C4H4N2)2(H2O)2]·2H2O}n, is the first example of a two-dimensional hybrid framework containing centrosymmetric dimeric [V2O2(pmida)2]4− anionic units [H4pmida is N-(phosphonomethyl)iminodiacetic acid]. The structure contains two crystallographically unique cobalt(II) centres, both located at inversion centres and exhibiting Jahn–Teller-distorted octahedral coordination geometries. One Co2+ cation establishes physical links between adjacent [V2O2(pmida)2]4− anionic units, forming one-dimensional anionic ribbons which run along the [010] direction, {[Co(H2O)2][V2O2(pmida)2]}n2n−. Pyrazine ligands, with their centroids located at inversion centres, bridge the above-mentioned Co2+ centres, forming {[Co(H2O)2][V2O2(pmida)2]}n2n− anionic layers which alternate along the [001] direction with [Co(H2O)6]2+ cations and the water molecules of crystallization. An extensive and highly directional hydrogen-bonded network interconnects the structural components.
of the title compound, polymeric hexaaquacobalt(II) diaquadioxodi-Comment
The design of coordination-based materials in which the topology is extended from zero-dimensional (i.e. discrete complexes) into one-, two- or three-dimensional, is a topical and interesting field of research. Since the seminal paper by Hoskins & Robson (1990), where diamondoid-type hybrid frameworks were engineered based upon the simple structures of cadmium and zinc the field has expanded rapidly. This was motivated by the unusual architectures and the potential applications of such frameworks (Batten & Robson, 1998; Janiak, 2003; Mori et al., 2004; Moulton & Zaworotko, 2001; Rowsell & Yaghi, 2004). In order to control, at least partially, the occurrence of `supramolecular (Moulton & Zaworotko, 2001), these hydrid crystalline materials are now being constructed using a typical modular approach: rigid and highly robust coordination-based cores are used as secondary building units (SBUs) for the construction of multidimensional metal–organic frameworks (MOFs) (Yaghi et al., 1998).
During the course of our work on crystalline organic–inorganic hybrid materials (Paz et al., 2002, 2002a,b,c; Paz & Klinowski, 2003, 2004a,b,c; Paz, Shi et al., 2004), we came across N-(phosphonomethyl)iminodiacetic acid (H4pmida), an organic molecule which, despite possessing several types of chelating functional groups, is relatively unexplored in the construction of MOFs (Fan et al., 2004; Gutschke et al., 1999; Mao et al., 2002; Pei et al., 2004; Song et al., 2004), as confirmed by a search in the Cambridge Structural Database (Version 5.25 of November 2003; Allen, 2002; Allen & Motherwell, 2002). This molecule forms with V4+ centres centrosymmetric dimeric [V2O2(pmida)2]4− anionic units, as originally reported by Crans et al. (1998); this anionic dimer is a rather convenient SBU owing, on the one hand, to its predictable self-assembly in aqueous media (particularly when hydrothermal synthetic approaches are employed) and, on the other, to the several terminal O atoms which can bound to a large variety of metal centres through various coordination modes. We recently reported the first three-dimensional frameworks containing [V2O2(pmida)2]4− anionic units, through their combination with transition metal centres (namely, Cd2+ and Co2+) and the bridging 4,4′-bipyridine organic ligand (Paz, Shi et al., 2004). We report here the first two-dimensional framework containing these anionic units: [Co(H2O)6]{[Co(pyr)(H2O)2][V2O2(pmida)2]}·2(H2O), (I) (where pyr is pyrazine).
The title compound, (I), crystallizes in the triclinic P, with all its primary building blocks having inversion symmetry: the [V2O2(pmida)2]4− anionic unit has its centroid located at the inversion centre (, 0, 0); both Co1 and Co2 are themselves located at inversion centres, with the former positioned in the middle of the ab plane, at (, , 0), and the latter in the centre of the at (, , ); the pyrazine bridging organic ligand, as for the [V2O2(pmida)2]4− anionic unit, is also centrosymmetric, with its centroid located at (0, , 0).
The geometry of the [V2O2(pmida)2]4− anionic unit is very similar to that previously reported for related compounds (Crans et al., 1998; Paz, Shi et al., 2004), with the pmida4− anionic ligands encapsulating the V4+ centres inside three five-membered chelate rings (average bite angle of ca 77°, Table 1). The of these metal centres resembles a highly distorted octahedron, {VNO5}, with the oxo group [V=O = 1.593 (2) Å] markedly showing its trans influence in the rather long V—N distance [2.354 (2) Å]. The phosphonate groups establish the physical bridges between adjacent V4+ centres (Fig. 1a), leading to a V1⋯V1v distance of 5.149 (2) Å [symmetry code: (v) 1 − x, −y, 1 − z].
Both cobalt(II) centres adopt Jahn–Teller-distorted octahedral cooordination geometries, as depicted in Fig. 1 and Table 1. For Co1, the equatorial plane is formed by two water molecules plus two O-donor atoms from phosphonate groups (Fig. 1a), with an average Co—O distance of ca 2.07 Å; pyr ligands, axially coordinated, complete the coordination, with Co—N bond lengths of 2.218 (2) Å (Table 1). Co2 is coordinated only by water molecules, with O3W and O4W forming the equatorial plane (the average Co—O bond length is 2.06 Å) and O2W located 2.144 (2) Å from the metal centre. The cis octahedral angles are within the ranges 88.04 (6)–91.96 (6) and 87.84 (6)–92.16 (6)° for Co1 and Co2, respectively (Table 1).
The centrosymmetric [V2O2(pmida)2]4− anionic unit is bound to two adjacent Co1 metal centres via the trans-uncoordinated P—O bonds, imposing a Co1⋯Co1viii separation of 10.140 (2) Å [symmetry code: (viii) x, −1 + y, z] (Fig. 1a). The repetition of this bridging motif leads to the formation of a one-dimensional anionic ribbon (running along the [010] direction), {[Co(H2O)2][V2O2(pmida)2]}n2n−, as depicted in Fig. 2(a). Centrosymmetric bridging pyr ligands are axially coordinated to these Co1 centres (Fig. 2b), establishing physical connections between adjacent ribbons and further imposing a Co1⋯Co1vii separation of 7.220 (1) Å [symmetry code: (vii) 1 + x, y, z]. Such an arrangement leads to the formation of a decorated two-dimensional {[Co(pyr)(H2O)2][V2O2(pmida)2]}n2n− anionic layer with distances between Co1 atoms defined by the a- and b-axis lengths. The charge of this layer is compensated by the presence of hexaaquacobalt(II) cations, [Co(H2O)6]2+ (Fig. 1b), which also act as space-filling groups, located in the available spaces resulting from the parallel packing, along the [001] direction, of individual anionic layers (Fig. 3). Each {[Co(H2O)2][V2O2(pmida)2]}n2n− layer is further interconnected to the [Co(H2O)6]2+ cations via a series of very strong and highly directional hydrogen-bond interactions, also involving the water molecules of crystallization (Fig. 4 and Table 2).
Experimental
Chemicals were readily available from commercial sources and were used as received without further purification: N-(phosphonomethyl)iminodiacetic acid hydrate (H4pmida, 97% Fluka), pyrazine (98% Fluka), vanadium(IV) oxide sulfate pentahydrate (99% Sigma–Aldrich) and cobalt acetate tetrahydrate (99.0% Fluka). Syntheses were typically carried out in PTFE-lined stainless steel reaction vessels (ca 40 cm3), under autogenous pressure and static conditions in a preheated oven at 373 K. Reactions took place over a period of 4 d, after which the vessels were removed from the oven and left to cool to ambient temperature before opening. The title compound proved to be air- and light-stable, and insoluble in water and common organic solvents such as methanol, ethanol, acetone, dichloromethane, toluene, dimethyl sulfoxide and chloroform. The title compound was synthesized from a mixture containing VOSO4·5H2O (0.40 g), CoC4H6O4·4H2O (0.34 g), H4pmida (0.27 g), pyrazine (0.10 g) and NaOH (0.20 g) in distilled water (ca 10 g). The mixture was stirred at ambient temperature for 30 min, yielding a suspension with a molar composition of 2.1:1.2:1.0:1.1:4.2:467, which was transferred to the reaction vessel. After the reaction, a large quantity of light-blue single crystals of the title compound were isolated by vacuum filtration, washed with copious amounts of distilled water (ca 3 × 50 ml), and then air-dried at ambient temperature.
Crystal data
|
Refinement
|
|
Non-H atoms were located from difference Fourier maps calculated in successive least-squares Uiso = 1.2Ueq(C). H atoms of water molecules were located in difference Fourier maps, and refined with the O—H and H⋯H distances restrained to 0.84 (1) and 1.37 (1) Å, respectively, to ensure chemically reasonable geometry, with Uiso fixed at 1.5Ueq(O).
cycles. The C-bound H atoms were placed in idealized positions and refined as riding with C—H = 0.93–0.97 Å andData collection: CrysAlis CCD (Kuma, 1999); cell CrysAlis RED (Kuma, 1999); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536805023263/cv6554sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805023263/cv6554Isup2.hkl
Data collection: CrysAlis CCD (Kuma, 1999); cell
CrysAlis RED (Kuma, 1999); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL.C14H20CoN4O18P2V2·CoH12O6·2H2O | Z = 1 |
Mr = 958.15 | F(000) = 486 |
Triclinic, P1 | Dx = 1.922 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2200 (14) Å | Cell parameters from 5000 reflections |
b = 10.140 (2) Å | θ = 2–22.5° |
c = 12.080 (2) Å | µ = 1.73 mm−1 |
α = 93.79 (3)° | T = 298 K |
β = 103.21 (3)° | Prism, blue |
γ = 104.21 (3)° | 0.44 × 0.33 × 0.14 mm |
V = 827.6 (3) Å3 |
Kuma KM-4 CCD diffractometer | 3994 independent reflections |
Radiation source: fine-focus sealed tube | 3510 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 1024x1024 pixels mm-1 | θmax = 28.8°, θmin = 3.8° |
ω scans | h = −9→9 |
Absorption correction: numerical (SADABS; Sheldrick, 1996) | k = −13→13 |
Tmin = 0.354, Tmax = 0.724 | l = −16→16 |
14552 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.025 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.068 | w = 1/[σ2(Fo2) + (0.0369P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max = 0.001 |
3994 reflections | Δρmax = 0.62 e Å−3 |
260 parameters | Δρmin = −0.46 e Å−3 |
15 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0134 (13) |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.51181 (4) | −0.03887 (3) | 0.78924 (2) | 0.01748 (8) | |
O1 | 0.38825 (17) | 0.29890 (12) | 0.92992 (10) | 0.0214 (2) | |
O2 | 0.48337 (19) | 0.16776 (12) | 1.09285 (10) | 0.0245 (3) | |
O3 | 0.56779 (16) | 0.11785 (12) | 0.90678 (11) | 0.0227 (3) | |
O4 | 0.42943 (19) | 0.07725 (14) | 0.66491 (12) | 0.0313 (3) | |
O5 | 0.2021 (2) | 0.16356 (15) | 0.56053 (13) | 0.0407 (4) | |
O6 | 0.33410 (17) | −0.20694 (12) | 0.68114 (11) | 0.0237 (3) | |
O7 | 0.0648 (2) | −0.37963 (14) | 0.64107 (14) | 0.0390 (4) | |
O8 | 0.71664 (19) | −0.03326 (15) | 0.75874 (14) | 0.0375 (3) | |
P1 | 0.41953 (6) | 0.16339 (4) | 0.96220 (4) | 0.01682 (10) | |
N1 | 0.18692 (19) | −0.04201 (13) | 0.79481 (11) | 0.0163 (3) | |
C1 | 0.1916 (2) | 0.02552 (16) | 0.90872 (14) | 0.0188 (3) | |
H1A | 0.1839 | −0.0415 | 0.9623 | 0.023* | |
H1B | 0.0786 | 0.0628 | 0.9023 | 0.023* | |
C2 | 0.1096 (3) | 0.03117 (19) | 0.70046 (15) | 0.0256 (4) | |
H2A | 0.0596 | 0.1019 | 0.7317 | 0.031* | |
H2B | −0.0006 | −0.0331 | 0.6460 | 0.031* | |
C3 | 0.2581 (3) | 0.09627 (18) | 0.63776 (16) | 0.0257 (4) | |
C4 | 0.0813 (2) | −0.18895 (17) | 0.77421 (16) | 0.0223 (3) | |
H4A | −0.0585 | −0.2002 | 0.7421 | 0.027* | |
H4B | 0.0970 | −0.2271 | 0.8462 | 0.027* | |
C5 | 0.1623 (2) | −0.26528 (17) | 0.69158 (15) | 0.0220 (3) | |
Co1 | 0.5000 | 0.5000 | 1.0000 | 0.01579 (9) | |
N2 | 0.1939 (2) | 0.50640 (15) | 0.99665 (13) | 0.0230 (3) | |
O1W | 0.4763 (3) | 0.56113 (14) | 0.83634 (12) | 0.0373 (3) | |
H1C | 0.502 (4) | 0.6456 (10) | 0.839 (2) | 0.056* | |
H1D | 0.448 (4) | 0.522 (2) | 0.7698 (11) | 0.056* | |
C6 | 0.0397 (3) | 0.4324 (2) | 0.91448 (17) | 0.0287 (4) | |
H6 | 0.0621 | 0.3836 | 0.8532 | 0.034* | |
C7 | 0.1526 (3) | 0.57413 (19) | 1.08241 (16) | 0.0272 (4) | |
H7 | 0.2559 | 0.6271 | 1.1416 | 0.033* | |
Co2 | 0.5000 | 0.5000 | 0.5000 | 0.01874 (9) | |
O2W | 0.28922 (19) | 0.44976 (14) | 0.60052 (12) | 0.0289 (3) | |
H2C | 0.234 (3) | 0.3656 (10) | 0.590 (2) | 0.043* | |
H2D | 0.208 (3) | 0.4943 (18) | 0.602 (2) | 0.043* | |
O3W | 0.4097 (2) | 0.29797 (13) | 0.42618 (12) | 0.0294 (3) | |
H3A | 0.355 (3) | 0.2393 (19) | 0.4626 (19) | 0.044* | |
H3B | 0.490 (3) | 0.267 (2) | 0.399 (2) | 0.044* | |
O4W | 0.2951 (2) | 0.54223 (15) | 0.36770 (13) | 0.0344 (3) | |
H4C | 0.276 (3) | 0.6200 (12) | 0.380 (2) | 0.052* | |
H4D | 0.187 (2) | 0.4825 (16) | 0.359 (2) | 0.052* | |
O5W | 0.7873 (3) | 0.2140 (2) | 0.6045 (2) | 0.0671 (6) | |
H5A | 0.866 (4) | 0.188 (3) | 0.575 (3) | 0.101* | |
H5B | 0.695 (4) | 0.151 (2) | 0.611 (3) | 0.101* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.01399 (13) | 0.01636 (14) | 0.02252 (15) | 0.00357 (10) | 0.00684 (10) | −0.00046 (10) |
O1 | 0.0248 (6) | 0.0135 (5) | 0.0242 (6) | 0.0076 (5) | 0.0011 (5) | −0.0004 (4) |
O2 | 0.0305 (6) | 0.0169 (6) | 0.0221 (6) | 0.0068 (5) | −0.0009 (5) | 0.0004 (5) |
O3 | 0.0156 (5) | 0.0169 (6) | 0.0336 (7) | 0.0037 (4) | 0.0051 (5) | −0.0042 (5) |
O4 | 0.0261 (6) | 0.0353 (7) | 0.0352 (8) | 0.0057 (6) | 0.0130 (6) | 0.0143 (6) |
O5 | 0.0455 (9) | 0.0369 (8) | 0.0390 (8) | 0.0092 (7) | 0.0067 (7) | 0.0209 (7) |
O6 | 0.0204 (6) | 0.0241 (6) | 0.0254 (6) | 0.0038 (5) | 0.0083 (5) | −0.0060 (5) |
O7 | 0.0240 (6) | 0.0254 (7) | 0.0595 (10) | 0.0010 (5) | 0.0078 (6) | −0.0198 (7) |
O8 | 0.0232 (6) | 0.0395 (8) | 0.0533 (9) | 0.0080 (6) | 0.0188 (6) | 0.0001 (7) |
P1 | 0.01643 (19) | 0.01190 (19) | 0.0207 (2) | 0.00478 (15) | 0.00191 (15) | −0.00152 (15) |
N1 | 0.0151 (6) | 0.0149 (6) | 0.0182 (6) | 0.0037 (5) | 0.0037 (5) | 0.0002 (5) |
C1 | 0.0163 (7) | 0.0181 (7) | 0.0219 (8) | 0.0040 (6) | 0.0062 (6) | −0.0009 (6) |
C2 | 0.0232 (8) | 0.0309 (9) | 0.0260 (9) | 0.0130 (7) | 0.0050 (7) | 0.0083 (7) |
C3 | 0.0297 (9) | 0.0204 (8) | 0.0249 (9) | 0.0053 (7) | 0.0041 (7) | 0.0042 (7) |
C4 | 0.0177 (7) | 0.0167 (8) | 0.0309 (9) | 0.0006 (6) | 0.0090 (7) | −0.0031 (6) |
C5 | 0.0181 (7) | 0.0196 (8) | 0.0259 (9) | 0.0059 (6) | 0.0017 (6) | −0.0040 (6) |
Co1 | 0.01567 (15) | 0.01301 (15) | 0.01878 (16) | 0.00569 (11) | 0.00303 (11) | 0.00031 (11) |
N2 | 0.0173 (6) | 0.0229 (7) | 0.0295 (8) | 0.0074 (6) | 0.0053 (6) | 0.0013 (6) |
O1W | 0.0689 (10) | 0.0210 (7) | 0.0209 (7) | 0.0146 (7) | 0.0068 (7) | 0.0018 (5) |
C6 | 0.0221 (8) | 0.0324 (10) | 0.0304 (10) | 0.0085 (7) | 0.0059 (7) | −0.0065 (7) |
C7 | 0.0199 (8) | 0.0290 (9) | 0.0289 (9) | 0.0050 (7) | 0.0029 (7) | −0.0059 (7) |
Co2 | 0.01870 (16) | 0.01772 (16) | 0.01970 (16) | 0.00470 (12) | 0.00555 (12) | 0.00003 (12) |
O2W | 0.0292 (7) | 0.0260 (7) | 0.0354 (7) | 0.0086 (5) | 0.0151 (6) | 0.0008 (6) |
O3W | 0.0349 (7) | 0.0210 (6) | 0.0350 (8) | 0.0066 (5) | 0.0170 (6) | −0.0016 (5) |
O4W | 0.0250 (6) | 0.0337 (8) | 0.0399 (8) | 0.0056 (6) | 0.0002 (6) | 0.0097 (6) |
O5W | 0.0588 (12) | 0.0496 (11) | 0.1159 (19) | 0.0278 (10) | 0.0442 (12) | 0.0441 (12) |
Co1—O1i | 2.044 (2) | N1—C4 | 1.473 (2) |
Co1—O1Wi | 2.093 (2) | N1—C2 | 1.478 (2) |
Co1—O1W | 2.093 (2) | N1—C1 | 1.485 (2) |
Co1—N2 | 2.218 (2) | C1—H1A | 0.9700 |
Co1—N2i | 2.218 (2) | C1—H1B | 0.9700 |
Co2—O2Wii | 2.144 (2) | C2—C3 | 1.500 (3) |
Co2—O2W | 2.144 (2) | C2—H2A | 0.9700 |
Co2—O3Wii | 2.063 (2) | C2—H2B | 0.9700 |
Co2—O3W | 2.063 (2) | C4—C5 | 1.525 (2) |
Co2—O4Wii | 2.061 (2) | C4—H4A | 0.9700 |
Co2—O4W | 2.061 (2) | C4—H4B | 0.9700 |
V1—O2iii | 1.996 (2) | N2—C6 | 1.332 (2) |
V1—O3 | 1.957 (2) | N2—C7 | 1.334 (2) |
V1—O4 | 2.041 (2) | O1W—H1C | 0.828 (9) |
V1—O6 | 2.030 (2) | O1W—H1D | 0.829 (9) |
V1—O8 | 1.593 (2) | C6—C7iv | 1.384 (2) |
V1—N1 | 2.354 (2) | C6—H6 | 0.9300 |
O1—P1 | 1.508 (2) | C7—C6iv | 1.384 (2) |
O2—P1 | 1.534 (2) | C7—H7 | 0.9300 |
O2—V1iii | 1.996 (2) | O2W—H2C | 0.84 (2) |
O3—P1 | 1.529 (2) | O2W—H2D | 0.84 (2) |
O1—Co1 | 2.044 (2) | O3W—H3A | 0.84 (2) |
O4—C3 | 1.271 (2) | O3W—H3B | 0.84 (2) |
O5—C3 | 1.244 (2) | O4W—H4C | 0.84 (2) |
O6—C5 | 1.275 (2) | O4W—H4D | 0.84 (2) |
O7—C5 | 1.234 (2) | O5W—H5A | 0.84 (2) |
P1—C1 | 1.829 (2) | O5W—H5B | 0.84 (2) |
O1i—Co1—O1 | 180.0 | P1—O1—Co1 | 136.12 (7) |
O1i—Co1—O1Wi | 90.60 (6) | P1—O3—V1 | 126.89 (7) |
O1—Co1—O1Wi | 89.40 (6) | P1—O2—V1iii | 139.35 (8) |
O1i—Co1—O1W | 89.40 (6) | C3—O4—V1 | 123.11 (12) |
O1—Co1—O1W | 90.60 (6) | C5—O6—V1 | 121.69 (11) |
O1i—Co1—N2 | 91.96 (6) | C4—N1—C2 | 111.32 (14) |
O1—Co1—N2 | 88.04 (6) | C4—N1—C1 | 113.13 (13) |
O1i—Co1—N2i | 88.04 (6) | C2—N1—C1 | 112.01 (13) |
O1—Co1—N2i | 91.96 (6) | C4—N1—V1 | 104.02 (9) |
O1Wi—Co1—O1W | 180.000 (1) | C2—N1—V1 | 107.11 (10) |
O1Wi—Co1—N2 | 88.11 (7) | C1—N1—V1 | 108.73 (9) |
O1W—Co1—N2 | 91.89 (7) | N1—C1—P1 | 110.13 (11) |
O1Wi—Co1—N2i | 91.89 (7) | N1—C1—H1A | 109.6 |
O1W—Co1—N2i | 88.11 (7) | P1—C1—H1A | 109.6 |
N2—Co1—N2i | 180.000 (1) | N1—C1—H1B | 109.6 |
C6—N2—C7 | 116.30 (15) | P1—C1—H1B | 109.6 |
C6—N2—Co1 | 121.70 (12) | H1A—C1—H1B | 108.1 |
C7—N2—Co1 | 121.71 (12) | N1—C2—C3 | 114.49 (14) |
O2Wii—Co2—O2W | 180.0 | N1—C2—H2A | 108.6 |
O3W—Co2—O2W | 88.56 (6) | C3—C2—H2A | 108.6 |
O3Wii—Co2—O2W | 91.44 (6) | N1—C2—H2B | 108.6 |
O3W—Co2—O2Wii | 91.44 (6) | C3—C2—H2B | 108.6 |
O3Wii—Co2—O2Wii | 88.56 (6) | H2A—C2—H2B | 107.6 |
O3Wii—Co2—O3W | 180.0 | O5—C3—O4 | 124.57 (18) |
O4Wii—Co2—O2Wii | 92.16 (6) | O5—C3—C2 | 116.87 (17) |
O4W—Co2—O2Wii | 87.84 (6) | O4—C3—C2 | 118.55 (15) |
O4Wii—Co2—O2W | 87.84 (6) | N1—C4—C5 | 110.13 (14) |
O4W—Co2—O2W | 92.16 (6) | N1—C4—H4A | 109.6 |
O4Wii—Co2—O3Wii | 88.57 (7) | C5—C4—H4A | 109.6 |
O4W—Co2—O3Wii | 91.43 (7) | N1—C4—H4B | 109.6 |
O4Wii—Co2—O3W | 91.43 (7) | C5—C4—H4B | 109.6 |
O4W—Co2—O3W | 88.57 (7) | H4A—C4—H4B | 108.1 |
O4Wii—Co2—O4W | 180.000 (1) | O7—C5—O6 | 123.15 (16) |
O2iii—V1—O4 | 165.00 (5) | O7—C5—C4 | 120.01 (15) |
O2iii—V1—O6 | 84.32 (6) | O6—C5—C4 | 116.81 (14) |
O2iii—V1—N1 | 89.08 (6) | Co1—O1W—H1C | 111.9 (16) |
O3—V1—O2iii | 91.38 (6) | Co1—O1W—H1D | 136.3 (16) |
O3—V1—O4 | 90.11 (6) | H1C—O1W—H1D | 111.8 (16) |
O3—V1—O6 | 154.21 (5) | N2—C6—C7iv | 121.99 (17) |
O3—V1—N1 | 80.43 (6) | N2—C6—H6 | 119.0 |
O4—V1—N1 | 76.45 (6) | C7iv—C6—H6 | 119.0 |
O6—V1—O4 | 87.87 (6) | N2—C7—C6iv | 121.72 (17) |
O6—V1—N1 | 74.10 (5) | N2—C7—H7 | 119.1 |
O8—V1—O2iii | 100.68 (8) | C6iv—C7—H7 | 119.1 |
O8—V1—O3 | 105.45 (7) | Co2—O2W—H2C | 111.1 (16) |
O8—V1—O4 | 93.29 (8) | Co2—O2W—H2D | 121.1 (17) |
O8—V1—O6 | 100.33 (7) | H2C—O2W—H2D | 110.5 (15) |
O8—V1—N1 | 168.34 (7) | Co2—O3W—H3A | 117.6 (16) |
O1—P1—O3 | 112.77 (8) | Co2—O3W—H3B | 117.6 (16) |
O1—P1—O2 | 111.06 (7) | H3A—O3W—H3B | 108.7 (14) |
O3—P1—O2 | 110.17 (7) | Co2—O4W—H4C | 113.2 (18) |
O1—P1—C1 | 110.75 (8) | Co2—O4W—H4D | 108.3 (18) |
O3—P1—C1 | 104.04 (7) | H4C—O4W—H4D | 108.0 (15) |
O2—P1—C1 | 107.73 (8) | H5A—O5W—H5B | 113.1 (18) |
O8—V1—O3—P1 | 177.17 (10) | O4—V1—N1—C1 | −116.81 (11) |
O2iii—V1—O3—P1 | −81.35 (10) | C4—N1—C1—P1 | 148.25 (11) |
O6—V1—O3—P1 | −1.59 (19) | C2—N1—C1—P1 | −84.94 (14) |
O4—V1—O3—P1 | 83.73 (10) | V1—N1—C1—P1 | 33.23 (12) |
N1—V1—O3—P1 | 7.49 (9) | O1—P1—C1—N1 | 93.41 (12) |
O8—V1—O4—C3 | 171.55 (15) | O3—P1—C1—N1 | −28.01 (13) |
O3—V1—O4—C3 | −82.97 (15) | O2—P1—C1—N1 | −144.95 (10) |
O2iii—V1—O4—C3 | 12.8 (3) | C4—N1—C2—C3 | −118.68 (16) |
O6—V1—O4—C3 | 71.31 (15) | C1—N1—C2—C3 | 113.55 (16) |
N1—V1—O4—C3 | −2.84 (14) | V1—N1—C2—C3 | −5.58 (17) |
O8—V1—O6—C5 | 166.52 (14) | V1—O4—C3—O5 | −178.12 (15) |
O3—V1—O6—C5 | −14.7 (2) | V1—O4—C3—C2 | 0.4 (2) |
O2iii—V1—O6—C5 | 66.66 (14) | N1—C2—C3—O5 | −177.29 (16) |
O4—V1—O6—C5 | −100.52 (14) | N1—C2—C3—O4 | 4.1 (2) |
N1—V1—O6—C5 | −24.00 (13) | C2—N1—C4—C5 | 80.61 (17) |
Co1—O1—P1—O3 | −95.31 (12) | C1—N1—C4—C5 | −152.22 (14) |
Co1—O1—P1—O2 | 28.90 (13) | V1—N1—C4—C5 | −34.42 (15) |
Co1—O1—P1—C1 | 148.56 (10) | V1—O6—C5—O7 | −167.08 (15) |
V1—O3—P1—O1 | −112.31 (10) | V1—O6—C5—C4 | 10.9 (2) |
V1—O3—P1—O2 | 122.98 (10) | N1—C4—C5—O7 | −161.79 (17) |
V1—O3—P1—C1 | 7.75 (12) | N1—C4—C5—O6 | 20.2 (2) |
V1iii—O2—P1—O1 | 159.07 (11) | P1—O1—Co1—O1Wi | −34.28 (12) |
V1iii—O2—P1—O3 | −75.24 (13) | P1—O1—Co1—O1W | 145.72 (12) |
V1iii—O2—P1—C1 | 37.63 (14) | P1—O1—Co1—N2 | −122.41 (12) |
O8—V1—N1—C4 | 93.5 (3) | P1—O1—Co1—N2i | 57.59 (12) |
O3—V1—N1—C4 | −145.17 (11) | O1i—Co1—N2—C6 | 146.95 (15) |
O2iii—V1—N1—C4 | −53.62 (11) | O1—Co1—N2—C6 | −33.05 (15) |
O6—V1—N1—C4 | 30.73 (10) | O1Wi—Co1—N2—C6 | −122.52 (16) |
O4—V1—N1—C4 | 122.38 (11) | O1W—Co1—N2—C6 | 57.48 (16) |
O8—V1—N1—C2 | −24.5 (4) | O1i—Co1—N2—C7 | −39.57 (15) |
O3—V1—N1—C2 | 96.86 (11) | O1—Co1—N2—C7 | 140.43 (15) |
O2iii—V1—N1—C2 | −171.59 (11) | O1Wi—Co1—N2—C7 | 50.97 (15) |
O6—V1—N1—C2 | −87.24 (11) | O1W—Co1—N2—C7 | −129.03 (15) |
O4—V1—N1—C2 | 4.41 (11) | C7—N2—C6—C7iv | 0.0 (3) |
O8—V1—N1—C1 | −145.7 (3) | Co1—N2—C6—C7iv | 173.84 (15) |
O3—V1—N1—C1 | −24.37 (10) | C6—N2—C7—C6iv | 0.0 (3) |
O2iii—V1—N1—C1 | 67.19 (10) | Co1—N2—C7—C6iv | −173.84 (15) |
O6—V1—N1—C1 | 151.54 (11) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+2; (iv) −x, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1C···O2i | 0.84 (2) | 1.98 (1) | 2.7489 (19) | 154 (2) |
O1W—H1D···O2W | 0.84 (2) | 2.09 (1) | 2.878 (2) | 160 (3) |
O2W—H2C···O5 | 0.84 (2) | 2.00 (1) | 2.798 (2) | 159 (2) |
O2W—H2D···O7v | 0.84 (2) | 1.93 (1) | 2.736 (2) | 166 (2) |
O3W—H3A···O5 | 0.84 (2) | 1.87 (1) | 2.672 (2) | 159 (2) |
O3W—H3B···O6vi | 0.84 (2) | 1.95 (2) | 2.7801 (18) | 173 (2) |
O4W—H4C···O5Wii | 0.84 (2) | 1.86 (1) | 2.698 (2) | 175 (3) |
O4W—H4D···O7vii | 0.84 (2) | 1.86 (1) | 2.689 (2) | 167 (2) |
O5W—H5B···O4 | 0.84 (2) | 2.14 (2) | 2.893 (2) | 151 (3) |
O5W—H5A···O5viii | 0.84 (2) | 2.54 (2) | 3.311 (3) | 157 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1; (v) x, y+1, z; (vi) −x+1, −y, −z+1; (vii) −x, −y, −z+1; (viii) x+1, y, z. |
Acknowledgements
We are grateful to FEDER, POCTI (Portugal), InTerreg IIIB and to Fundação para a Ciência e Tecnologia (FCT, Portugal) for their general financial support and the postdoctoral and PhD research grants Nos. SFRH/BPD/9309/2002 (to FNS) and SFRH/BD/13858/2003 (to LM).
References
Allen, F. H. (2002). Acta Cryst. B58, 380–388. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Allen, F. H. & Motherwell, W. D. S. (2002). Acta Cryst. B58, 407–422. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1461–1494. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. (2001). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Crans, D. C., Jiang, F. L., Anderson, O. P. & Miller, S. M. (1998). Inorg. Chem. 37, 6645–6655. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fan, Y., Li, G. H., Shi., Z., Zhang, D., Xu, J. N., Song, T. Y. & Feng, S. H. (2004). J. Solid State Chem. 177, 4346–4350. CrossRef CAS Google Scholar
Gutschke, S. O. H., Price, D. J., Powell, A. K. & Wood, P. T. (1999). Angew. Chem. Int. Ed. 38, 1088–1090. CrossRef CAS Google Scholar
Hoskins, B. F. & Robson, R. (1990). J. Am. Chem. Soc. 112, 1546–1554. CSD CrossRef CAS Web of Science Google Scholar
Janiak, C. (2003). Dalton Trans. pp. 2781–2804. Web of Science CrossRef Google Scholar
Kuma (1999). CrysAlis CCD and CrysAlis RED. Kuma Diffraction, Wrocław, Poland. Google Scholar
Mao, J. G., Wang, Z. K. & Clearfield, A. (2002). Inorg. Chem. 41, 6106–6111. Web of Science CSD CrossRef PubMed CAS Google Scholar
Mori, W., Takamizawa, S., Kato, C. N., Ohmura, T. & Sato, T. (2004). Microporous Mesoporous Mater. 73, 31–46. Web of Science CSD CrossRef CAS Google Scholar
Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629–1658. Web of Science CrossRef PubMed CAS Google Scholar
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002a). Acta Cryst. C58, m608–m610. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002b). Acta Cryst. E58, m691–m693. CSD CrossRef IUCr Journals Google Scholar
Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002c). Acta Cryst. E58, m730–m732. CSD CrossRef IUCr Journals Google Scholar
Paz, F. A. A., Khimyak, Y. Z., Bond, A. D., Rocha, J. & Klinowski, J. (2002). Eur. J. Inorg. Chem. pp. 2823–2828. Google Scholar
Paz, F. A. A. & Klinowski, J. (2003). Chem. Commun. pp. 1484–1485. Google Scholar
Paz, F. A. A. & Klinowski, J. (2004a). J. Solid State Chem. 177, 3423–3432. Web of Science CSD CrossRef CAS Google Scholar
Paz, F. A. A. & Klinowski, J. (2004b). Inorg. Chem. 43, 3882–2893. Web of Science CSD CrossRef PubMed CAS Google Scholar
Paz, F. A. A. & Klinowski, J. (2004c). Inorg. Chem. 43, 3948–3954. Web of Science CSD CrossRef PubMed CAS Google Scholar
Paz, F. A. A., Shi, F.-N., Klinowski, J., Rocha, J. & Trindade, T. (2004). Eur. J. Inorg. Chem. pp. 2759–2768. Google Scholar
Pei, H., Lu, S., Ke, Y., Li, J., Qin, S., Zhou, S., Wu, X. & Du. W. (2004). Struct. Chem. 15, 207–210. Google Scholar
Rowsell, J. L. C. & Yaghi, O. M. (2004). Microporous Mesoporous Mater. 73, 3–14. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Song, J. L., Prosvirin, A. V., Zhao, H. H. & Mao, J. G. (2004). Eur. J. Inorg. Chem. pp. 3706–3711. Google Scholar
Yaghi, O. M., Li, H. L., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484. Web of Science CrossRef CAS Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.