organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

L-Cysteine-I at 30 K

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, The University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland, and bDepartment of Physics, The University of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: s.parsons@ed.ac.uk

(Received 13 July 2005; accepted 25 July 2005; online 30 July 2005)

The crystal structure of the ortho­rhom­bic phase I of L-cysteine, C3H7NO2S, has been determined at 30 K. The mol­ecule adopts a gauche+ conformation and the structure consists of zwitterions connected into sinusoidal layers by N—H⋯O hydrogen bonds. Further N—H⋯O hydrogen bonds connect the structure into a three-dimensional array. Under ambient conditions, the thiol H atom is disordered in such a way as to form inter­molecular S—H⋯S and S—H⋯O hydrogen bonds. At 30 K the structure is ordered with retention of the S—H⋯S contacts [S⋯S = 3.8489 (4) Å, S—H⋯S = 2.66 (3) Å and S—H⋯S = 150.8 (16)°].

Comment

The amino acid L-cysteine (Fig. 1[link]) is known to crystallize in two polymorphic forms, viz. an ortho­rhom­bic phase (P212121, Z′ = 1) and a monoclinic phase (P21, Z′ = 2). We refer to these as L-cysteine-I and L-cysteine-II, respectively. The crystal structure of L-cysteine-I was determined by Kerr & Ashmore (1973[Kerr, K. A. & Ashmore, J. P. (1973). Acta Cryst. B29, 2124-2127.]) by X-ray diffraction and then again by Kerr et al. (1975[Kerr, K. A., Ashmore, J. P. & Koetzle, T. F. (1975). Acta Cryst. B31, 2022-2026.]) by neutron diffraction. Both of these studies were at ambient temperature. L-Cysteine-II was characterized at ambient temperature by Harding & Long (1968[Harding, M. M. & Long, H. A. (1968). Acta Cryst. B24, 1096-1102.]) and later by Görbitz & Dalhus (1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1756-1759.]) at 120 K; both of these determinations employed X-ray diffraction. Two new polymorphs (one ortho­rhom­bic and the other monoclinic) have recently been characterized by us at elevated pressure (Moggach et al., 2005[Moggach, S. A., Allan, D. R., Clark, S. J., Gutmann, M. J., Parsons, S., Pulham, C. R. & Sawyer, L. (2005). In preparation.]).

[Scheme 1]

Both L-cysteine-I and L-cysteine-II crystallize with the mol­ecule as its zwitterionic tautomer (Fig. 1[link]). In principle, the N1—C2—C1—S1 torsion angle (χ1) can adopt values of ca 60° (the gauche+ conformer, g+), −60° (g) and 180° (trans or t). In L-cysteine-I at 30 K, this parameter is 70.66 (9)°, which compares with a value of 65.3° as determined by X-ray diffraction at room temperature. This is consistent with the finding of Görbitz (1990[Görbitz, C. H. (1990). Acta Chem. Scand. 44, 584-590.]) that in small mol­ecules there is a strong preference for the g+ conformation.

Inter­molecular inter­actions in both forms of L-cysteine are dominated by N—H⋯O hydrogen bonds. In L-cysteine-I, the shortest of these, N1—H7⋯O2, lies along c to form a C(5) chain (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). The second shortest hydrogen bond, N1—H5⋯O1, links mol­ecules into C(5) chains, which run along a. The combination of these two C(5) chains yields a layer composed of R44(16) ring motifs (Fig. 2[link]). The layer is parallel to the ac plane, though it is not planar, having a sinusoidal appearance when viewed in projection down c. The last of the N—H⋯O inter­actions, N1—H6⋯O2, acts to link the layers together along the b direction. Pairs of N1—H6⋯O2 contacts form R32(9) ring motifs (Fig. 3[link]).

Although the crystal structures of both polymorphs of L-cysteine are dominated by N—H⋯O hydrogen bonding, the thiol group is also capable of forming hydrogen bonds. Hydrogen bonds where Csp3—SH groups act as donors are very weak, leading to red shifts of only ca 20 cm−1 in vibrational spectra (Desiraju & Steiner, 1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]). This weakness often results in disorder in the H-atom position, and thus geometric data for `well behaved' S—H⋯X inter­actions are rather sparse.

The structure of L-cysteine-II is unusual in thiol chemistry because it contains ordered thiol groups; inter­molecular S—H⋯S and S—H⋯O hydrogen bonds are formed by the two mol­ecules that make up the asymmetric unit. The H⋯S and S⋯S distances in L-cysteine-II are 2.78 (4) and 4.080 (1) Å, respectively (Görbitz & Dalhus, 1996[Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1756-1759.]). These are similar to other systems, e.g. hydrogen sulfide (2.68–2.74 and 3.985–4.027 Å; Cockcroft & Fitch, 1990[Cockcroft, J. K. & Fitch, A. N. (1990). Z. Kristallogr. 193, 1-19.]) and hexa­kis(mercaptometh­yl)benzene (ca 2.8 and 4.0 Å; Mallinson et al., 1997[Mallinson, P. R., MacNicol, D. D., McCormack, K. L., Yufit, D. S., Gall, J. H. & Henderson, R. K. (1997). Acta Cryst. C53, 90-92.]) quoted in a survey by Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]).

The thiol group is disordered in the crystal structure of L-cysteine-I at room temperature. Different components of the disorder lead to the formation of S—H⋯O and S—H⋯S hydrogen bonds, but the latter is marginally favoured. This result is consistent with the results of DFT calculations, which place the S—H⋯S structure 4.11 kJ mol−1 lower in energy. This energy difference is small, and it suggests that the disorder may be frozen out at low enough temperatures.

This proves to be the case, and at 30 K the thiol H atom in L-cysteine-I is ordered (Fig. 4[link]), forming an S—H⋯S hydrogen bond, with parameters given in Table 2. The geometrical parameters of this inter­action are S⋯S = 3.8489 (4) Å, H⋯S = 2.66 (3) Å and S—H⋯S = 150.8 (16)°. This bond is shorter than that in L-cysteine-II and the other systems cited above. The S—H⋯S inter­actions form an infinite hydrogen-bonded chain which zigzags along c. These inter­actions support the R32(9) ring motifs in connecting the sinusoidal layers formed by R44(16) ring motifs (Fig. 3[link]).

At 0.06 Å2, the isotropic displacement parameter of the thiol H atom is high relative to those of the other atoms in the system (0.008 − 0.017 Å2). This suggests that the thiol H atom is still quite mobile at 30 K, and its behaviour at still lower temperatures would be of considerable inter­est.

[Figure 1]
Figure 1
The mol­ecular structure of L-cysteine as observed in the crystal structure of ortho­rhom­bic L-cysteine at 30 K and ambient pressure. The displacement ellipsoids are drawn at the 50% probability level, and the H atoms as circles of arbitrary radius.
[Figure 2]
Figure 2
Hydrogen-bonded layers in L-cysteine-I via N1—H7⋯O2iv and N1—H5⋯O1ii inter­actions. These build R44(16) rings. This view is along b. See Table 2[link] for symmetry codes.
[Figure 3]
Figure 3
The layers shown in Fig. 2[link] are connected by N1—H6⋯O2iii hydrogen bonds. The hydrogen bonds illustrated in Fig. 2[link] are shown in orange; the hydrogen bonds that connect the layers are shown in black. This view is along c.
[Figure 4]
Figure 4
Difference map showing location of the thiol H atom. Contours are drawn at 0.4 (green), 0.6 (blue) and 0.8 eÅ−3 (red).

Experimental

Crystals of ortho­rhom­bic L-cysteine-I were obtained from Sigma (99%, catalogue number G, 1002) and used as received.

Crystal data
  • C3H7NO2S

  • Mr = 121.16

  • Orthorhombic, P 21 21 21

  • a = 8.1435 (4) Å

  • b = 11.9365 (5) Å

  • c = 5.4158 (3) Å

  • V = 526.44 (4) Å3

  • Z = 4

  • Dx = 1.529 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4210 reflections

  • θ = 3.0–31.0°

  • μ = 0.50 mm−1

  • T = 30 K

  • Block, colourless

  • 0.40 × 0.20 × 0.17 mm

Data collection
  • Bruker–Nonius APEX CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.])Tmin = 0.775, Tmax = 0.920

  • 4686 measured reflections

  • 1516 independent reflections

  • 1474 reflections with I > 2σ(I)

  • Rint = 0.021

  • θmax = 30.8°

  • h = −11 → 9

  • k = −17 → 17

  • l = −6 → 7

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.017

  • wR(F2) = 0.047

  • S = 1.03

  • 1514 reflections

  • 93 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(F2) + ( 0.02P)2 + 0.04P] where P = [max(Fo2,0) + 2Fc2]/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 592 Friedel pairs

  • Flack parameter: −0.02 (5)

Table 1
Selected geometric parameters (Å, °)[link]

S1—C1 1.8237 (10)
S1—H1 1.31 (3)
C1—C2 1.5223 (13)
C2—C3 1.5359 (13)
C2—N1 1.4843 (12)
C3—O1 1.2444 (12)
C3—O2 1.2623 (11)
S1—C1—C2 113.91 (6)
C1—C2—C3 111.11 (8)
C1—C2—N1 110.73 (7)
C3—C2—N1 110.96 (8)
C2—C3—O1 116.98 (8)
C2—C3—O2 116.87 (8)
O1—C3—O2 126.14 (10)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
S1—H1⋯S1i 1.30 (3) 2.66 (3) 3.8489 (4) 151 (2)
N1—H5⋯O1ii 0.83 (2) 1.97 (2) 2.7694 (11) 162 (2)
N1—H6⋯O2iii 0.87 (1) 2.12 (1) 2.9451 (11) 159 (2)
N1—H7⋯O2iv 0.89 (2) 1.87 (2) 2.7546 (11) 170 (1)
C1—H2⋯O1iv 0.96 (2) 2.56 (2) 3.2748 (13) 132 (1)
C2—H4⋯S1v 0.93 (1) 2.85 (1) 3.7770 (9) 175 (1)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+2, +z-{\script{1\over 2}}]; (ii) [+x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, -y+2, +z+{\script{1\over 2}}]; (iv) x, y, z+1; (v) [-x+1, +y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

H atoms were located in a difference map. The aim of this structure determination was to determine the position of the H atom attached to S1, and therefore all H atoms were refined independently with isotropic displacement parameters. Two reflections were omitted, one as an outlier, the other because it was obscured by the beam stop.

The ab initio calculations were performed with the plane-wave pseudopotential implementation of density functional theory (DFT) using the CASTEP code (Segall et al., 2002[Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J. & Payne, M. C. (2002). J. Phys. Condens. Matter, 14, 2717-2744.]). Plane-wave basis sets have many benefits compared with conventionally used quantum chemistry basis sets; in particular, there exists a simple parameter, the cutoff energy, to determine the completeness of the basis. This gives us confidence that the wavefunction can describe any properties without bias towards any other particular result (Clark et al., 1998[Clark, S. J., Ackland, G. J. & Crain, J. (1998). Europhys. Lett. 44, 578-584.]). In our calculations, the many-body exchange and correlation inter­actions are described using the generalized gradient approximation (Perdew & Wang, 1992[Perdew, J. P. & Wang, Y. (1992). Phys. Rev. B, 46, 12947-12954.]). Such calculations are capable of giving accurate and reliable structural and electronic information. Ultrasoft pseudopotentials (Vanderbilt, 1990[Vanderbilt, D. (1990). Phys. Rev. B, 41, 7892-7895.]) are used to describe the electron-ion inter­actions. A cut-off energy of 380 eV is used, which converged the total energy of the system to 1.0 meV atom−1. The Monkhorst–Pack k-point sampling scheme (Monkhorst & Pack, 1976[Monkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188-5192.]) was used to perform the integrations in k-space over the first Brillouin zone with the grids for each cell chosen to be dense enough to also converge the total energy to 1.0 meV atom−1. For each structure considered, the geometry (atomic positions and unit-cell parameters) was optimized using a conjugate gradient algorithm. The tolerances used give energy differences between structures accurate to better than 1.0 meV.

Data collection: APEX (Bruker, 2004[Bruker (2004). APEX and SAINT (Version V7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX and SAINT (Version V7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.]), DIAMOND (Crystal Impact, 2004[Crystal Impact (2004). DIAMOND. Version 3.0. Crystal Impact, Postfach 1251, 53002 Bonn, Germany. https://www.crystalimpact.com/diamond.]), MERCURY (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]; Taylor & Macrae, 2001[Taylor, R. & Macrae, C. F. (2001). Acta Cryst. B57, 815-827.]), MCE Fourier Map Viewer (Hušák & Kratochvila, 2003[Hušák, M. & Kratochvila, B. (2003). J. Appl. Cryst. 36, 1104.]) and SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.01. University of Göttingen, Germany, and Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: CRYSTALS, and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) as incorporated into WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: APEX (Bruker, 2004); cell refinement: SAINT; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996), DIAMOND (Crystal Impact, 2004), Mercury (Bruno et al., 2002; Taylor & Macrae, 2001), MCE Fourier Map Viewer (Husak & Kratochvila, 2003) and SHELXTL (Sheldrick, 2001); software used to prepare material for publication: CRYSTALS, and PLATON (Spek, 2003) as incorporated into WinGX (Farrugia, 1999).

L-cysteine top
Crystal data top
C3H7NO2SF(000) = 256
Mr = 121.16Dx = 1.529 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4210 reflections
a = 8.1435 (4) Åθ = 3.0–31.0°
b = 11.9365 (5) ŵ = 0.50 mm1
c = 5.4158 (3) ÅT = 30 K
V = 526.44 (4) Å3Block, colourless
Z = 40.40 × 0.20 × 0.17 mm
Data collection top
Bruker–Nonius APEX CCD area-detector
diffractometer
1474 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 30.8°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 119
Tmin = 0.775, Tmax = 0.920k = 1717
4686 measured reflectionsl = 67
1516 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017All H-atom parameters refined
wR(F2) = 0.047 w = 1/[σ2(F2) + ( 0.02P)2 + 0.04P]
where P = [max(Fo2,0) + 2Fc2]/3
S = 1.03(Δ/σ)max = 0.001
1514 reflectionsΔρmax = 0.27 e Å3
93 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 592 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (5)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41463 (3)1.022635 (19)0.60963 (5)0.0087
C10.43549 (12)0.88319 (8)0.74364 (18)0.0083
C20.59208 (12)0.82254 (7)0.66819 (17)0.0065
C30.61052 (11)0.81952 (7)0.38602 (19)0.0068
N10.73776 (10)0.87498 (7)0.78553 (16)0.0071
O10.51302 (9)0.75892 (6)0.26998 (15)0.0111
O20.72196 (8)0.87985 (6)0.29348 (13)0.0082
H10.345 (3)0.989 (2)0.406 (5)0.062 (6)*
H20.4310 (17)0.8914 (12)0.920 (3)0.017 (4)*
H30.3379 (17)0.8389 (11)0.696 (3)0.008 (3)*
H40.5824 (17)0.7491 (11)0.725 (3)0.005 (3)*
H50.8201 (19)0.8409 (12)0.738 (3)0.015 (4)*
H60.7427 (16)0.9454 (11)0.748 (3)0.008 (3)*
H70.7250 (16)0.8690 (12)0.949 (3)0.008 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.00811 (10)0.00808 (10)0.00992 (11)0.00130 (8)0.00065 (8)0.00039 (8)
C10.0078 (4)0.0095 (4)0.0076 (4)0.0010 (3)0.0019 (3)0.0011 (3)
C20.0065 (4)0.0071 (3)0.0060 (4)0.0006 (3)0.0004 (3)0.0001 (3)
C30.0077 (4)0.0070 (3)0.0057 (4)0.0023 (3)0.0001 (3)0.0004 (3)
N10.0076 (3)0.0091 (3)0.0045 (4)0.0004 (3)0.0001 (3)0.0000 (3)
O10.0113 (3)0.0135 (3)0.0086 (3)0.0042 (3)0.0010 (3)0.0014 (3)
O20.0093 (3)0.0100 (3)0.0051 (3)0.0018 (2)0.0004 (3)0.0002 (2)
Geometric parameters (Å, º) top
S1—C11.8237 (10)C2—H40.933 (13)
S1—H11.31 (3)C3—O11.2444 (12)
C1—C21.5223 (13)C3—O21.2623 (11)
C1—H20.961 (16)N1—H50.826 (16)
C1—H30.989 (14)N1—H60.866 (14)
C2—C31.5359 (13)N1—H70.894 (16)
C2—N11.4843 (12)
C1—S1—H195.3 (10)C3—C2—H4108.5 (9)
S1—C1—C2113.91 (6)N1—C2—H4108.7 (8)
S1—C1—H2107.4 (9)C2—C3—O1116.98 (8)
C2—C1—H2110.3 (8)C2—C3—O2116.87 (8)
S1—C1—H3108.0 (8)O1—C3—O2126.14 (10)
C2—C1—H3110.4 (8)C2—N1—H5107.9 (11)
H2—C1—H3106.5 (12)C2—N1—H6110.2 (9)
C1—C2—C3111.11 (8)H5—N1—H6111.5 (13)
C1—C2—N1110.73 (7)C2—N1—H7107.3 (9)
C3—C2—N1110.96 (8)H5—N1—H7111.4 (14)
C1—C2—H4106.7 (9)H6—N1—H7108.5 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
S1—H1···S1i1.30 (3)2.66 (3)3.8489 (4)150.8 (16)
N1—H5···O1ii0.825 (15)1.972 (15)2.7694 (11)162.1 (16)
N1—H6···O2iii0.866 (13)2.120 (13)2.9451 (11)159.1 (15)
N1—H7···O2iv0.894 (16)1.870 (16)2.7546 (11)169.6 (13)
C1—H2···O1iv0.961 (16)2.557 (15)3.2748 (13)131.6 (11)
C2—H4···S1v0.932 (14)2.848 (13)3.7770 (9)174.6 (12)
Symmetry codes: (i) x+1/2, y+2, z1/2; (ii) x+1/2, y+3/2, z+1; (iii) x+3/2, y+2, z+1/2; (iv) x, y, z+1; (v) x+1, y1/2, z+3/2.
 

Acknowledgements

We thank the EPSRC for funding, and Dr A. Goeta (University of Durham, England) for his helpful experimental advice.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX and SAINT (Version V7.12A). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, S. J., Ackland, G. J. & Crain, J. (1998). Europhys. Lett. 44, 578–584.  Web of Science CrossRef CAS Google Scholar
First citationCockcroft, J. K. & Fitch, A. N. (1990). Z. Kristallogr. 193, 1–19.  CrossRef CAS Web of Science Google Scholar
First citationCrystal Impact (2004). DIAMOND. Version 3.0. Crystal Impact, Postfach 1251, 53002 Bonn, Germany. https://www.crystalimpact.com/diamondGoogle Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGörbitz, C. H. (1990). Acta Chem. Scand. 44, 584–590.  Google Scholar
First citationGörbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1756–1759.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHarding, M. M. & Long, H. A. (1968). Acta Cryst. B24, 1096–1102.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationHušák, M. & Kratochvila, B. (2003). J. Appl. Cryst. 36, 1104.  CrossRef IUCr Journals Google Scholar
First citationKerr, K. A. & Ashmore, J. P. (1973). Acta Cryst. B29, 2124–2127.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKerr, K. A., Ashmore, J. P. & Koetzle, T. F. (1975). Acta Cryst. B31, 2022–2026.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMallinson, P. R., MacNicol, D. D., McCormack, K. L., Yufit, D. S., Gall, J. H. & Henderson, R. K. (1997). Acta Cryst. C53, 90–92.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMoggach, S. A., Allan, D. R., Clark, S. J., Gutmann, M. J., Parsons, S., Pulham, C. R. & Sawyer, L. (2005). In preparation.  Google Scholar
First citationMonkhorst, H. J. & Pack, J. D. (1976). Phys. Rev. B, 13, 5188–5192.  CrossRef Web of Science Google Scholar
First citationPerdew, J. P. & Wang, Y. (1992). Phys. Rev. B, 46, 12947–12954.  CrossRef Web of Science Google Scholar
First citationSegall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J. & Payne, M. C. (2002). J. Phys. Condens. Matter, 14, 2717–2744.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.01. University of Göttingen, Germany, and Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTaylor, R. & Macrae, C. F. (2001). Acta Cryst. B57, 815–827.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVanderbilt, D. (1990). Phys. Rev. B, 41, 7892–7895.  CrossRef Web of Science Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, UK.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds