organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Powder study of hydro­chloro­thia­zide–methyl acetate (1/1)

CROSSMARK_Color_square_no_text.svg

aSolid-State Research Group, Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and bISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon UK OX11 0QX, England
*Correspondence e-mail: alastair.florence@strath.ac.uk

(Received 22 July 2005; accepted 10 August 2005; online 17 August 2005)

A polycrystalline sample of the title compound, C7H8ClN3O4S2·C3H6O2, was produced during an automated parallel crystallization search on hydro­chloro­thia­zide (HCT). The crystal structure was solved by simulated annealing from laboratory X-ray powder diffraction data collected at room temperature to 1.75 Å resolution. Subsequent Rietveld refinement yielded an Rwp value of 0.0182 to 1.54 Å resolution. The compound crystallizes with one mol­ecule of HCT and one of methyl acetate in the asymmetric unit and displays an extensive hydrogen-bonding network.

Comment

Hydro­chloro­thia­zide (HCT) is a thia­zide diuretic which is known to crystallize in at least two non-solvated forms; form I (Dupont & Dideberg, 1972[Dupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340-2347.]) and form II (Florence et al., 2005[Florence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E. Osmundsen, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798-o2800.]). During an automated parallel crystallization search on HCT, multi-sample X-ray powder diffraction analysis (Florence et al., 2003[Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930-1938.]) of all recrystallized samples revealed a novel pattern which was identified as the methyl acetate solvate (I)[link].

[Scheme 1]

The crystal structure of (I)[link] was solved by simulated annealing using laboratory X-ray powder diffraction data. The compound crystallizes in the space group P21/c with one mol­ecule of hydro­chloro­thia­zide (HCT) and one of methyl acetate in the asymmetric unit (Fig. 1[link]). In (I)[link], the six-membered ring N2/S1/C1/C2/N1/C3 in HCT displays a non-planar conformation, atom N2 having the largest deviation [0.646 (2) Å] from the least-squares plane through the aromatic ring. The sulfonamide side chain displays a torsion angle N3—S2—C5—C6 of 65.1 (4)°, such that atom O1 eclipses H4, and atoms O4 and N3 are staggered with respect to Cl1.

The crystal packing (Fig. 2[link]) is stabilized by inter­molecular N—H⋯O hydrogen bonds (Table 2[link]), which form a centrosymmetric R22(8) dimer motif between HCT mol­ecules (Fig. 3[link], top), and an R44(24) motif inter­connecting two mol­ecules of HCT and two mol­ecules of solvent (Fig. 3[link], bottom). In addition, adjacent HCT mol­ecules are connected by a C—H⋯O inter­action (Table 2[link]).

Hydro­phobic inter­actions within the structure of (I)[link] include a C—H⋯π approach between C10—H10A and the centroid of the ring C1/C2/C4–C7 [C10⋯centroid distance of 3.364 (2) Å]. The structure also contains a short O⋯C inter­molecular contact of 2.915 (4) Å between atom O1 of the HCT sulfonamide side chain and C9i [symmetry code: (i) x, [{3\over 2}]y, −[{1\over 2}] + z], the carbonyl C atom of methyl acetate. This type of contact is not unique, and a search of the Cambridge Structural Database (Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) for (O)S=O⋯C=O(ester) inter­molecular contacts less than the sum of the van der Waals radii yielded 38 structures comprising 41 contacts within the range 2.83–3.21 Å. It is reasonable to consider this contact to be an attractive dipole–dipole inter­action of the type S=O(δ)⋯C(δ+)=O, similar to those described elsewhere for carbon­yl–carbonyl inter­actions (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]).

[Figure 1]
Figure 1
The atomic arrangement in (I)[link], showing the contents of the asymmetric unit and the atom-numbering scheme. Isotropic displacement ellipsoids are shown at the 50% probability level.
[Figure 2]
Figure 2
The crystal structure of (I)[link], viewed along the b axis. Dashed lines indicate hydrogen bonds.
[Figure 3]
Figure 3
The R22(8) (top) and R44(24) (bottom) hydrogen-bonded motifs within the structure of (I)[link].
[Figure 4]
Figure 4
Final observed (points), calculated (line) and difference [(yobs-ycalc)/σ(yobs)] profiles for the Rietveld refinement of the title compound.

Experimental

A polycrystalline sample of (I)[link] was recrystallized by cooling a saturated methyl acetate–acetone (50:50) solution from 313 to 283 K. The sample was lightly ground in a mortar, loaded into a 0.7 mm borosilicate glass capillary and mounted on the diffractometer. Data were collected from a sample in a rotating 0.7 mm borosilicate glass capillary using a variable count time scheme (Shankland et al., 1997[Shankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569-572.]; Hill & Madsen, 2002[Hill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker and Ch. Baerlocher, pp. 114-116. Oxford University Press.]).

Crystal data
  • C7H8ClN3O4S2·C3H6O2

  • Mr = 371.83

  • Monoclinic, P 21 /c

  • a = 9.39703 (16) Å

  • b = 7.28424 (16) Å

  • c = 21.9483 (3) Å

  • β = 95.8020 (11)°

  • V = 1494.67 (6) Å3

  • Z = 4

  • Dx = 1.652 Mg m−3

  • Cu Kα1 radiation

  • μ = 5.20 mm−1

  • T = 298 K

  • Specimen shape: cylinder

  • 12 × 0.7 × 0.7 mm

  • Specimen prepared at 298 K

  • White

Data collection
  • Bruker AXS D8 Advance diffractometer

  • Specimen mounting: 0.7 mm borosilicate capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • 430 measured reflections

  • h = 0 → 6

  • k = −4 → 4

  • l = −14 → 14

  • 2θmin = 5.0, 2θmax = 60.0°

  • Increment in 2θ = 0.014°

Refinement
  • Refinement on Inet

  • Rp = 0.013

  • Rwp = 0.018

  • Rexp = 0.013

  • RB = 0.007

  • S = 1.45

  • Excluded region(s): 5.0 to 7.5 due to high low angle background and the absence of Bragg reflections.

  • Wavelength of incident radiation: 1.5406 Å

  • Profile function: fundamental parameters with axial divergence correction

  • 430 reflections

  • 126 parameters

  • Only H-atom coordinates refined

  • w = 1/σ(Yobs)2

  • (Δ/σ)max = 0.004

  • Δρmax = 0.6 e Å−3

  • Δρmin = − 0.7 e Å−3

  • Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]) was applied with TOPAS during the Rietveld refinement.

Table 1
Selected geometric parameters (Å, °)[link]

Cl1—C6 1.729 (3)
S1—O2 1.426 (3)
S1—O3 1.424 (3)
S1—N2 1.647 (2)
S1—C1 1.770 (2)
S2—O1 1.430 (3)
S2—O4 1.425 (4)
S2—N3 1.635 (2)
S2—C5 1.773 (2)
O5—C9 1.229 (3)
O6—C9 1.379 (3)
O6—C10 1.432 (3)
N1—C2 1.364 (2)
N1—C3 1.395 (2)
N2—C3 1.442 (2)
O2—S1—O3 122.3 (2)
O2—S1—N2 105.1 (2)
O2—S1—C1 108.82 (19)
O3—S1—N2 108.26 (19)
O3—S1—C1 109.26 (19)
N2—S1—C1 100.99 (11)
O1—S2—O4 117.9 (3)
O1—S2—N3 109.7 (3)
O1—S2—C5 106.0 (2)
O4—S2—N3 108.3 (2)
O4—S2—C5 108.99 (19)
N3—S2—C5 105.25 (16)
C9—O6—C10 117.19 (17)
C2—N1—C3 123.80 (15)
S1—N2—C3 114.00 (13)
S1—C1—C4 119.05 (13)
S1—C1—C2 119.79 (11)
N1—C2—C7 120.31 (16)
N1—C2—C1 121.89 (15)
N1—C3—N2 112.9 (2)
S2—C5—C4 117.37 (16)
S2—C5—C6 124.82 (16)
Cl1—C6—C7 116.92 (19)
Cl1—C6—C5 121.60 (16)
O5—C9—O6 117.66 (19)
O5—C9—C8 129.20 (18)
O6—C9—C8 113.14 (14)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O6 0.94 (1) 2.48 (1) 3.052 (4) 119 (1)
N2—H2⋯O3i 0.95 (1) 2.17 (1) 3.086 (3) 161 (1)
N3—H31⋯O1ii 0.95 (1) 2.46 (1) 2.967 (6) 113 (1)
N3—H31⋯O5iii 0.95 (1) 2.26 (1) 3.090 (3) 146 (1)
N3—H32⋯O5iv 0.95 (1) 2.12 (1) 2.960 (4) 147 (1)
C7—H7⋯O2v 0.95 (1) 2.41 (1) 3.336 (4) 165 (1)
Symmetry codes: (i) -x+1, -y+2, -z; (ii) [-x+1, +y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iii) -x+1, -y+1, -z; (iv) [x, -y+{\script{1\over 2}}, +z-{\script{1\over 2}}]; (v) x, y-1, z.

The diffraction pattern indexed to a monoclinic cell [M(20)= 34.0, F(20)= 81.2; DICVOL-91; Boultif & Louer, 1991[Boultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987-993.]] and the space group P21/c was assigned from volume considerations and a statistical consideration of the systematic absences (Markvardsen et al., 2001[Markvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47-54.]). The data set was background subtracted and truncated to 52.2° 2θ for Pawley fitting (Pawley, 1981[Pawley, G. S. (1981). J. Appl. Cryst. 14, 357-361.]; χ2Pawley = 1.64) and the structure solved using the simulated annealing (SA) global optimization procedure, described previously (David et al., 1998[David, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931-932.]), that is now implemented in the DASH computer program (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0. CCDC, 12 Union Road, Cambridge, England.]). The inter­nal coordinate descriptions (including H atoms) of the mol­ecules were constructed from standard bond lengths, angles and torsions where appropriate. The structure was solved using data to 52.23° 2θ, comprising 291 reflections. The structure was refined against data in the range 7.5 to 60.0° 2θ (430 reflections). The restraints were set such that bonds and angles did not deviate more than 0.01 Å and 1°, respectively, from their initial values during the refinement. Atoms C1, C2, C4, C5, C6, C7, H4, H7, Cl1 and S2 of HCT were restrained to be planar, as were atoms C8, C9, C10, O5 and O6 of the methyl acetate. The SA structure solution involved the optimization of one mol­ecule of HCT plus one mol­ecule of methyl acetate, totaling 13 degrees of freedom (six positional, six orientational and one torsional). All degrees of freedom were assigned random values at the start of the simulated annealing. The best SA solution had a favourable χ2SA/χ2Pawley ratio of 5.2, a chemically reasonable packing arrangement and exhibited no significant misfit to the data. Prior to Rietveld refinement, atoms H31 and H32 (attached to N3) were set to positions which satisfied the hydrogen-bonding contacts within the structure. The solved structure was subsequently refined against data in the range 7.5–60.0° 2θ using a restrained Rietveld method (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) as implemented in TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS User's Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]), with the Rwp value falling to 0.0182 during the refinement. All atomic positions (including H atoms) for the structure of (I)[link] were refined, subject to a series of restraints on bond lengths, angles and planarity. A spherical harmonics (8th order) correction of intensities for preferred orientation was applied in the final refinement (Järvinen, 1993[Järvinen, M. (1993). J. Appl. Cryst. 26, 525-531.]). The observed and calculated diffraction patterns for the refined crystal structure are shown in Fig. 4[link]. The atomic coordinates for all atoms are taken from the software, and it is worth noting that the s.u. values derived from the Rietveld refinement are, in common with the majority of Rietveld refinements, significantly underestimated.

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003[Kienle, M. & Jacob, M. (2003). DIFFRAC, plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.]); cell refinement: TOPAS (Coelho, 2003[Coelho, A. A. (2003). TOPAS User's Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.]); data reduction: DASH (David et al., 2001[David, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0. CCDC, 12 Union Road, Cambridge, England.]); program(s) used to solve structure: DASH; program(s) used to refine structure: TOPAS; molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: enCIFer (Cambridge Crystallographic Data Centre, 2004[Cambridge Crystallographic Data Centre (2004). enCIFer. Version 1.1. CCDC, 12 Union Road, Cambridge, England.]).

Supporting information


Computing details top

Data collection: DIFFRAC plus XRD Commander (Kienle & Jacob, 2003); cell refinement: TOPAS (Coelho, 2003); data reduction: DASH (David et al., 2001); program(s) used to solve structure: DASH (David et al., 2001); program(s) used to refine structure: TOPAS; molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: enCIFer (Cambridge Crystallographic Data Centre, 2004).

(I) top
Crystal data top
C7H8ClN3O4S2·C3H6O2Z = 4
Mr = 371.83F(000) = 768.0
Monoclinic, P21/cDx = 1.652 Mg m3
Hall symbol: -P 2ybcCu Kα1 radiation, λ = 1.54056 Å
a = 9.39703 (16) ŵ = 5.20 mm1
b = 7.28424 (16) ÅT = 298 K
c = 21.9483 (3) Åwhite
β = 95.8020 (11)°cylinder, 12 × 0.7 mm
V = 1494.67 (6) Å3Specimen preparation: Prepared at 298 K
Data collection top
Bruker AXS D8 Advance
diffractometer
Data collection mode: transmission
Radiation source: sealed X-ray tube, Bruker AXS D8Scan method: step
Primary focussing, Ge 111 monochromator2θmin = 5.0°, 2θmax = 60.0°, 2θstep = 0.014°
Specimen mounting: 0.7 mm borosilicate capillary
Refinement top
Refinement on Inet126 parameters
Least-squares matrix: selected elements only72 restraints
Rp = 0.0131 constraint
Rwp = 0.018Only H-atom coordinates refined
Rexp = 0.013Weighting scheme based on measured s.u.'s 1/σ(Yobs)2
RBragg = 0.007(Δ/σ)max = 0.004
3929 data pointsBackground function: Chebyshev polynomial
Excluded region(s): 5.0 to 7.5 due to high low angle background and the absence of Bragg reflections.Preferred orientation correction: A spherical harmonics-based preferred orientation correction (Järvinen, 1993) was applied with Topas during the Rietveld refinement.
Profile function: Fundamental parameters with axial divergence correction
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.8195 (3)0.3882 (3)0.18148 (9)0.0329 (5)*
S10.73715 (15)1.05531 (19)0.00965 (7)0.0329 (5)*
S20.72621 (16)0.79646 (19)0.24031 (7)0.0329 (5)*
O10.6906 (7)0.9871 (3)0.24511 (19)0.0329 (5)*
O20.8672 (3)1.1557 (5)0.00231 (19)0.0329 (5)*
O30.6053 (3)1.1419 (4)0.0305 (2)0.0329 (5)*
O40.8458 (3)0.7336 (7)0.26960 (15)0.0329 (5)*
N10.8265 (6)0.6705 (2)0.02849 (8)0.0329 (5)*
N20.71647 (17)0.9472 (3)0.05475 (8)0.0329 (5)*
N30.58695 (16)0.6729 (2)0.26508 (15)0.0329 (5)*
C10.7665 (3)0.8685 (2)0.05842 (6)0.0329 (5)*
C20.8055 (5)0.6976 (2)0.03324 (6)0.0329 (5)*
C30.82476 (17)0.8111 (2)0.07153 (8)0.0329 (5)*
C40.7449 (4)0.8932 (2)0.12102 (7)0.0329 (5)*
C50.7565 (3)0.7489 (3)0.16085 (8)0.0329 (5)*
C60.7971 (6)0.5770 (3)0.13567 (9)0.0329 (5)*
C70.8207 (4)0.5514 (2)0.07365 (6)0.0329 (5)*
H3A0.8089 (12)0.7606 (14)0.1100 (5)0.0443*
H3B0.9134 (11)0.8732 (16)0.0795 (4)0.0443*
H70.8452 (13)0.4329 (15)0.0578 (5)0.0443*
H40.7194 (16)1.0106 (13)0.1369 (6)0.0443*
H20.6190 (12)0.9181 (15)0.0575 (5)0.0443*
H10.8462 (12)0.5493 (16)0.0418 (5)0.0443*
H310.5006 (13)0.7193 (15)0.2523 (4)0.0443*
H320.6101 (12)0.5465 (17)0.2687 (5)0.0443*
C80.87362 (18)0.21591 (19)0.16847 (7)0.0329 (5)*
C90.71849 (18)0.2591 (2)0.15411 (8)0.0329 (5)*
C100.54815 (18)0.4566 (2)0.09788 (8)0.0329 (5)*
O50.6140 (2)0.1839 (4)0.17260 (13)0.0329 (5)*
O60.69391 (19)0.4044 (3)0.11414 (10)0.0329 (5)*
H8A0.8818 (12)0.1090 (16)0.1947 (5)0.0443*
H8B0.9172 (12)0.3172 (16)0.1893 (5)0.0443*
H8C0.9118 (13)0.1916 (15)0.1315 (5)0.0443*
H10A0.5049 (13)0.4878 (13)0.1326 (5)0.0443*
H10B0.5005 (13)0.3589 (16)0.0758 (5)0.0443*
H10C0.5494 (13)0.5610 (16)0.0707 (5)0.0443*
Geometric parameters (Å, º) top
Cl1—C61.729 (3)N3—H310.947 (12)
S1—O21.426 (3)C1—C41.380 (2)
S1—O31.424 (3)C1—C21.396 (2)
S1—N21.647 (2)C2—C71.402 (2)
S1—C11.770 (2)C4—C51.379 (3)
S2—O11.430 (3)C5—C61.406 (3)
S2—O41.425 (4)C6—C71.370 (2)
S2—N31.635 (2)C3—H3A0.947 (11)
S2—C51.773 (2)C3—H3B0.949 (11)
O5—C91.229 (3)C4—H40.945 (10)
O6—C91.379 (3)C7—H70.950 (11)
O6—C101.432 (3)C8—C91.494 (2)
N1—C21.364 (2)C8—H8A0.967 (11)
N1—C31.395 (2)C8—H8B0.940 (12)
N2—C31.442 (2)C8—H8C0.937 (11)
N1—H10.942 (12)C10—H10A0.927 (11)
N2—H20.948 (11)C10—H10B0.948 (12)
N3—H320.951 (12)C10—H10C0.967 (12)
O2—S1—O3122.3 (2)S2—C5—C6124.82 (16)
O2—S1—N2105.1 (2)C4—C5—C6117.75 (16)
O2—S1—C1108.82 (19)Cl1—C6—C7116.92 (19)
O3—S1—N2108.26 (19)C5—C6—C7121.48 (19)
O3—S1—C1109.26 (19)Cl1—C6—C5121.60 (16)
N2—S1—C1100.99 (11)C2—C7—C6120.57 (17)
O1—S2—O4117.9 (3)N1—C3—H3A109.4 (6)
O1—S2—N3109.7 (3)N1—C3—H3B113.9 (7)
O1—S2—C5106.0 (2)N2—C3—H3B107.7 (7)
O4—S2—N3108.3 (2)H3A—C3—H3B103.6 (9)
O4—S2—C5108.99 (19)N2—C3—H3A108.9 (7)
N3—S2—C5105.25 (16)C1—C4—H4119.4 (8)
C9—O6—C10117.19 (17)C5—C4—H4119.3 (8)
C2—N1—C3123.80 (15)C2—C7—H7119.7 (7)
S1—N2—C3114.00 (13)C6—C7—H7119.8 (7)
C3—N1—H1119.6 (7)O5—C9—O6117.66 (19)
C2—N1—H1116.6 (7)O5—C9—C8129.20 (18)
C3—N2—H2119.4 (7)O6—C9—C8113.14 (14)
S1—N2—H2111.1 (7)C9—C8—H8A108.2 (7)
S2—N3—H31112.7 (7)C9—C8—H8B107.8 (7)
H31—N3—H32125.5 (10)C9—C8—H8C108.0 (7)
S2—N3—H32112.2 (7)H8A—C8—H8B109.8 (10)
C2—C1—C4121.11 (14)H8A—C8—H8C110.4 (10)
S1—C1—C4119.05 (13)H8B—C8—H8C112.6 (10)
S1—C1—C2119.79 (11)O6—C10—H10A110.4 (7)
C1—C2—C7117.79 (12)O6—C10—H10B108.6 (8)
N1—C2—C7120.31 (16)O6—C10—H10C107.0 (7)
N1—C2—C1121.89 (15)H10A—C10—H10B112.4 (10)
N1—C3—N2112.9 (2)H10A—C10—H10C110.4 (9)
C1—C4—C5121.25 (16)H10B—C10—H10C108.0 (10)
S2—C5—C4117.37 (16)
O2—S1—N2—C365.2 (2)C2—N1—C3—N238.8 (6)
O3—S1—N2—C3162.64 (19)S1—N2—C3—N161.7 (3)
C1—S1—N2—C347.94 (18)C2—C1—C4—C52.1 (5)
O2—S1—C1—C292.7 (3)S1—C1—C2—N12.1 (6)
O2—S1—C1—C489.8 (3)S1—C1—C4—C5175.4 (3)
O3—S1—C1—C2131.6 (3)C4—C1—C2—C70.6 (6)
O3—S1—C1—C446.0 (3)S1—C1—C2—C7176.9 (3)
N2—S1—C1—C217.6 (3)C4—C1—C2—N1179.6 (4)
N2—S1—C1—C4159.9 (2)C1—C2—C7—C60.3 (6)
O1—S2—C5—C41.5 (4)N1—C2—C7—C6178.8 (5)
O1—S2—C5—C6178.7 (4)C1—C4—C5—C62.7 (5)
O4—S2—C5—C4126.4 (3)C1—C4—C5—S2179.9 (3)
O4—S2—C5—C650.9 (4)S2—C5—C6—Cl11.0 (6)
N3—S2—C5—C4117.7 (3)S2—C5—C6—C7179.0 (3)
N3—S2—C5—C665.1 (4)C4—C5—C6—Cl1178.3 (3)
C10—O6—C9—C8179.70 (16)C4—C5—C6—C71.8 (6)
C10—O6—C9—O50.5 (3)Cl1—C6—C7—C2179.7 (4)
C3—N1—C2—C16.3 (8)C5—C6—C7—C20.3 (7)
C3—N1—C2—C7174.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O60.94 (1)2.48 (1)3.052 (4)119 (1)
N2—H2···O3i0.95 (1)2.18 (1)3.086 (3)161 (1)
N3—H31···O1ii0.95 (1)2.46 (1)2.967 (6)113 (1)
N3—H31···O5iii0.95 (1)2.26 (1)3.090 (3)146 (1)
N3—H32···O5iv0.95 (1)2.12 (1)2.960 (4)147 (1)
C7—H7···O2v0.95 (1)2.41 (1)3.336 (4)165 (1)
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1/2, z1/2; (iii) x+1, y+1, z; (iv) x, y+1/2, z1/2; (v) x, y1, z.
 

Acknowledgements

The authors thank the Basic Technology programme of the UK Research Councils for funding under the project Control and Prediction of the Organic Solid State (URL: www.cposs.org.uk). They also thank EPSRC for grant GR/N07462/01.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBoultif, A. & Louer, D. (1991). J. Appl. Cryst. 24, 987–993.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCambridge Crystallographic Data Centre (2004). enCIFer. Version 1.1. CCDC, 12 Union Road, Cambridge, England.  Google Scholar
First citationCoelho, A. A. (2003). TOPAS User's Manual. Version 3.1. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationDavid, W. I. F., Shankland, K., Cole, J., Maginn, S., Motherwell, W. D. S. & Taylor, R. (2001). DASH. Version 3.0. CCDC, 12 Union Road, Cambridge, England.  Google Scholar
First citationDavid, W. I. F., Shankland, K. & Shankland, N. (1998). Chem. Commun. pp. 931–932.  Web of Science CSD CrossRef Google Scholar
First citationDupont, L. & Dideberg, O. (1972). Acta Cryst. B28, 2340–2347.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlorence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930–1938.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlorence, A. J., Johnston, A., Fernandes, P., Shankland, K., Stevens, H. N. E. Osmundsen, S. & Mullen, A. B. (2005). Acta Cryst. E61, o2798–o2800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHill, R. J. & Madsen, I. C. (2002). Structure Determination from Powder Diffraction Data, edited by W. I. F. David, K. Shankland, L. B. McCusker and Ch. Baerlocher, pp. 114-116. Oxford University Press.  Google Scholar
First citationJärvinen, M. (1993). J. Appl. Cryst. 26, 525–531.  CrossRef Web of Science IUCr Journals Google Scholar
First citationKienle, M. & Jacob, M. (2003). DIFFRAC, plus XRD Commander. Version 2.3. Bruker AXS GmbH, Karlsruhe, Germany.  Google Scholar
First citationMarkvardsen, A. J., David, W. I. F., Johnson, J. C. & Shankland, K. (2001). Acta Cryst. A57, 47–54.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPawley, G. S. (1981). J. Appl. Cryst. 14, 357–361.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationShankland, K., David, W. I. F. & Sivia, D. S. (1997). J. Mater. Chem. 7, 569–572.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds