organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(3-thien­yl­oxy)-3-oxa­penta­ne: a thio­phene-based precursor for thio­phene-based aza­cryptand Mannich bases

CROSSMARK_Color_square_no_text.svg

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2007 Neuchâtel, Switzerland, and bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England
*Correspondence e-mail: gael.labat@unine.ch

(Received 26 July 2005; accepted 1 August 2005; online 6 August 2005)

The title compound, C12H14O3S2, is composed of two thio­phene rings bridged by an –O(CH2)2O(CH2)2O– chain. The mol­ecule is U-shaped, with the two thio­phene rings inclined to one another by 83.21 (10)°. In the crystal structure, the mol­ecules are bridged by C—H⋯S and C—H⋯·O hydrogen bonds, forming a double-stranded polymer chain.

Comment

The preparation of a range of open-chain cryptand-like structures, incorporating thio­phene rings, as precursors for aza­cryptand Mannich bases, was undertaken by Barker et al. (1993[Barker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733-1734.]) and Chaffin et al. (2001[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.], 2002[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.]). The title compound, (I)[link], was synthesized by the reaction of methyl 3-hydroxy­thio­phene-2-carboxyl­ate with 1,5-bis(p-tolylsulfonyloxy)-3-oxa­pentane and anhydrous potassium carbonate in anhydrous N,N-dimethyl­formamide, followed by saponification and decarb­oxylation.

[Scheme 1]

The mol­ecular structure of (I)[link] is illustrated in Fig. 1[link] and selected bond distances and angles are given in Table 1[link]. The mol­ecule is U-shaped and has pseudo-C2 symmetry, with the central –O(CH2)2O(CH2)2O– bridge having a ciscis conform­ation. The two thio­phene rings are inclined to one another by 83.21 (10)°. The thio­phene bond lengths and bond angles are similar to those in an unsubstituted thio­phene reported by Bonham & Momany (1963[Bonham, R. A. & Momany, F. A. (1963). J. Phys. Chem. 67, 2474-2477.]). The thien­yloxy and other bond lengths and angles in (I)[link] are in agreement with standard values (Inter­national Tables for Crystallography, Vol. C, 1995). In the crystal structure, symmetry-related mol­ecules are bridged by C—H⋯S and C—H⋯O hydrogen bonds (Table 2[link]), forming a double-stranded polymer chain (Fig. 2[link]).

[Figure 1]
Figure 1
View of the mol­ecular structure of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of compound (I)[link], viewed down the a axis. C—H⋯S and C—H⋯O hydrogen bonds are shown as dashed lines.

Experimental

Compound (I)[link] was synthesized using the procedure described by Chaffin et al. (2001[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.]). Crystals suitable for X-ray analysis were obtained by slow evaporation of a 1:1 ethanol–dichloro­methane solution.

Crystal data
  • C12H14O3S2

  • Mr = 270.35

  • Monoclinic, P 21 /n

  • a = 5.2998 (4) Å

  • b = 19.4005 (18) Å

  • c = 12.7277 (9) Å

  • β = 100.960 (8)°

  • V = 1284.78 (18) Å3

  • Z = 4

  • Dx = 1.398 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 8000 reflections

  • θ = 1.7–26.1°

  • μ = 0.41 mm−1

  • T = 153 (2) K

  • Plate, colourless

  • 0.50 × 0.25 × 0.10 mm

Data collection
  • Stoe IPDS diffractometer

  • ω scans

  • Absorption correction: none

  • 10146 measured reflections

  • 2509 independent reflections

  • 1609 reflections with I > 2σ(I)

  • Rint = 0.066

  • θmax = 26.0°

  • h = −6 → 6

  • k = −23 → 23

  • l = −15 → 15

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.072

  • S = 0.85

  • 2509 reflections

  • 154 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0331P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

S1—C4 1.705 (2)
S1—C1 1.717 (2)
S2—C12 1.701 (2)
S2—C9 1.716 (3)
O1—C2 1.368 (2)
O1—C5 1.425 (2)
O2—C6 1.414 (3)
O2—C7 1.421 (2)
O3—C10 1.362 (3)
O3—C8 1.428 (2)
C1—C2 1.356 (3)
C3—C4 1.353 (3)
C5—C6 1.503 (3)
C7—C8 1.490 (3)
C9—C10 1.362 (3)
C10—C11 1.414 (3)
C11—C12 1.346 (3)
C4—S1—C1 91.89 (10)
C12—S2—C9 91.92 (11)
C2—O1—C5 116.42 (15)
C6—O2—C7 111.88 (16)
C10—O3—C8 115.46 (16)
C2—C1—S1 110.59 (15)
C1—C2—O1 128.80 (18)
C1—C2—C3 113.61 (18)
O1—C2—C3 117.59 (17)
C4—C3—C2 111.76 (19)
C3—C4—S1 112.15 (16)
O1—C5—C6 107.58 (16)
O2—C6—C5 108.33 (17)
O2—C7—C8 109.35 (18)
C10—C9—S2 110.66 (17)
C9—C10—O3 128.5 (2)
C9—C10—C11 112.9 (2)
O3—C10—C11 118.64 (18)
C12—C11—C10 112.3 (2)
C11—C12—S2 112.15 (18)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O1i 0.95 2.52 3.358 (2) 148
C12—H12A⋯S1ii 0.95 2.86 3.787 (2) 164
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1.

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 or 1.5 times Ueq(parent atom).

Data collection: EXPOSE (Stoe & Cie, 2002[Stoe & Cie (2002). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: CELL (Stoe & Cie, 2002[Stoe & Cie (2002). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); data reduction: INTEGRATE (Stoe & Cie, 2002[Stoe & Cie (2002). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: EXPOSE (Stoe & Cie, 2002); cell refinement: CELL (Stoe & Cie, 2002); data reduction: INTEGRATE (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

1,5-Bis(2-thienyloxy)-3-oxapentane top
Crystal data top
C12H14O3S2F(000) = 568
Mr = 270.35Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8000 reflections
a = 5.2998 (4) Åθ = 1.7–26.1°
b = 19.4005 (18) ŵ = 0.41 mm1
c = 12.7277 (9) ÅT = 153 K
β = 100.960 (8)°Plate, colourless
V = 1284.78 (18) Å30.50 × 0.25 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS
diffractometer
1609 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
Graphite monochromatorθmax = 26.0°, θmin = 1.9°
Detector resolution: 0.81Å pixels mm-1h = 66
ω scansk = 2323
10146 measured reflectionsl = 1515
2509 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0331P)2]
where P = (Fo2 + 2Fc2)/3
2509 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16435 (11)0.52004 (3)0.70026 (4)0.03420 (16)
S20.63304 (12)0.70048 (3)1.53098 (5)0.03781 (17)
O10.2011 (3)0.62079 (7)0.88858 (11)0.0283 (3)
O20.2260 (3)0.63598 (7)1.10645 (10)0.0294 (4)
O30.0678 (3)0.63305 (7)1.31584 (11)0.0278 (3)
C10.0383 (4)0.52702 (11)0.79012 (15)0.0257 (5)
H1A0.12310.48940.81620.031*
C20.0605 (4)0.59373 (10)0.81876 (15)0.0240 (4)
C30.0848 (4)0.63996 (11)0.76818 (16)0.0298 (5)
H3A0.08880.68840.77900.036*
C40.2175 (4)0.60675 (12)0.70255 (17)0.0353 (6)
H4A0.32740.62910.66240.042*
C50.3283 (4)0.57264 (10)0.94515 (16)0.0267 (5)
H5B0.20570.53710.97930.032*
H5A0.46910.54950.89540.032*
C60.4344 (4)0.61194 (11)1.02881 (16)0.0303 (5)
H6A0.53870.65130.99550.036*
H6B0.54590.58161.06280.036*
C70.3098 (5)0.66629 (12)1.19548 (16)0.0370 (6)
H7A0.40510.63181.23010.044*
H7B0.42680.70531.17110.044*
C80.0825 (5)0.69130 (11)1.27361 (16)0.0335 (5)
H8A0.02140.72271.23770.040*
H8B0.13950.71691.33220.040*
C90.3544 (4)0.70933 (11)1.43801 (16)0.0309 (5)
H9A0.26680.75171.42020.037*
C100.2762 (4)0.64727 (10)1.39336 (15)0.0242 (5)
C110.4412 (4)0.59251 (11)1.43531 (16)0.0295 (5)
H11A0.41340.54581.41380.035*
C120.6421 (5)0.61409 (12)1.50917 (17)0.0351 (5)
H12A0.77370.58451.54500.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0308 (3)0.0404 (3)0.0319 (3)0.0047 (3)0.0074 (3)0.0062 (2)
S20.0401 (4)0.0398 (3)0.0344 (3)0.0119 (3)0.0093 (3)0.0054 (3)
O10.0409 (9)0.0179 (7)0.0296 (8)0.0022 (6)0.0157 (7)0.0021 (6)
O20.0338 (9)0.0334 (8)0.0222 (7)0.0027 (7)0.0084 (7)0.0061 (6)
O30.0325 (9)0.0216 (7)0.0272 (7)0.0070 (6)0.0004 (7)0.0002 (6)
C10.0273 (12)0.0237 (11)0.0247 (10)0.0001 (9)0.0014 (9)0.0004 (8)
C20.0242 (11)0.0259 (11)0.0212 (9)0.0000 (9)0.0022 (9)0.0004 (9)
C30.0340 (13)0.0265 (12)0.0282 (11)0.0085 (10)0.0038 (10)0.0010 (9)
C40.0312 (14)0.0454 (14)0.0299 (11)0.0095 (11)0.0072 (11)0.0023 (10)
C50.0320 (13)0.0221 (11)0.0265 (11)0.0052 (9)0.0070 (10)0.0016 (9)
C60.0326 (13)0.0317 (12)0.0276 (11)0.0002 (10)0.0084 (11)0.0014 (9)
C70.0430 (15)0.0444 (14)0.0236 (11)0.0221 (12)0.0066 (11)0.0005 (10)
C80.0488 (16)0.0271 (12)0.0237 (10)0.0174 (11)0.0042 (11)0.0006 (9)
C90.0392 (13)0.0251 (11)0.0317 (11)0.0009 (10)0.0150 (11)0.0027 (9)
C100.0287 (12)0.0249 (11)0.0205 (10)0.0002 (9)0.0087 (10)0.0005 (8)
C110.0341 (14)0.0276 (11)0.0271 (10)0.0033 (10)0.0062 (10)0.0028 (9)
C120.0321 (13)0.0413 (13)0.0313 (12)0.0063 (11)0.0047 (11)0.0001 (10)
Geometric parameters (Å, º) top
S1—C41.705 (2)C5—C61.503 (3)
S1—C11.717 (2)C5—H5B0.9900
S2—C121.701 (2)C5—H5A0.9900
S2—C91.716 (3)C6—H6A0.9900
O1—C21.368 (2)C6—H6B0.9900
O1—C51.425 (2)C7—C81.490 (3)
O2—C61.414 (3)C7—H7A0.9900
O2—C71.421 (2)C7—H7B0.9900
O3—C101.362 (3)C8—H8A0.9900
O3—C81.428 (2)C8—H8B0.9900
C1—C21.356 (3)C9—C101.362 (3)
C1—H1A0.9500C9—H9A0.9500
C2—C31.414 (3)C10—C111.414 (3)
C3—C41.353 (3)C11—C121.346 (3)
C3—H3A0.9500C11—H11A0.9500
C4—H4A0.9500C12—H12A0.9500
C4—S1—C191.89 (10)C5—C6—H6B110.0
C12—S2—C991.92 (11)H6A—C6—H6B108.4
C2—O1—C5116.42 (15)O2—C7—C8109.35 (18)
C6—O2—C7111.88 (16)O2—C7—H7A109.8
C10—O3—C8115.46 (16)C8—C7—H7A109.8
C2—C1—S1110.59 (15)O2—C7—H7B109.8
C2—C1—H1A124.7C8—C7—H7B109.8
S1—C1—H1A124.7H7A—C7—H7B108.3
C1—C2—O1128.80 (18)O3—C8—C7108.41 (18)
C1—C2—C3113.61 (18)O3—C8—H8A110.0
O1—C2—C3117.59 (17)C7—C8—H8A110.0
C4—C3—C2111.76 (19)O3—C8—H8B110.0
C4—C3—H3A124.1C7—C8—H8B110.0
C2—C3—H3A124.1H8A—C8—H8B108.4
C3—C4—S1112.15 (16)C10—C9—S2110.66 (17)
C3—C4—H4A123.9C10—C9—H9A124.7
S1—C4—H4A123.9S2—C9—H9A124.7
O1—C5—C6107.58 (16)C9—C10—O3128.5 (2)
O1—C5—H5B110.2C9—C10—C11112.9 (2)
C6—C5—H5B110.2O3—C10—C11118.64 (18)
O1—C5—H5A110.2C12—C11—C10112.3 (2)
C6—C5—H5A110.2C12—C11—H11A123.8
H5B—C5—H5A108.5C10—C11—H11A123.8
O2—C6—C5108.33 (17)C11—C12—S2112.15 (18)
O2—C6—H6A110.0C11—C12—H12A123.9
C5—C6—H6A110.0S2—C12—H12A123.9
O2—C6—H6B110.0
C4—S1—C1—C20.16 (17)C6—O2—C7—C8179.31 (17)
S1—C1—C2—O1179.53 (17)C10—O3—C8—C7176.48 (16)
S1—C1—C2—C30.3 (2)O2—C7—C8—O365.7 (2)
C5—O1—C2—C14.9 (3)C12—S2—C9—C100.02 (15)
C5—O1—C2—C3174.89 (18)S2—C9—C10—O3178.87 (15)
C1—C2—C3—C40.7 (3)S2—C9—C10—C110.5 (2)
O1—C2—C3—C4179.13 (19)C8—O3—C10—C92.4 (3)
C2—C3—C4—S10.8 (2)C8—O3—C10—C11176.98 (16)
C1—S1—C4—C30.55 (18)C9—C10—C11—C121.0 (2)
C2—O1—C5—C6171.17 (17)O3—C10—C11—C12178.47 (17)
C7—O2—C6—C5172.63 (17)C10—C11—C12—S21.0 (2)
O1—C5—C6—O267.9 (2)C9—S2—C12—C110.60 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.952.523.358 (2)148
C12—H12A···S1ii0.952.863.787 (2)164
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors thank Professor Helen Stoeckli-Evans (Université de Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

First citationBarker, J. M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733–1734.  CrossRef Web of Science Google Scholar
First citationBonham, R. A. & Momany, F. A. (1963). J. Phys. Chem. 67, 2474–2477.  CrossRef CAS Web of Science Google Scholar
First citationChaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398–1405.  Web of Science CrossRef Google Scholar
First citationChaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717–724.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). IPDS Software. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds