metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Penta­carbonyl­(N,N-di­methyl­benzyl­amine)tungsten

CROSSMARK_Color_square_no_text.svg

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, and bChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England
*Correspondence e-mail: v.mckee@lboro.ac.uk

(Received 8 August 2005; accepted 10 August 2005; online 17 August 2005)

The title compound, [W(C9H13N)(CO)5], was prepared by irradiation of W(CO)6 in tetra­hydro­furan in the presence of N,N-dimethyl­benzyl­amine. The geometry at the W atom is approximately octa­hedral, with the cis bond angles in the range 86.3 (3)–95.6 (2)°. The bond to the tertiary amine is long [2.371 (5) Å] and, as might be expected, the bond to the trans carbonyl is quite short [W—C = 1.964 (7) Å]. The remaining W—CO bonds lie in the range 2.033 (6)–2.049 (6) Å. Similar bonding patterns have been observed in related W(CO)5(amine) complexes,

Comment

(N,N-Dimethyl­benzyl­amine)penta­carbonyl­tungsten was pre­pared by irradiation of W(CO)6 in tetra­hydro­furan (THF) in the presence of the amine. Presumably, the reaction proceeds via an inter­mediate THF complex (Aroney et al., 1994[Aroney, M. J., Buys, I. E., Davies, M. S. & Hambley, T. W. (1994). J. Chem. Soc. Dalton Trans. pp. 2827-2834.], and references therein):

W(CO)6 + THF → W(CO)5(THF) + CO

W(CO)5(THF) + C9H13N → W(CO)5(C9H13N) + THF.

Although a number of cyclo­metallated complexes of tungsten with this ligand have been reported previously (van der Schaaf et al., 1993[Schaaf, P. A. van der , Grove, D. M., Smeets, W. J. J., Spek, A. L. & van Koten, G. (1993) Organometallics, 12, 3955-3963.]), no carbonyl complex has been structurally characterized. Also, in our hands, no cyclo­metallated complex was isolated.

[Scheme 1]

The structure of (N,N-dimethyl­benzyl­amine)penta­carbonyl­tungsten, (I)[link], is shown in Fig. 1[link]. The geometry at the W atom is approximately octa­hedral, with the cis bond angles in the range 86.3 (3)–95.6 (2)°. The bond to the tertiary amine is long [2.371 (5) Å] and, as might be expected, the bond to the trans carbonyl is quite short [W1—C10 = 1.964 (7) Å]. The remaining W—CO bonds lie in the range 2.033 (6)–2.049 (6) Å. Similar bonding patterns have been observed in related W(CO)5(amine) complexes [see, for example, Long et al. (2002[Long, N. J., Parker, D. G., Speyer, P. R., White, A. J. P. & Williams, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2142-2150.]) and Moralejo et al. (1991[Moralejo, C., Langford, C. H. & Bird, P. H. (1991). Can. J. Chem. 69, 2033-2037.])]. There are no obvious ππ or edge-to-face inter­actions.

[Figure 1]
Figure 1
Perspective view of the the complex, with displacement ellipsoids drawn at the 50% probability level.

Experimental

W(CO)6 (0.351 g, 1.0 mmol) and N,N-dimethyl­benzyl­amine (0.30 ml, 2.0 mmol) were dissolved in sodium-dried THF (20 ml). The mixture was stirred under N2 and irradiated with UV light for 4 h, yielding a yellow solution. The progress of the reaction was monitored by following the CO stretching band at 1975 cm−1 by IR. The volume of the solvent was reduced under vacuum and n-hexane added to induce crystallization (yield 0.078 g, 17%). The sample was not pure and did not give satisfactory microanalysis. The EI mass spectrum of the complex showed a cluster corresponding to the parent ion W(C6H5CH2N(CH3)2)(CO)5 centered at m/e 459 and the isotope pattern matched that predicted from theory. Clusters corresponding to sequential loss of CO groups were observed at m/e of 431 [W(C6H5CH2N(CH3)2)(CO)4], 403 [W(C6H5CH2N(CH3)2(CO)3] and 375 [W(C6H5CH2N(CH3)2)(CO)2]. Clusters at m/e 345, 317 and 135 were assigned to W(C6H5CH2N)(CO)2, W(C6H5CH2N)(CO) and [C6H5CH2N(CH3)2 + H+], respectively. Clusters corresponding to W(CO)6, W(CO)5, W(CO)4, W(CO)3, W(CO)2, W(CO) and W were also observed. The W(CO)6 was most likely present as an impurity in the sample. 1H NMR (CDCl3): 2.78 (s, 6H, CH3), 4.22 (s, 2H, CH2), 7.25–7.34 (m, 5H, aromatic). 13C NMR: 55.3 (CH3), 73.6 (CH2), 128.5 (aromatic C3, C5), 129.0 (aromatic C4), 132.0 (aromatic, C2, C6), 191, 199, 202 (carbon­yl). IR (KBr, cm−1): 3425 (m), 1952 (m), 1060 (w), 932 (m), 853 (m) 774 (m), 592 (s).

Crystal data
  • [W(C9H13N)(CO)5]

  • Mr = 459.10

  • Orthorhombic, P b c a

  • a = 13.7829 (11) Å

  • b = 12.5247 (10) Å

  • c = 18.2985 (14) Å

  • V = 3158.8 (4) Å3

  • Z = 8

  • Dx = 1.931 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4675 reflections

  • θ = 2.5–28.1°

  • μ = 7.33 mm−1

  • T = 150 (2) K

  • Plate, yellow

  • 0.28 × 0.20 × 0.05 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • ω rotation with narrow-frame scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.233, Tmax = 0.711

  • 18147 measured reflections

  • 3870 independent reflections

  • 2534 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 29.0°

  • h = −13 → 18

  • k = −16 → 16

  • l = −24 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.074

  • S = 1.03

  • 3870 reflections

  • 192 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0125P)2 + 14.4005P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.85 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

W1—N1 2.371 (5)
W1—C10 1.964 (7)
W1—C11 2.041 (6)
W1—C12 2.034 (6)
W1—C13 2.033 (6)
W1—C14 2.048 (6)
O10—C10 1.157 (9)
O11—C11 1.144 (8)
O12—C12 1.152 (8)
O13—C13 1.156 (7)
O14—C14 1.142 (7)
N1—C1 1.492 (9)
N1—C2 1.496 (9)
N1—C3 1.514 (8)
N1—W1—C10 176.8 (2)
N1—W1—C11 93.9 (2)
N1—W1—C12 89.8 (2)
N1—W1—C13 91.5 (2)
N1—W1—C14 95.6 (2)
C10—W1—C11 88.4 (3)
C10—W1—C12 88.0 (3)
C10—W1—C13 86.3 (3)
C10—W1—C14 86.7 (3)
C11—W1—C12 174.8 (3)
C11—W1—C13 90.5 (2)
C11—W1—C14 86.8 (2)
C12—W1—C13 93.1 (3)
C12—W1—C14 89.1 (3)
C13—W1—C14 172.6 (3)
W1—N1—C1 110.0 (4)
W1—N1—C2 111.7 (4)
W1—N1—C3 109.1 (4)
C1—N1—C2 107.4 (5)
C1—N1—C3 109.3 (5)
C2—N1—C3 109.3 (5)
N1—C3—C4 115.8 (6)
W1—C10—O10 177.2 (6)
W1—C11—O11 176.4 (6)
W1—C12—O12 174.0 (6)
W1—C13—O13 173.9 (6)
W1—C14—O14 174.5 (5)

H atoms bonded to C atoms were inserted at calculated positions and refined using a riding model. The constrained C—H distances were 0.95, 0.98 and 0.99 Å for aryl, methyl, and methyl­ene H atoms, respectively. The H atoms of methyl­ene and aryl groups were refined with Uiso(H) = 1.2Ueq(C) and those of the methyl groups with Uiso(H) = 1.5Ueq(C). The highest residual electron-density peak is 0.88 Å from the W atom.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001[Sheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

(N,N-dimethylbenzylamine)pentacarbonyltungsten top
Crystal data top
[W(C9H13N)(CO)5]F(000) = 1744
Mr = 459.10Dx = 1.931 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4675 reflections
a = 13.7829 (11) Åθ = 2.5–28.1°
b = 12.5247 (10) ŵ = 7.33 mm1
c = 18.2985 (14) ÅT = 150 K
V = 3158.8 (4) Å3Plate, yellow
Z = 80.28 × 0.20 × 0.05 mm
Data collection top
Bruker SMART 1000 CCD
diffractometer
3870 independent reflections
Radiation source: sealed tube2534 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω rotation with narrow frames scansθmax = 29.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1318
Tmin = 0.233, Tmax = 0.711k = 1616
18147 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0125P)2 + 14.4005P]
where P = (Fo2 + 2Fc2)/3
3870 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.85 e Å3
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
W10.07804 (2)0.77665 (2)0.20210 (1)0.0237 (1)
O100.0153 (4)0.8367 (4)0.0435 (3)0.0530 (19)
O110.1652 (3)1.0111 (4)0.2164 (3)0.0460 (18)
O120.0043 (4)0.5425 (4)0.1638 (3)0.050 (2)
O130.1313 (3)0.8659 (4)0.2432 (3)0.0437 (17)
O140.2815 (3)0.7141 (4)0.1313 (3)0.0410 (17)
N10.1143 (4)0.7259 (4)0.3239 (3)0.0270 (14)
C10.0264 (5)0.6796 (7)0.3594 (4)0.048 (3)
C20.1456 (6)0.8194 (5)0.3690 (4)0.046 (3)
C30.1944 (5)0.6432 (5)0.3230 (4)0.0313 (19)
C40.2273 (5)0.6028 (5)0.3973 (4)0.032 (2)
C50.3071 (5)0.6478 (6)0.4319 (4)0.041 (3)
C60.3377 (6)0.6098 (7)0.4996 (5)0.056 (3)
C70.2906 (6)0.5259 (7)0.5324 (4)0.055 (3)
C80.2133 (6)0.4800 (6)0.4991 (5)0.051 (3)
C90.1813 (5)0.5179 (5)0.4313 (4)0.039 (2)
C100.0410 (5)0.8148 (5)0.1018 (4)0.0323 (19)
C110.1338 (4)0.9266 (5)0.2138 (4)0.032 (2)
C120.0289 (5)0.6265 (5)0.1815 (4)0.0330 (19)
C130.0554 (4)0.8303 (5)0.2320 (4)0.032 (2)
C140.2101 (4)0.7340 (5)0.1599 (3)0.0283 (19)
H1A0.002000.620200.329800.0720*
H1B0.023800.734700.363400.0720*
H1C0.043300.653600.408300.0720*
H2A0.163200.795000.418100.0680*
H2B0.092400.870900.372300.0680*
H2C0.201900.853400.346000.0680*
H3A0.251200.674200.297600.0380*
H3B0.172000.581300.293800.0380*
H50.341100.704900.409200.0500*
H60.391600.642100.523300.0670*
H70.312200.500100.578500.0660*
H80.180700.422000.521900.0620*
H90.127300.484900.408200.0470*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0238 (1)0.0235 (1)0.0238 (1)0.0016 (1)0.0004 (1)0.0004 (1)
O100.055 (3)0.068 (4)0.036 (3)0.005 (3)0.006 (3)0.013 (3)
O110.048 (3)0.028 (2)0.062 (4)0.008 (2)0.003 (3)0.002 (2)
O120.064 (4)0.028 (3)0.057 (4)0.014 (2)0.007 (3)0.007 (2)
O130.029 (3)0.047 (3)0.055 (3)0.005 (2)0.003 (2)0.005 (3)
O140.034 (3)0.047 (3)0.042 (3)0.005 (2)0.011 (2)0.002 (3)
N10.026 (2)0.028 (2)0.027 (3)0.001 (2)0.001 (2)0.000 (3)
C10.032 (4)0.075 (5)0.037 (5)0.001 (4)0.006 (3)0.018 (4)
C20.066 (5)0.034 (4)0.038 (4)0.017 (4)0.012 (4)0.015 (3)
C30.033 (3)0.027 (3)0.034 (4)0.006 (3)0.002 (3)0.005 (3)
C40.038 (4)0.030 (3)0.027 (4)0.012 (3)0.001 (3)0.001 (3)
C50.035 (4)0.053 (5)0.036 (4)0.005 (3)0.002 (3)0.004 (4)
C60.049 (5)0.074 (6)0.044 (5)0.011 (4)0.014 (4)0.007 (5)
C70.063 (6)0.069 (6)0.032 (5)0.026 (5)0.004 (4)0.011 (4)
C80.064 (5)0.047 (4)0.042 (5)0.010 (4)0.006 (4)0.016 (4)
C90.048 (4)0.026 (3)0.043 (5)0.001 (3)0.006 (4)0.005 (3)
C100.029 (3)0.032 (3)0.036 (4)0.009 (3)0.004 (3)0.005 (3)
C110.029 (3)0.037 (4)0.031 (4)0.003 (3)0.004 (3)0.005 (3)
C120.031 (3)0.034 (3)0.034 (4)0.001 (3)0.001 (3)0.008 (3)
C130.030 (4)0.033 (3)0.032 (4)0.007 (3)0.001 (3)0.004 (3)
C140.033 (3)0.025 (3)0.027 (4)0.002 (3)0.002 (3)0.003 (3)
Geometric parameters (Å, º) top
W1—N12.371 (5)C5—C61.393 (12)
W1—C101.964 (7)C6—C71.373 (12)
W1—C112.041 (6)C7—C81.355 (12)
W1—C122.034 (6)C8—C91.400 (11)
W1—C132.033 (6)C1—H1A0.9800
W1—C142.048 (6)C1—H1B0.9800
O10—C101.157 (9)C1—H1C0.9800
O11—C111.144 (8)C2—H2A0.9800
O12—C121.152 (8)C2—H2B0.9800
O13—C131.156 (7)C2—H2C0.9800
O14—C141.142 (7)C3—H3A0.9900
N1—C11.492 (9)C3—H3B0.9900
N1—C21.496 (9)C5—H50.9500
N1—C31.514 (8)C6—H60.9500
C3—C41.520 (10)C7—H70.9500
C4—C51.389 (10)C8—H80.9500
C4—C91.386 (9)C9—H90.9500
N1—W1—C10176.8 (2)W1—C11—O11176.4 (6)
N1—W1—C1193.9 (2)W1—C12—O12174.0 (6)
N1—W1—C1289.8 (2)W1—C13—O13173.9 (6)
N1—W1—C1391.5 (2)W1—C14—O14174.5 (5)
N1—W1—C1495.6 (2)N1—C1—H1A109.00
C10—W1—C1188.4 (3)N1—C1—H1B109.00
C10—W1—C1288.0 (3)N1—C1—H1C109.00
C10—W1—C1386.3 (3)H1A—C1—H1B109.00
C10—W1—C1486.7 (3)H1A—C1—H1C110.00
C11—W1—C12174.8 (3)H1B—C1—H1C109.00
C11—W1—C1390.5 (2)N1—C2—H2A109.00
C11—W1—C1486.8 (2)N1—C2—H2B110.00
C12—W1—C1393.1 (3)N1—C2—H2C109.00
C12—W1—C1489.1 (3)H2A—C2—H2B110.00
C13—W1—C14172.6 (3)H2A—C2—H2C109.00
W1—N1—C1110.0 (4)H2B—C2—H2C109.00
W1—N1—C2111.7 (4)N1—C3—H3A108.00
W1—N1—C3109.1 (4)N1—C3—H3B108.00
C1—N1—C2107.4 (5)C4—C3—H3A108.00
C1—N1—C3109.3 (5)C4—C3—H3B108.00
C2—N1—C3109.3 (5)H3A—C3—H3B107.00
N1—C3—C4115.8 (6)C4—C5—H5120.00
C3—C4—C5120.6 (6)C6—C5—H5120.00
C3—C4—C9121.4 (6)C5—C6—H6120.00
C5—C4—C9118.0 (7)C7—C6—H6120.00
C4—C5—C6120.5 (7)C6—C7—H7120.00
C5—C6—C7120.5 (8)C8—C7—H7120.00
C6—C7—C8120.0 (8)C7—C8—H8120.00
C7—C8—C9120.2 (7)C9—C8—H8120.00
C4—C9—C8120.9 (7)C4—C9—H9119.00
W1—C10—O10177.2 (6)C8—C9—H9120.00
C11—W1—N1—C1129.4 (5)C1—N1—C3—C460.3 (7)
C11—W1—N1—C210.3 (5)C2—N1—C3—C457.0 (7)
C11—W1—N1—C3110.7 (4)N1—C3—C4—C595.4 (8)
C12—W1—N1—C154.3 (5)N1—C3—C4—C987.0 (8)
C12—W1—N1—C2173.4 (5)C3—C4—C9—C8178.8 (7)
C12—W1—N1—C365.6 (4)C5—C4—C9—C81.1 (10)
C13—W1—N1—C138.8 (5)C9—C4—C5—C61.6 (11)
C13—W1—N1—C280.3 (5)C3—C4—C5—C6179.3 (7)
C13—W1—N1—C3158.7 (4)C4—C5—C6—C71.3 (12)
C14—W1—N1—C1143.5 (5)C5—C6—C7—C80.5 (13)
C14—W1—N1—C297.5 (5)C6—C7—C8—C90.0 (12)
C14—W1—N1—C323.5 (4)C7—C8—C9—C40.4 (12)
W1—N1—C3—C4179.4 (4)
 

Acknowledgements

The authors thank the University of the Punjab, Lahore, Pakistan, and the Charles Wallace Pakistan Trust for financial support, and are also grateful to Loughborough University for providing facilities and to the EPSRC Mass Spectrometry Service Centre, University of Wales, Swansea, for the mass spectrum.

References

First citationAroney, M. J., Buys, I. E., Davies, M. S. & Hambley, T. W. (1994). J. Chem. Soc. Dalton Trans. pp. 2827–2834.  CSD CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLong, N. J., Parker, D. G., Speyer, P. R., White, A. J. P. & Williams, D. J. (2002). J. Chem. Soc. Dalton Trans. pp. 2142–2150.  Web of Science CSD CrossRef Google Scholar
First citationMoralejo, C., Langford, C. H. & Bird, P. H. (1991). Can. J. Chem. 69, 2033–2037.  CrossRef CAS Web of Science Google Scholar
First citationSchaaf, P. A. van der , Grove, D. M., Smeets, W. J. J., Spek, A. L. & van Koten, G. (1993) Organometallics, 12, 3955–3963.  Google Scholar
First citationSheldrick, G. M. (2001). SHELXTL. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds