organic compounds
1,2:3,4-Di-O-isopropylidene-β-D-psicofuranose
aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, cRare Sugar Research Centre, Kagawa University, Mikicho, Kagawa 761-0795 Japan, and dGlycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk
The 12H20O6, establishes the stereochemistry of the anomeric spiroacetal 1,2:3,4-di-O-isopropylidene-β-D-psicofuranose. The structure consists of columns of molecules linked by hydrogen bonds into chains [O⋯O 2.962 (2) Å] lying parallel to the a axis.
of the title diacetone psicose, CComment
Izumoring, a combination of enzymic epimerizations of ketohexoses combined with microbial oxidation–reduction procedures, can provide access to any hexose in substantial quantity via environmentally friendly procedures (Granstrom et al., 2004; Izumori, 2002). The rare sugar D-psicose, (1), is now available for the first time in multi-kilogram quantities from the equilibration of D-fructose by D-tagatose 3-epimerase (Takeshita et al., 2000; Itoh & Izumori, 1996; Itoh et al., 1995). Although the main purpose of large-scale production of rare sugars such as D-psicose is for their use in food technology (Sun et al., 2004, 2005), such studies will significantly increase the number of sugar chirons (Lichtenthaler & Peters, 2004; Soengas, Izumori et al., 2005).
Crystalline diacetonides of ). The first report of the reaction of psicose with acetone was the formation of a furanose diacetonide from L-psicose (Steiger & Reichstein, 1935); the reaction of D-psicose, (1), with acetone gave an enantiomeric diacetonide, (2) (Steiger & Reichstein, 1936), with no indication of the chemistry at the anomeric position. All other syntheses of the furanose diacetonide, (2), have been multi-step procedures starting from a pyranose diacetonide of fructose. The original procedure for the preparation of (2) from D-fructose (James et al., 1967) has been significantly improved (James et al., 1967; Cree & Perlin, 1968; Tipson et al., 1971). The diacetonide, (2), has been used as a starting material for the synthesis of (Prisbe et al., 1976) and imino sugars (Joseph et al., 2002). There is no report in any of the numerous previous papers of any attempt to determine the anomeric configuration of the spiro-acetal functionality in (2). In recent studies, it was found that treatment of psicose (1) with acetone in the presence of acid afforded the easily crystallized diacetone psicose, (2) (Soengas, Wormald et al., 2005), in good yield. The present report of the of (2) unequivocally establishes the anomeric configuration of the diacetonide, (3), as the β-form (Fig. 1).
are among the most common chiral building blocks in organic synthesis (Bols, 1996The structure of (2) consists of columns of molecules linked by hydrogen bonds into chains [O⋯O = 2.962 (2) Å] lying parallel to the a axis (Fig. 2). Contacts between the chains are determined largely by the methyl groups.
Experimental
The title material, (2) (Soengas, Wormald et al., 2005), was crystallized from 333–353 K petroleum ether.
Crystal data
|
Data collection
Refinement
|
Because the data were collected with molybdenum radiation, there were no measurable anomalous differences, as a consequence of which it was admissible to merge Friedel pairs of reflections. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles in order to regularize their geometry [C—H distances in the range 0.93–98 Å and O—H = 0.82 Å, and Uiso(H) in the range 1.2–1.5Ueq of the adjacent atom], after which they were refined with riding constraints.
Data collection: COLLECT. (Nonius, 1997-2001).; cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.
Supporting information
https://doi.org/10.1107/S1600536805025572/hg6223sup1.cif
contains datablocks global, 2. DOI:Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S1600536805025572/hg62232sup2.hkl
Data collection: COLLECT. (Nonius, 1997-2001).; cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C12H20O6 | F(000) = 1120 |
Mr = 260.29 | Dx = 1.288 Mg m−3 |
Orthorhombic, C2221 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2c 2 | Cell parameters from 1674 reflections |
a = 7.5915 (2) Å | θ = 5–27° |
b = 20.1407 (6) Å | µ = 0.10 mm−1 |
c = 17.5607 (6) Å | T = 190 K |
V = 2685.00 (14) Å3 | Prism, colourless |
Z = 8 | 0.45 × 0.15 × 0.15 mm |
Nonius KappaCCD area-detector diffractometer | 1721 reflections with I > −3σ(I) |
Graphite monochromator | Rint = 0.030 |
ω scans | θmax = 27.5°, θmin = 5.3° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −9→9 |
Tmin = 0.86, Tmax = 0.98 | k = −25→25 |
9365 measured reflections | l = −22→22 |
1721 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.078 | w = 1/[σ2(F2) + (0.04P)2 + 0.76P] where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.94 | (Δ/σ)max = 0.000268 |
1721 reflections | Δρmax = 0.18 e Å−3 |
163 parameters | Δρmin = −0.17 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.9879 (2) | 0.86900 (8) | 0.45535 (9) | 0.0289 | |
C2 | 0.8171 (2) | 0.89925 (9) | 0.48595 (11) | 0.0326 | |
C3 | 0.6934 (2) | 0.84018 (8) | 0.49965 (10) | 0.0306 | |
C4 | 0.7929 (2) | 0.78036 (8) | 0.47003 (10) | 0.0275 | |
O5 | 0.97603 (15) | 0.79999 (5) | 0.47083 (6) | 0.0275 | |
C6 | 0.7334 (2) | 0.75971 (9) | 0.39077 (10) | 0.0337 | |
O7 | 0.8303 (2) | 0.70508 (7) | 0.36253 (8) | 0.0469 | |
O8 | 0.68145 (18) | 0.83598 (6) | 0.58096 (7) | 0.0376 | |
C9 | 0.7244 (3) | 0.89956 (10) | 0.61173 (12) | 0.0420 | |
O10 | 0.84906 (18) | 0.92652 (7) | 0.55968 (8) | 0.0444 | |
C11 | 0.5620 (3) | 0.94323 (12) | 0.61528 (16) | 0.0624 | |
C12 | 0.8129 (5) | 0.88883 (13) | 0.68779 (13) | 0.0715 | |
O13 | 1.00256 (16) | 0.88126 (6) | 0.37606 (7) | 0.0345 | |
C14 | 1.1874 (2) | 0.88150 (11) | 0.35570 (11) | 0.0394 | |
O15 | 1.28119 (17) | 0.88358 (7) | 0.42634 (8) | 0.0435 | |
C16 | 1.1595 (2) | 0.89624 (9) | 0.48621 (11) | 0.0339 | |
C17 | 1.2359 (3) | 0.81797 (12) | 0.31560 (12) | 0.0549 | |
C18 | 1.2212 (3) | 0.94316 (13) | 0.30907 (15) | 0.0683 | |
H21 | 0.7694 | 0.9328 | 0.4502 | 0.0469* | |
H31 | 0.5761 | 0.8468 | 0.4764 | 0.0423* | |
H41 | 0.7800 | 0.7421 | 0.5053 | 0.0377* | |
H61 | 0.6070 | 0.7465 | 0.3941 | 0.0480* | |
H62 | 0.7479 | 0.7987 | 0.3569 | 0.0483* | |
H111 | 0.5982 | 0.9867 | 0.6347 | 0.1113* | |
H112 | 0.5147 | 0.9473 | 0.5645 | 0.1113* | |
H113 | 0.4766 | 0.9217 | 0.6485 | 0.1119* | |
H121 | 0.8409 | 0.9325 | 0.7088 | 0.1258* | |
H122 | 0.7326 | 0.8657 | 0.7212 | 0.1269* | |
H123 | 0.9185 | 0.8621 | 0.6796 | 0.1264* | |
H161 | 1.1489 | 0.9442 | 0.4944 | 0.0481* | |
H162 | 1.1984 | 0.8720 | 0.5333 | 0.0472* | |
H171 | 1.3606 | 0.8208 | 0.3027 | 0.0983* | |
H172 | 1.1677 | 0.8152 | 0.2679 | 0.0984* | |
H173 | 1.2098 | 0.7803 | 0.3489 | 0.0988* | |
H181 | 1.3447 | 0.9462 | 0.2985 | 0.1209* | |
H182 | 1.1572 | 0.9398 | 0.2621 | 0.1211* | |
H183 | 1.1845 | 0.9819 | 0.3380 | 0.1212* | |
H1 | 0.9352 | 0.7080 | 0.3775 | 0.0833* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0298 (8) | 0.0252 (8) | 0.0317 (9) | −0.0004 (7) | −0.0024 (7) | 0.0033 (7) |
C2 | 0.0307 (9) | 0.0282 (9) | 0.0390 (10) | 0.0043 (8) | −0.0006 (8) | 0.0047 (8) |
C3 | 0.0288 (8) | 0.0322 (9) | 0.0307 (8) | 0.0018 (8) | −0.0027 (8) | −0.0006 (7) |
C4 | 0.0269 (8) | 0.0287 (8) | 0.0270 (8) | −0.0032 (7) | −0.0016 (7) | 0.0003 (7) |
O5 | 0.0266 (6) | 0.0228 (5) | 0.0331 (6) | 0.0004 (5) | −0.0027 (5) | 0.0015 (5) |
C6 | 0.0309 (9) | 0.0389 (10) | 0.0314 (9) | −0.0032 (8) | −0.0027 (7) | −0.0031 (8) |
O7 | 0.0438 (8) | 0.0537 (8) | 0.0432 (8) | 0.0008 (7) | −0.0022 (7) | −0.0204 (6) |
O8 | 0.0509 (8) | 0.0301 (6) | 0.0317 (6) | −0.0030 (6) | 0.0066 (6) | −0.0054 (5) |
C9 | 0.0460 (11) | 0.0347 (10) | 0.0453 (11) | −0.0019 (9) | 0.0049 (9) | −0.0112 (9) |
O10 | 0.0441 (8) | 0.0368 (7) | 0.0524 (8) | −0.0069 (6) | 0.0084 (7) | −0.0168 (6) |
C11 | 0.0559 (14) | 0.0432 (12) | 0.0881 (19) | 0.0039 (11) | 0.0269 (13) | −0.0142 (12) |
C12 | 0.099 (2) | 0.0689 (15) | 0.0468 (13) | 0.0017 (18) | −0.0115 (15) | −0.0215 (12) |
O13 | 0.0267 (6) | 0.0445 (7) | 0.0323 (6) | −0.0030 (7) | −0.0031 (5) | 0.0103 (5) |
C14 | 0.0252 (9) | 0.0569 (12) | 0.0360 (10) | −0.0085 (9) | −0.0049 (8) | 0.0145 (9) |
O15 | 0.0268 (6) | 0.0635 (9) | 0.0400 (7) | −0.0028 (6) | −0.0055 (6) | 0.0040 (7) |
C16 | 0.0345 (9) | 0.0272 (9) | 0.0399 (11) | −0.0008 (8) | −0.0039 (8) | −0.0005 (8) |
C17 | 0.0400 (11) | 0.0813 (16) | 0.0433 (12) | 0.0001 (12) | 0.0055 (9) | −0.0016 (11) |
C18 | 0.0451 (13) | 0.0847 (18) | 0.0752 (17) | −0.0270 (13) | −0.0131 (12) | 0.0452 (15) |
C1—C2 | 1.530 (2) | C9—C12 | 1.511 (3) |
C1—O5 | 1.419 (2) | C11—H111 | 0.980 |
C1—O13 | 1.418 (2) | C11—H112 | 0.965 |
C1—C16 | 1.514 (2) | C11—H113 | 0.973 |
C2—C3 | 1.535 (2) | C12—H121 | 0.977 |
C2—O10 | 1.427 (2) | C12—H122 | 0.966 |
C2—H21 | 0.991 | C12—H123 | 0.977 |
C3—C4 | 1.514 (2) | O13—C14 | 1.448 (2) |
C3—O8 | 1.433 (2) | C14—O15 | 1.431 (2) |
C3—H31 | 0.989 | C14—C17 | 1.506 (3) |
C4—O5 | 1.446 (2) | C14—C18 | 1.510 (3) |
C4—C6 | 1.521 (2) | O15—C16 | 1.423 (2) |
C4—H41 | 0.993 | C16—H161 | 0.979 |
C6—O7 | 1.413 (2) | C16—H162 | 1.005 |
C6—H61 | 0.997 | C17—H171 | 0.975 |
C6—H62 | 0.992 | C17—H172 | 0.986 |
O7—H1 | 0.841 | C17—H173 | 0.978 |
O8—C9 | 1.428 (2) | C18—H181 | 0.958 |
C9—O10 | 1.424 (2) | C18—H182 | 0.960 |
C9—C11 | 1.516 (3) | C18—H183 | 0.973 |
C2—C1—O5 | 105.60 (14) | C2—O10—C9 | 108.83 (14) |
C2—C1—O13 | 110.00 (14) | C9—C11—H111 | 107.8 |
O5—C1—O13 | 111.31 (13) | C9—C11—H112 | 108.3 |
C2—C1—C16 | 117.33 (13) | H111—C11—H112 | 110.5 |
O5—C1—C16 | 109.94 (15) | C9—C11—H113 | 108.0 |
O13—C1—C16 | 102.76 (14) | H111—C11—H113 | 112.1 |
C1—C2—C3 | 105.37 (14) | H112—C11—H113 | 110.1 |
C1—C2—O10 | 109.14 (15) | C9—C12—H121 | 107.6 |
C3—C2—O10 | 105.08 (14) | C9—C12—H122 | 109.0 |
C1—C2—H21 | 111.1 | H121—C12—H122 | 109.9 |
C3—C2—H21 | 113.8 | C9—C12—H123 | 108.3 |
O10—C2—H21 | 111.9 | H121—C12—H123 | 111.9 |
C2—C3—C4 | 104.93 (14) | H122—C12—H123 | 110.0 |
C2—C3—O8 | 103.91 (14) | C1—O13—C14 | 108.60 (14) |
C4—C3—O8 | 109.08 (14) | O13—C14—O15 | 105.56 (15) |
C2—C3—H31 | 112.4 | O13—C14—C17 | 110.45 (17) |
C4—C3—H31 | 114.6 | O15—C14—C17 | 107.98 (17) |
O8—C3—H31 | 111.2 | O13—C14—C18 | 107.55 (17) |
C3—C4—O5 | 105.01 (13) | O15—C14—C18 | 111.19 (18) |
C3—C4—C6 | 112.58 (15) | C17—C14—C18 | 113.81 (19) |
O5—C4—C6 | 111.65 (14) | C14—O15—C16 | 108.83 (13) |
C3—C4—H41 | 110.7 | C1—C16—O15 | 103.25 (14) |
O5—C4—H41 | 107.5 | C1—C16—H161 | 109.8 |
C6—C4—H41 | 109.2 | O15—C16—H161 | 109.8 |
C4—O5—C1 | 109.09 (13) | C1—C16—H162 | 111.8 |
C4—C6—O7 | 112.30 (15) | O15—C16—H162 | 109.3 |
C4—C6—H61 | 107.7 | H161—C16—H162 | 112.5 |
O7—C6—H61 | 108.3 | C14—C17—H171 | 107.2 |
C4—C6—H62 | 107.4 | C14—C17—H172 | 108.5 |
O7—C6—H62 | 110.4 | H171—C17—H172 | 108.4 |
H61—C6—H62 | 110.6 | C14—C17—H173 | 109.3 |
C6—O7—H1 | 109.2 | H171—C17—H173 | 112.4 |
C3—O8—C9 | 108.05 (14) | H172—C17—H173 | 111.0 |
O8—C9—O10 | 104.52 (15) | C14—C18—H181 | 108.9 |
O8—C9—C11 | 110.51 (17) | C14—C18—H182 | 108.8 |
O10—C9—C11 | 110.24 (17) | H181—C18—H182 | 109.5 |
O8—C9—C12 | 107.93 (17) | C14—C18—H183 | 109.2 |
O10—C9—C12 | 109.1 (2) | H181—C18—H183 | 109.2 |
C11—C9—C12 | 114.1 (2) | H182—C18—H183 | 111.1 |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H1···O8i | 0.84 | 2.19 | 2.962 (2) | 152 |
Symmetry code: (i) x+1/2, −y+3/2, −z+1. |
Acknowledgements
Financial support provided by the Xunta de Galicia (RS) is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons, Inc. Google Scholar
Cree, G. M. & Perlin, A. S. (1968). Can. J. Biochem. 46, 765–770. CrossRef CAS PubMed Web of Science Google Scholar
Granstrom, T. B., Takata, G., Tokuda, M. & Izumori, K. (2004). J. Biosci. Bioeng. 97, 89–94. Web of Science CrossRef PubMed Google Scholar
Itoh, H. & Izumori, K. (1996). J. Ferment. Bioeng. 81, 351–353. CrossRef CAS Web of Science Google Scholar
Itoh, H., Sato, I. & Izumori, K. (1995). J. Ferment. Bioeng. 80, 101–103. CrossRef CAS Web of Science Google Scholar
Izumori, K. (2002). Naturwissenschaften, 89, 120-124. Web of Science CrossRef PubMed CAS Google Scholar
James, K. J., Tatchell, A. R. & Ray, P. R. (1967). J. Chem. Soc. C, pp. 2681–2686. Google Scholar
Joseph, C. C., Regeling, H., Zwanenburg, B. & Chittenden, G. J. F. (2002). Carbohydr. Res. 337, 1083–1087. Web of Science CrossRef PubMed CAS Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90. Web of Science CrossRef CAS Google Scholar
Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Prisbe, E. J., Smejkal, J., Verdehyden, J. P. H. & Moffat, J. G. (1976). J. Org. Chem. 41, 1836–1846. CrossRef PubMed CAS Web of Science Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Soengas, R., Wormald, M. R., Dwek, R. A., Izumori, K., Watkin, D. J., Skytte, U. P. & Fleet, G. W. J. (2005). In preparation. Google Scholar
Steiger, M. & Reichstein, T. (1935). Helv. Chim. Acta, 18, 790–799. CrossRef CAS Google Scholar
Steiger, M. & Reichstein, T. (1936). Helv. Chim. Acta, 19, 184–189. CrossRef CAS Google Scholar
Sun, Y., Hayakawa, S. & Izumori, K. (2004). J. Agric. Food. Chem. 52, 1293–1299. Web of Science CrossRef PubMed CAS Google Scholar
Sun, Y., Hayakawa, S., Puangmanee, S. & Izumori, K. (2005). Food Chem. In the press (doi 10.1016/j.foodchem. 2005.01.033). Google Scholar
Takeshita, K., Suga, A., Takada, G. & Izumori, K. (2000). J. Biosci. Bioeng. 90, 453–455. Web of Science CrossRef PubMed CAS Google Scholar
Tipson, S., Brady, R. & West, B. (1971). Carbohydr. Res. 16, 383–393. CrossRef CAS Web of Science Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.