organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(Di­methyl­amino)(phen­yl)meth­yl]benzoic acid

CROSSMARK_Color_square_no_text.svg

aUniversity of Oxford, Department of Chemistry, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, England
*Correspondence e-mail: harry.anderson@chemistry.ox.ac.uk

(Received 22 June 2005; accepted 4 July 2005; online 13 July 2005)

The title compound {systematic name: [(2-carboxyl­atophen­yl)­(phen­yl)meth­yl]-N,N-dimethyl­ammonium}, C16H17NO2, crystallizes as a hydrogen-bonded zwitterion.

Comment

The title compound, (I)[link], was prepared as described and shown in the scheme. This compound crystallizes as the zwitterion [(2-carboxyl­atophen­yl)(phen­yl)meth­yl]-N,N-dimethyl­ammo­nium (Fig. 1[link]). There are infinite chains of hydrogen-bonded mol­ecules, with alternating stereochemistry at C1, running parallel to the crystallographic c axis (Fig. 2[link]). The mol­ecules are connected by hydrogen bonds between N1H and O1 of a neighbouring mol­ecule [N1⋯O1i = 2.670 (3) Å; symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}]]. There also appears to be intra­molecular C1—H11⋯O1 hydrogen bonding (Desiraju, 2005[Desiraju, G. R. (2005). Chem. Commun. 2995-3001.]), as shown by the C⋯O distance of 2.848 (3) Å. This inter­action is strengthened by the increased CH acidity due to the adjacent positively-charged N atom.

[Scheme 1]
[Figure 1]
Figure 1
The zwitterionic form of compound (I)[link], showing 40% probability displacement ellipsoids and H atoms of fixed radii.
[Figure 2]
Figure 2
View of one of the infinite hydrogen-bonded chains of (I)[link] parallel to the c axis. The H⋯O inter­actions are shown as green and white lines (CrystalMaker Software Limited, 2002[CrystalMaker Software Limited (2002). CrystalMaker. Version 5.0. CrystalMaker Software Limited, Begbroke Science Park, Building 5, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, England.]).

Experimental

Dimethyl­amine (4.7 ml of a 40 wt% solution in water, 35 mmol) and 1-bromo-2-[chloro­(phen­yl)meth­yl]benzene, (II) (Katsura et al., 1997[Katsura, Y., Zhang, X. Y., Homma, K., Rice, K. C., Calderon, S. N., Rothman, R. B., Yamamura, H. I., Davis, P., Flippen-Anderson, J. L., Xu, H., Becketts, K., Foltz, E. J. & Porreca, F. J. (1997). J. Med. Chem. 40, 2936-2947.]) (500 mg, 1.78 mmol), in dimeth­yl sulfoxide (3.8 ml) were heated at reflux for 24 h. The product was purified by column chromatography and recrystallisation from dichloro­methane/light petroleum to give [(2-bromo­phen­yl)(phen­yl)meth­yl]-N,N-dimethyl­amine, (III), as a white crystalline solid (234 mg, 45%, m.p. 333 K). Butyl­lithium (0.86 ml of 1.6 M hexa­ne solution, 1.38 mmol) was added dropwise to a solution of (III) (200 mg, 0.69 mmol) in anhydrous tetra­hydro­furan (4 ml) at 195 K and stirred for 2 h. The reaction mixture was warmed to room temperature whilst dry carbon dioxide was bubbled through the solution for a further 2 h. Water (5 ml) and acetic acid (0.13 ml, 2.27 mmol) were added until a pH of 7 was achieved. The product was purified by column chromatography (2:25 methanol–dichloro­methane) to yield (I)[link] as colourless crystals (136 mg, 77%). Crystals suitable for single-crystal X-ray diffraction analysis were obtained by slow evaporation of a solution in propan-2-ol.

Crystal data
  • C16H17NO2

  • Mr = 255.32

  • Monoclinic, C 2/c

  • a = 24.5562 (10) Å

  • b = 9.2464 (4) Å

  • c = 11.9764 (5) Å

  • β = 91.559 (2)°

  • V = 2718.3 (2) Å3

  • Z = 8

  • Dx = 1.248 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 3144 reflections

  • θ = 5–27°

  • μ = 0.08 mm−1

  • T = 150 K

  • Block, colourless

  • 0.32 × 0.18 × 0.14 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scanSCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 0.97, Tmax = 0.99

  • 13569 measured reflections

  • 3079 independent reflections

  • 1487 reflections with I > 3σ(I)

  • Rint = 0.075

  • θmax = 27.5°

  • h = −31 → 31

  • k = −11 → 12

  • l = −15 → 15

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.058

  • S = 1.14

  • 1487 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Weighting scheme: see below

  • (Δ/σ)max = 0.010

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

N1—C1 1.515 (3)
N1—C9 1.485 (4)
N1—C10 1.487 (3)
N1—H1 1.04 (3)
C1—C2 1.523 (4)
C1—C11 1.516 (4)
C2—C7 1.404 (4)
C7—C8 1.531 (3)
C8—O1 1.270 (3)
C8—O2 1.232 (3)
C1—N1—C9 110.3 (2)
C1—N1—C10 111.8 (2)
C9—N1—C10 109.0 (2)
C1—N1—H1 112.9 (18)
C9—N1—H1 106.7 (19)
C10—N1—H1 106.0 (18)
N1—C1—C2 110.8 (2)
N1—C1—C11 111.7 (2)
C2—C1—C11 112.6 (2)
C1—C2—C7 123.4 (2)
C2—C7—C8 126.6 (2)
C7—C8—O1 118.7 (2)
C7—C8—O2 117.6 (2)
O1—C8—O2 123.7 (2)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 1.04 (3) 1.64 (3) 2.670 (3) 176 (3)
C1—H11⋯O1 1.00 2.02 2.848 (3) 139
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}].

A Chebychev polynomial (Carruthers & Watkin, 1979[Carruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698-699.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Material Science. New York: Springer-Verlag.]) was used in the weighting scheme, [weight] = 1.0/[A0T0(x) + A1T1(x) + ⋯ + An−1Tn−1(x)], where Ai are the Chebychev coefficients 0.491, 0.269 and 0.192, and x = F/Fmax; robust weighting (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Material Science. New York: Springer-Verlag.]) W = [weight] [1 − (δF/6σF)2]2. The N-bound H atom was located in a difference Fourier map and its coordinates and isotropic displacement parameter subsequently refined. Other H atoms were positioned geometrically, with C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Issue 12; Betteridge et al., 2003[Betteridge, P. W., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CrystalMaker (CrystalMaker Software Limited, 2002); software used to prepare material for publication: CRYSTALS.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO; data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Issue 12; Betteridge et al., 2003); molecular graphics: Please supply; software used to prepare material for publication: CRYSTALS.

[(2-carboxylatophenyl)(phenyl)methyl]-N,N-dimethylammonium top
Crystal data top
C16H17NO2Dx = 1.248 Mg m3
Mr = 255.32Melting point: 446 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 24.5562 (10) ÅCell parameters from 3144 reflections
b = 9.2464 (4) Åθ = 5–27°
c = 11.9764 (5) ŵ = 0.08 mm1
β = 91.559 (2)°T = 150 K
V = 2718.3 (2) Å3Block, colourless
Z = 80.32 × 0.18 × 0.14 mm
F(000) = 1088
Data collection top
Nonius KappaCCD
diffractometer
1487 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.075
ω scansθmax = 27.5°, θmin = 5.5°
Absorption correction: multi-scan
DENZO and SCALEPACK (Otwinowski & Minor, 1997)
h = 3131
Tmin = 0.97, Tmax = 0.99k = 1112
13569 measured reflectionsl = 1515
3079 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.058 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.491 0.269 0.192
S = 1.14(Δ/σ)max = 0.010
1487 reflectionsΔρmax = 0.25 e Å3
176 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Experimental. The material was prepared as described above and recrystallized from propan-2-ol.

Additional spectroscopic data before recrystallization:

1H NMR: (400.1 MHz, CDCl3) 2.54(6H, s), 4.82 (1H, s), 7.32–7.42 (6H, m) 7.54 (2H, d, J 7.0), 8.35 (1H, d, J 9.2)

13C NMR: (500.3 MHz, CDCl3) 42.1, 77.2, 128.9, 129.0, 129.2, 129.5, 130.5, 131.5, 134.6, 134.9, 135.7, 136.5, 171.2

HR—MS (ESI-) Found 254.1179 (M—H)-, calc 254.1181

Refinement. The large refined displacement parameters for the C atoms C15 and C16 and the variations in the C—C bond lengths of the phenyl group containing these atoms suggest there to be some disorder of this group. Attempts to model this did not lead to any improvement is the agreement with the X-ray data and were abandoned.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10685 (8)0.6128 (2)0.37916 (18)0.0311
C10.13544 (10)0.4876 (3)0.43757 (19)0.0320
C20.10653 (11)0.3455 (3)0.4112 (2)0.0340
C30.10272 (15)0.3000 (3)0.2991 (2)0.0531
C40.07689 (17)0.1727 (4)0.2691 (2)0.0608
C50.05430 (14)0.0855 (3)0.3492 (3)0.0509
C60.05869 (11)0.1276 (3)0.4598 (2)0.0377
C70.08438 (10)0.2561 (3)0.4931 (2)0.0298
C80.08572 (10)0.2831 (3)0.6193 (2)0.0309
O10.10760 (9)0.3985 (2)0.65640 (14)0.0478
O20.06552 (8)0.1902 (2)0.67923 (15)0.0430
C90.13230 (13)0.7520 (3)0.4138 (3)0.0469
C100.04786 (11)0.6172 (3)0.4040 (2)0.0383
C110.19555 (11)0.4829 (3)0.4119 (2)0.0391
C120.23187 (12)0.4437 (4)0.4950 (3)0.0546
C130.28734 (13)0.4357 (4)0.4771 (3)0.0599
C140.30757 (13)0.4678 (4)0.3769 (3)0.0563
C150.27275 (16)0.5083 (8)0.2933 (4)0.1261
C160.21662 (15)0.5157 (8)0.3102 (3)0.1192
H10.1090 (13)0.608 (4)0.293 (3)0.064 (10)*
H110.13340.50330.52000.0383*
H310.11910.36130.23990.0637*
H410.07450.14340.18870.0726*
H510.03520.00620.32760.0606*
H610.04290.06390.51810.0450*
H910.11310.83360.37470.0560*
H920.12940.76410.49640.0560*
H930.17160.75190.39360.0560*
H1010.03040.70100.36410.0461*
H1020.04340.62840.48630.0461*
H1030.03010.52530.37820.0461*
H1210.21810.42020.57070.0654*
H1310.31270.40570.53960.0715*
H1410.34760.46170.36450.0676*
H1510.28730.53340.21850.1516*
H1610.19150.54520.24710.1432*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0302 (11)0.0345 (12)0.0288 (11)0.0031 (9)0.0027 (9)0.0035 (9)
C10.0357 (14)0.0352 (14)0.0249 (12)0.0041 (11)0.0008 (10)0.0018 (10)
C20.0411 (16)0.0339 (14)0.0268 (13)0.0082 (12)0.0033 (11)0.0021 (11)
C30.087 (2)0.0444 (18)0.0274 (14)0.0092 (17)0.0003 (15)0.0004 (13)
C40.107 (3)0.0470 (19)0.0276 (16)0.0114 (19)0.0118 (16)0.0107 (14)
C50.073 (2)0.0323 (15)0.0464 (17)0.0060 (15)0.0199 (16)0.0091 (14)
C60.0441 (16)0.0322 (14)0.0362 (14)0.0067 (12)0.0083 (12)0.0032 (12)
C70.0327 (13)0.0302 (13)0.0263 (12)0.0062 (11)0.0035 (10)0.0037 (10)
C80.0267 (13)0.0339 (14)0.0319 (13)0.0039 (11)0.0000 (10)0.0004 (11)
O10.0654 (13)0.0521 (12)0.0262 (9)0.0242 (11)0.0067 (9)0.0066 (9)
O20.0562 (13)0.0393 (11)0.0336 (10)0.0056 (9)0.0027 (9)0.0027 (9)
C90.0537 (19)0.0382 (16)0.0481 (18)0.0067 (14)0.0090 (14)0.0059 (13)
C100.0343 (15)0.0446 (16)0.0363 (14)0.0062 (12)0.0076 (11)0.0058 (12)
C110.0371 (15)0.0432 (16)0.0370 (14)0.0051 (13)0.0005 (12)0.0021 (12)
C120.0422 (18)0.071 (2)0.0503 (18)0.0075 (16)0.0055 (14)0.0239 (16)
C130.0373 (17)0.074 (2)0.068 (2)0.0047 (16)0.0121 (15)0.0243 (19)
C140.0371 (17)0.064 (2)0.068 (2)0.0096 (16)0.0014 (15)0.0069 (18)
C150.047 (2)0.269 (7)0.063 (2)0.054 (3)0.0180 (18)0.050 (4)
C160.043 (2)0.265 (7)0.050 (2)0.053 (3)0.0092 (16)0.048 (3)
Geometric parameters (Å, º) top
N1—C11.515 (3)C8—O21.232 (3)
N1—C91.485 (4)C9—H911.000
N1—C101.487 (3)C9—H921.000
N1—H11.04 (3)C9—H931.000
C1—C21.523 (4)C10—H1011.000
C1—C111.516 (4)C10—H1021.000
C1—H111.000C10—H1031.000
C2—C31.408 (4)C11—C121.367 (4)
C2—C71.404 (4)C11—C161.371 (5)
C3—C41.380 (5)C12—C131.387 (5)
C3—H311.000C12—H1211.000
C4—C51.381 (5)C13—C141.344 (5)
C4—H411.000C13—H1311.000
C5—C61.382 (4)C14—C151.352 (5)
C5—H511.000C14—H1411.000
C6—C71.399 (4)C15—C161.400 (5)
C6—H611.000C15—H1511.000
C7—C81.531 (3)C16—H1611.000
C8—O11.270 (3)
C1—N1—C9110.3 (2)O1—C8—O2123.7 (2)
C1—N1—C10111.8 (2)N1—C9—H91109.466
C9—N1—C10109.0 (2)N1—C9—H92109.467
C1—N1—H1112.9 (18)H91—C9—H92109.476
C9—N1—H1106.7 (19)N1—C9—H93109.466
C10—N1—H1106.0 (18)H91—C9—H93109.475
N1—C1—C2110.8 (2)H92—C9—H93109.476
N1—C1—C11111.7 (2)N1—C10—H101109.467
C2—C1—C11112.6 (2)N1—C10—H102109.467
N1—C1—H11108.078H101—C10—H102109.475
C2—C1—H11107.138N1—C10—H103109.467
C11—C1—H11106.176H101—C10—H103109.476
C1—C2—C3118.3 (2)H102—C10—H103109.476
C1—C2—C7123.4 (2)C1—C11—C12118.7 (2)
C3—C2—C7118.3 (3)C1—C11—C16124.5 (2)
C2—C3—C4121.4 (3)C12—C11—C16116.8 (3)
C2—C3—H31119.311C11—C12—C13121.7 (3)
C4—C3—H31119.312C11—C12—H121119.141
C3—C4—C5120.5 (3)C13—C12—H121119.143
C3—C4—H41119.727C12—C13—C14121.0 (3)
C5—C4—H41119.727C12—C13—H131119.500
C4—C5—C6118.6 (3)C14—C13—H131119.501
C4—C5—H51120.696C13—C14—C15118.7 (3)
C6—C5—H51120.695C13—C14—H141120.636
C5—C6—C7122.4 (3)C15—C14—H141120.636
C5—C6—H61118.805C14—C15—C16120.8 (4)
C7—C6—H61118.805C14—C15—H151119.615
C2—C7—C6118.7 (2)C16—C15—H151119.613
C2—C7—C8126.6 (2)C11—C16—C15121.0 (3)
C6—C7—C8114.7 (2)C11—C16—H161119.509
C7—C8—O1118.7 (2)C15—C16—H161119.513
C7—C8—O2117.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i1.04 (3)1.64 (3)2.670 (3)176 (3)
C1—H11···O11.002.022.848 (3)139
Symmetry code: (i) x, y+1, z1/2.
 

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCarruthers, J. R. & Watkin, D. J. (1979). Acta Cryst. A35, 698–699.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCrystalMaker Software Limited (2002). CrystalMaker. Version 5.0. CrystalMaker Software Limited, Begbroke Science Park, Building 5, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, England.  Google Scholar
First citationDesiraju, G. R. (2005). Chem. Commun. 2995–3001.  Google Scholar
First citationKatsura, Y., Zhang, X. Y., Homma, K., Rice, K. C., Calderon, S. N., Rothman, R. B., Yamamura, H. I., Davis, P., Flippen-Anderson, J. L., Xu, H., Becketts, K., Foltz, E. J. & Porreca, F. J. (1997). J. Med. Chem. 40, 2936–2947.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Material Science. New York: Springer-Verlag.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds