organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis(3-thien­yl­oxy)ethane: a thio­phene-based precursor for thio­phene-based aza­cryptand Mannich bases

CROSSMARK_Color_square_no_text.svg

aInstitut de Chimie, Université de Neuchâtel, Avenue de Bellevaux 51, CH-2007 Neuchâtel, Switzerland, and bDepartment of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England
*Correspondence e-mail: gael.labat@unine.ch

(Received 26 July 2005; accepted 1 August 2005; online 6 August 2005)

The title compound, C10H12O2S2, is composed of two thio­phene rings bridged by an –O(CH2)2O– chain in a trans arrangement. The mol­ecule possesses C2 symmetry with the twofold axis bis­ecting the central C—C bond. In the crystal structure, mol­ecules related by a centre of symmetry are bridged by C—H⋯O hydrogen bonds, forming a zigzag one-dimensional chain extending in the c-axis direction.

Comment

The preparation of a range of open-chain cryptand-like structures, incorporating thio­phene rings, as precursors for aza­cryptand Mannich bases, has been described by Barker et al. (1993[Barker, J . M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733-1734.]) and Chaffin et al. (2001[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.], 2002[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717-724.]). The title compound, (I)[link], was prepared by the reaction of methyl 3-hydroxy­thio­phene-2-carboxyl­ate with 1,2-dichloro­ethane and anhydrous potassium carbonate in anhydrous N,N-dimethyl­formamide, followed by sapon­ification and deca­rboxylation.

[Scheme 1]

The mol­ecular structure of (I)[link] is illustrated in Fig. 1[link], and selected bond distances and angles are given in Table 1[link]. In compound (I)[link], two thio­phene rings are bridged by an –O(CH2)2O– chain in a trans arrangement. A twofold axis bis­ects the central ethane bond [C5—C5(1 − x, y, [{1\over 2}]z)] and each half of the mol­ecule is almost planar, with C5—O1—C2—C1 and C5—O1—C2—C3 torsion angles of 0.00 (18) and −178.45 (11)°, respectively. The bond lengths and angles (Table 1[link]) are similar to those in an unsubstituted thio­phene described by Bonham & Momany (1963[Bonham, R. A. & Momany, F. A. (1963). J. Phys. Chem. 67 2474-2477.]).

The crystal packing of compound (I)[link] is illustrated in Fig. 2[link]. The mol­ecules related by centres of symmetry are linked by C—H⋯O hydrogen bonds; details are given in Table 2[link]. It can be seen that the mol­ecules are arranged in a such a way as to form a zigzag one-dimensional polymer extending in the crystallographic c-axis direction.

[Figure 1]
Figure 1
View of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (a) 1 − x, y, [{1\over 2}]z.]
[Figure 2]
Figure 2
The crystal packing of compound (I)[link], viewed down the b axis. C—H⋯O hydrogen bonds are shown as dashed lines (details are given in Table 2[link]).

Experimental

Compound (I)[link] was synthesized according to the procedure described by Chaffin et al. (2001[Chaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398-1405.]). Suitable crystals for X-ray crystallography analysis were obtained by slow evaporation of a 1:1 ethanol–dichloro­methane solution.

Crystal data
  • C10H10O2S2

  • Mr = 226.30

  • Monoclinic, C 2/c

  • a = 22.175 (3) Å

  • b = 5.3918 (4) Å

  • c = 9.0831 (11) Å

  • β = 111.362 (9)°

  • V = 1011.39 (19) Å3

  • Z = 4

  • Dx = 1.486 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 9090 reflections

  • θ = 1.9–29.6°

  • μ = 0.49 mm−1

  • T = 153 (2) K

  • Plate, colourless

  • 0.5 × 0.5 × 0.2 mm

Data collection
  • Stoe IPDS-II diffractometer

  • ω scans

  • Absorption correction: none

  • 9441 measured reflections

  • 1398 independent reflections

  • 1302 reflections with I > 2σ(I)

  • Rint = 0.053

  • θmax = 29.4°

  • h = −30 → 30

  • k = −7 → 7

  • l = −11 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.090

  • S = 1.03

  • 1398 reflections

  • 64 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0472P)2 + 1.0038P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

S1—C4 1.7129 (14)
S1—C1 1.7178 (13)
O1—C2 1.3597 (15)
O1—C5 1.4288 (15)
C3—C4 1.3674 (19)
C3—C2 1.4227 (17)
C2—C1 1.3672 (17)
C5—C5i 1.500 (2)
C4—S1—C1 92.55 (6)
C2—O1—C5 115.12 (10)
C4—C3—C2 111.88 (11)
C1—C2—O1 127.57 (12)
C1—C2—C3 113.59 (12)
O1—C2—C3 118.83 (11)
C3—C4—S1 111.56 (10)
O1—C5—C5i 108.13 (9)
C2—C1—S1 110.43 (10)
Symmetry code: (i) [-x+1, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O1ii 1.00 2.41 3.3940 (16) 170
Symmetry code: (ii) -x+1, -y, -z.

H atoms were located in difference Fourier maps and held fixed with Uiso(H) = 0.05 Å2 and C—H = 0.94–1.05 Å.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.17) and X-RED32 (Version 1.04). Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA (Version 1.17) and X-RED32 (Version 1.04). Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

1,2-Bis(3-thienyloxy)ethane top
Crystal data top
C10H10O2S2F(000) = 472
Mr = 226.30Dx = 1.486 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9090 reflections
a = 22.175 (3) Åθ = 1.9–29.6°
b = 5.3918 (4) ŵ = 0.49 mm1
c = 9.0831 (11) ÅT = 153 K
β = 111.362 (9)°Plate, colourless
V = 1011.39 (19) Å30.5 × 0.5 × 0.2 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
1302 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 29.4°, θmin = 2.0°
Detector resolution: 0.81Å pixels mm-1h = 3030
ω scansk = 77
9441 measured reflectionsl = 1112
1398 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0472P)2 + 1.0038P]
where P = (Fo2 + 2Fc2)/3
1398 reflections(Δ/σ)max = 0.001
64 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.705495 (15)0.30108 (6)0.11836 (4)0.02820 (13)
O10.53539 (5)0.28858 (18)0.14777 (11)0.0259 (2)
C30.59883 (6)0.0614 (2)0.02934 (16)0.0261 (3)
H30.56300.05850.02230.050*
C20.59236 (6)0.2606 (2)0.12527 (14)0.0216 (2)
C40.65818 (7)0.0611 (2)0.01542 (16)0.0282 (3)
H40.67330.05220.04260.050*
C50.53252 (6)0.4969 (2)0.24223 (15)0.0247 (3)
H5A0.56910.48370.35450.050*
H5B0.54030.65580.19100.050*
C10.64618 (6)0.4075 (2)0.18219 (14)0.0236 (2)
H10.65730.55460.25440.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02423 (18)0.0307 (2)0.0318 (2)0.00172 (11)0.01271 (14)0.00265 (12)
O10.0246 (4)0.0290 (5)0.0272 (5)0.0060 (3)0.0133 (4)0.0087 (3)
C30.0301 (6)0.0217 (5)0.0275 (6)0.0026 (5)0.0119 (5)0.0034 (5)
C20.0240 (5)0.0222 (5)0.0194 (5)0.0016 (4)0.0091 (4)0.0006 (4)
C40.0323 (6)0.0231 (6)0.0306 (6)0.0008 (5)0.0132 (5)0.0032 (5)
C50.0280 (6)0.0258 (6)0.0224 (5)0.0027 (5)0.0118 (5)0.0040 (4)
C10.0245 (5)0.0252 (6)0.0222 (5)0.0031 (4)0.0098 (4)0.0023 (4)
Geometric parameters (Å, º) top
S1—C41.7129 (14)C2—C11.3672 (17)
S1—C11.7178 (13)C4—H40.9445
O1—C21.3597 (15)C5—C5i1.500 (2)
O1—C51.4288 (15)C5—H5A1.0489
C3—C41.3674 (19)C5—H5B1.0193
C3—C21.4227 (17)C1—H11.0012
C3—H30.9989
C4—S1—C192.55 (6)S1—C4—H4121.5
C2—O1—C5115.12 (10)O1—C5—C5i108.13 (9)
C4—C3—C2111.88 (11)O1—C5—H5A110.0
C4—C3—H3125.7C5i—C5—H5A109.8
C2—C3—H3122.4O1—C5—H5B109.6
C1—C2—O1127.57 (12)C5i—C5—H5B111.8
C1—C2—C3113.59 (12)H5A—C5—H5B107.5
O1—C2—C3118.83 (11)C2—C1—S1110.43 (10)
C3—C4—S1111.56 (10)C2—C1—H1132.8
C3—C4—H4127.0S1—C1—H1116.7
C5—O1—C2—C10.00 (18)C1—S1—C4—C30.11 (11)
C5—O1—C2—C3178.45 (11)C2—O1—C5—C5i178.84 (11)
C4—C3—C2—C10.06 (17)O1—C2—C1—S1178.66 (10)
C4—C3—C2—O1178.73 (12)C3—C2—C1—S10.14 (14)
C2—C3—C4—S10.05 (15)C4—S1—C1—C20.14 (10)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O1ii1.002.413.3940 (16)170
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

The authors thank Professor Helen Stoeckli-Evans (Université de Neuchâtel) for making available the Stoe IPDS diffractometer for data collection.

References

First citationBarker, J . M., Chaffin, J. D. E., Halfpenny, J., Huddeston, P. R. & Tseki, P. F. (1993). J. Chem. Soc. Chem. Commun. pp. 1733–1734.  CrossRef Web of Science Google Scholar
First citationBonham, R. A. & Momany, F. A. (1963). J. Phys. Chem. 67 2474–2477.  CrossRef CAS Web of Science Google Scholar
First citationChaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 1398–1405.  Web of Science CrossRef Google Scholar
First citationChaffin, J. D. E., Barker, J. M. & Huddleston, P. R. (2002). J. Chem. Soc. Perkin Trans. 1, pp. 717–724.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA (Version 1.17) and X-RED32 (Version 1.04). Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds