metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Chloro­[(E)-1,1,1,4,4,4-hexa­fluoro­but-2-en-2-­yl]bis­­(tri­cyclo­hexyl­phosphine)platinum(II)–trans-chloro­[(Z)-1,1,1,4,4,4-hexa­fluoro­but-2-en-2­yl]bis­­(tri­cyclo­hexyl­phosphine)platinum(II) (1/1) at 120 K

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and bDepartamento de Química Inorgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: r.a.howie@abdn.ac.uk

(Received 22 July 2005; accepted 28 July 2005; online 6 August 2005)

The title cocrystal, [PtCl(C4HF6)(C18H33P)2], contains mol­ecules with a random distribution of E and Z alkenyl isomers in essentially equal numbers. This is indicative of the isomerization of the E form of the Pt complex in the course of attempting to carry out a reaction between it and tricyclo­hexyl­tin 4-chloro­benzene­thiol­ate in acetone as solvent.

Comment

The cocrystal, (E/Z)-(I)[link], a 1:1 mixture of trans-chloro­[(E)-1,1,1,4,4,4-hexa­fluoro­but-2-en-2-yl]bis­(tricyclo­hexyl­phos­phine)­platinum(II), (E)-(I)[link], and trans-chloro­[(Z)-1,1,1,4,4,4-hexa­fluoro­but-2-en-2-yl]bis­(tricyclo­hexyl­phos­phine)­platinum(II), (Z)-(I)[link], was isolated from the attempted 1:1 reaction of a sample of (E)-(I) with tricyclo­hexyl­tin 4-chloro­benzene­thiol­ate in Me2CO. The starting compound, (E)-(I)[link], had been prepared by the published procedure from trans-[PtH{P(C6H11)3}2(MeOH)]PF6 and F3CC≡CCF3, and had been shown by NMR to contain only an (E)-alkenyl group (Attig et al., 1979[Attig, T. G., Clark, H. C. & Wong, C. S. (1979). Can. J. Chem. 55, 189-198.]).

[Scheme 1]

The refinement of the structure was carried out on the basis of an asymmetric unit comprising a single `average' mol­ecule in which the alkenyl C atom not bonded to Pt and the CF3 group attached to it are both distributed over pairs of sites of equal occupancy, with one set, C38A and C40A (Fig.1), corresponding to the E isomer with cis CF3 groups and the other, C38B and C40B (Fig. 2[link]), to the Z isomer with trans CF3 groups. This is the justification for the presumption of a random distribution of essentially equal numbers of mol­ecules with E and Z forms in the cocrystal. There is also disorder in two of the cyclo­hexyl groups attached to P2, which is not related in any obvious way to the disorder of the alkenyl group. In these groups defined, respectively, by C19–C24 and C30–C36, all of the atoms have been dealt with in pairs of equal occupancy, with suffix A for one orientation of the group and suffix B for the other. Selected geometric parameters for cocrystalline (E/Z)-(I) are given in Table 1[link]. The coordination of Pt is square planar but with slight tetra­hedral distortion, as shown by the displacements, all approximately 0.11 Å, of P1 and P2 to one side, and Cl1 and C37 to the other, of the plane defined by these four atoms. The displacement of the Pt atom from this plane is only 0.0283 (12) Å. The E and Z conformations of the butenyl groups are clearly seen from the torsion angles given in Table 1[link]. The C—C distances in these groups are disappointingly disparate, with C=C distances of 1.327 (13) and 1.402 (13) Å and C—C (to the CF3 groups) ranging over 1.398 (16)–1.496 (6) Å. This, along with the variation in bond angles in the butenyl groups, may be attributable to the superposition of the two conformations in the disordered `average' mol­ecule rather than to real differences in the bonding of the (E)- and (Z)-butenyl groups. The other bond lengths and bond angles in (E/Z)-(I)[link], summarized in Table 2[link], are unremarkable. The only inter­action between the mol­ecules is in the form of van der Waals contacts. The content of the unit cell is shown in a highly schematic manner in Fig. 3[link].

Recourse to the Cambridge Structural Database (CSD; Version 5.26; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) by means of the Chemical Database Service of the EPSRC (CDS; Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) reveals the presence of data for only one analogue of (E/Z)-(I)[link]. This is the compound chloro-(trans-1,1,1,4,4,4-hexa­fluoro­but-2-en-2-yl)(η5-penta­methyl­cyclo­penta­dien­yl)(trimethyl­phos­phine)­rhodium (CSD code WIYZOT; Selmeczy & Jones, 2000[Selmeczy, A. D. & Jones, W. D. (2000). Inorg. Chim. Acta, 300, 138-150.]), in which the CF3 groups of the hexa­fluoro­butenyl substituent are trans to one another and the compound is therefore here designated (Z)-(II)[link]. Although the Z conformation of the butenyl substituent is clearly established in the proposed structure of (Z)-(II)[link], the internal geometry of the group is rather poorly defined; for example, the C=C bond length, calculated from the coordinates extracted from the CSD entry, is only 1.11 (3) Å, and the C—C bond lengths are very long. Nevertheless, the structure of (Z)-(II)[link] clearly provides an authentic example of the butenyl substituent in the Z conformation. The paper of Selmeczy & Jones (2000[Selmeczy, A. D. & Jones, W. D. (2000). Inorg. Chim. Acta, 300, 138-150.]) and the references within it also provide much information regarding the unpredicta­bility of reactions such as those producing (E)-(I)[link] and (Z)-(II)[link], especially where hexa­fuorobut-2-yne is involved. Furthermore, Selmeczy & Jones (2000[Selmeczy, A. D. & Jones, W. D. (2000). Inorg. Chim. Acta, 300, 138-150.]) also discuss, and summarize mechanisms for, the isomerization of such compounds. Thus, although no specific mechanism is invoked, the paper of Selmeczy & Jones (2000[Selmeczy, A. D. & Jones, W. D. (2000). Inorg. Chim. Acta, 300, 138-150.]) clearly supports the inter­pretation of the structure of (E/Z)-(I)[link] reported here as resulting from the partial isomerization of (E)-(I)[link].

[Figure 1]
Figure 1
The E isomer of (I)[link]. Displacement ellipsoids are shown at the 20% probability level and the alkenyl H atom as a small sphere of arbitrary radius; other H atoms have been omitted. For clarity, the cyclo­hexyl groups are represented only by thin lines representing the bonds to their constituent C atoms, only some of which are labelled, because the strictly cyclic labelling of these groups allows the identity of the remainder to be worked out.
[Figure 2]
Figure 2
The Z isomer of (I)[link]. Displacement ellipsoids are shown at the 20% probability level. For clarity the cyclo­hexyl groups are represented by only the C atoms directly bonded to P, and all H atoms have been omitted.
[Figure 3]
Figure 3
The packing of the mol­ecules in the cell of (E/Z)-(I). Displacement ellipsoids are shown at the 20% probability level. For clarity, all H atoms have been omitted and the cyclo­hexyl groups are indicated simply by thin line P—C bonds. Selected atoms are labelled. The example shown employs molecules of the E form, as in Fig. 1[link]. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x, [{1\over 2}]y, z[{1\over 2}]; (iii) x, [{3\over 2}]y, z[{1\over 2}]; (iv) 1 − x, [{1\over 2}] + y, [{3\over 2}]z; (v) 1 − x, y[{1\over 2}], [{3\over 2}]z.]

Experimental

A solution of (E)-(I) (Attig et al., 1979[Attig, T. G., Clark, H. C. & Wong, C. S. (1979). Can. J. Chem. 55, 189-198.]) and (C6H11)3SnSC6H4Cl-p (each 1 mmol) in Me2CO (15 ml) was refluxed for 30 min. Crystals of (E/Z)-(I) were formed on slow evaporation of the solvent at room temperature. IR (KBr): 1600 cm−1 (C=C).

Crystal data
  • [PtCl(C4HF6)(C18H33P)2]

  • Mr = 954.42

  • Monoclinic, P 21 /c

  • a = 14.3933 (2) Å

  • b = 17.5714 (3) Å

  • c = 17.5270 (3) Å

  • β = 110.2621 (10)°

  • V = 4158.45 (12) Å3

  • Z = 4

  • Dx = 1.524 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 44847 reflections

  • θ = 2.9–27.5°

  • μ = 3.57 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.36 × 0.18 × 0.12 mm

Data collection
  • Nonius KappaCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.457, Tmax = 0.652

  • 53705 measured reflections

  • 9510 independent reflections

  • 7588 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 27.5°

  • h = −18 → 18

  • k = −22 → 21

  • l = −22 → 22

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.074

  • S = 1.04

  • 9510 reflections

  • 568 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0283P)2 + 5.1608P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.98 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Pt1—C37 2.033 (4)
Pt1—P1 2.3426 (9)
Pt1—P2 2.3535 (9)
Pt1—Cl1 2.3688 (9)
C37—C38B 1.327 (13)
C37—C38A 1.402 (13)
C37—C39 1.496 (6)
C38A—C40A 1.493 (13)
C38B—C40B 1.398 (16)
C37—Pt1—P1 94.52 (10)
C37—Pt1—P2 95.55 (10)
P1—Pt1—P2 168.08 (3)
C37—Pt1—Cl1 175.69 (11)
P1—Pt1—Cl1 86.29 (3)
P2—Pt1—Cl1 84.14 (3)
C38B—C37—C39 100.8 (6)
C38A—C37—C39 128.7 (5)
C38B—C37—Pt1 138.9 (6)
C38A—C37—Pt1 111.0 (5)
C39—C37—Pt1 120.3 (3)
C37—C38A—C40A 123.5 (10)
C37—C38B—C40B 125.7 (10)
Pt1—C37—C38A—C40A 178.6 (8)
Pt1—C37—C38B—C40B −2.2 (19)
C39—C37—C38A—C40A −2.8 (14)
C39—C37—C38B—C40B 178.5 (11)

Table 2
Geometric parameters (Å, °) for structural components of (E/Z)-(I) expressed as ranges; the ranges are somewhat extended by the inclusion of values associated with disordered atoms

Group   Min. Max.
CF3 C—F 1.297 (10) 1.368 (9)
  F—C—F 102.0 (9) 106.5 (7)
  F—C—C 110.0 (10) 119.3 (9)
       
Phosphine C—P 1.843 (3) 1.858 (4)
  C—P—Pt 108.61 (12) 118.53 (15)
  C—P—C 102.30 (17) 109.17 (19)
       
Cyclohexyl C—C 1.402 (9) 1.628 (9)
  C—C—P 110.6 (2) 125.2 (4)
  C—C—C 103.5 (7) 116.7 (9)

The disorder in the hexa­fluoro­butenyl substituent and in two of the four cyclo­hexyl groups noted in the Comment[link] text was dealt with by standard techniques. Although subsidiary calculations, with isotropic displacement parameters constrained to be equal for atoms in pairs of the same type and connectivity, indicated occupancies of 0.441 (4) and 0.559 (4) for the disordered atoms of the cis (E form) and trans (Z form) hexa­fluoro­butenyl groups, respectively, fixing these at 0.5 rather than at the refined values produced slightly better R values for the same mode of refinement. Some residual disorder is still apparent in this part of the mol­ecule, as evidenced by rather extreme anisotropic displacement parameters as, for example, in the case of F4A and F5A. In order to permit inter­atomic distances within the disordered cyclo­hexyl groups to be restrained to be equal (within 0.02 Å) to those within a comparatively ordered cyclo­hexyl group (that defined by C1–C6 was used for this purpose), ordered atoms such as C19, C31, C32 and C35 were artificially split into pairs as, for example, C19A/C19B. For each such pair, the atomic coordinates were refined as free variables and the anisotropic displacement parameters of the two atoms were constrained to be equal. In this way, all six C atoms of the cyclo­hexyl group were made available for application of similarity restraints to the geometry of both orientations of the disordered groups. In the final stage of the calculations, H atoms were introduced in calculated positions, taking full account of the disorder noted above, with C—H set to 0.95, 0.99 and 1.00 Å for H atoms attached to alkene, methyl­ene and tertiary C atoms, respectively, and refined with a riding model with Uiso(H) = 1.2Ueq(C) in all cases.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

trans-Chloro[(E)-1,1,1,4,4,4-hexafluorobut-2-en-2- yl]bis(tricyclohexylphosphine)platinum(II)–trans- chloro[(Z)-1,1,1,4,4,4-hexafluorobut-2-en-2- yl]bis(tricyclohexylphosphine)platinum(II) (1/1) top
Crystal data top
[PtCl(C4HF6)(C18H33P)2]F(000) = 1944
Mr = 954.42Dx = 1.524 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 44847 reflections
a = 14.3933 (2) Åθ = 2.9–27.5°
b = 17.5714 (3) ŵ = 3.57 mm1
c = 17.5270 (3) ÅT = 120 K
β = 110.2621 (10)°Block, colourless
V = 4158.45 (12) Å30.36 × 0.18 × 0.12 mm
Z = 4
Data collection top
Nonius KappaCD
diffractometer
9510 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode7588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
φ and ω scansh = 1818
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2221
Tmin = 0.457, Tmax = 0.652l = 2222
53705 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0283P)2 + 5.1608P]
where P = (Fo2 + 2Fc2)/3
9510 reflections(Δ/σ)max = 0.003
568 parametersΔρmax = 0.88 e Å3
138 restraintsΔρmin = 0.98 e Å3
Special details top

Experimental. Unit cell determined with DIRAX (Duisenberg, 1992; Duisenberg et al. 2000) but refined with the DENZO/COLLECT HKL package.

Refs as: Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

3.7094 (105) x + 0.5402 (118) y + 14.3146 (73) z = 13.9386 (30)

* 0.1117 (0.0011) Cl1 * -0.1096 (0.0010) P1 * -0.1104 (0.0010) P2 * 0.1083 (0.0010) C37 0.0283 (0.0012) Pt1

Rms deviation of fitted atoms = 0.1100

9.3579 (238) x + 12.7506 (222) y - 7.6501 (290) z = 7.8235 (295)

Angle to previous plane (with approximate e.s.d.) = 88.41 (0.11)

* 0.0036 (0.0032) Pt1 * -0.0050 (0.0037) C39 * 0.0019 (0.0031) C37 * -0.0219 (0.0112) C38A_a * 0.0011 (0.0065) C40A_a * 0.0182 (0.0126) C38B_b * 0.0020 (0.0062) C40B_b

Rms deviation of fitted atoms = 0.0111

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.780491 (9)0.493925 (7)0.754821 (8)0.03134 (5)
Cl10.88937 (7)0.40064 (5)0.73595 (7)0.0517 (3)
P10.87733 (7)0.58309 (5)0.71673 (6)0.0337 (2)
C10.8549 (2)0.5784 (2)0.6061 (2)0.0387 (8)
H10.89340.62110.59380.046*
C20.8881 (3)0.5060 (2)0.5748 (2)0.0429 (9)
H2A0.84980.46210.58350.051*
H2B0.95900.49660.60560.051*
C30.8722 (3)0.5134 (2)0.4840 (2)0.0478 (10)
H3A0.91450.55490.47600.057*
H3B0.89230.46550.46430.057*
C40.7647 (3)0.5303 (3)0.4349 (3)0.0603 (12)
H4A0.75740.53790.37710.072*
H4B0.72320.48640.43800.072*
C50.7293 (3)0.6009 (3)0.4663 (2)0.0596 (12)
H5A0.65790.60860.43570.072*
H5B0.76560.64580.45710.072*
C60.7457 (3)0.5940 (2)0.5570 (2)0.0473 (10)
H6A0.70450.55200.56570.057*
H6B0.72480.64170.57640.057*
C71.0111 (3)0.5638 (2)0.7655 (2)0.0413 (9)
H71.02220.51340.74340.050*
C81.0804 (3)0.6190 (2)0.7443 (3)0.0504 (10)
H8A1.07410.67020.76570.061*
H8B1.06100.62280.68450.061*
C91.1882 (3)0.5925 (3)0.7805 (3)0.0641 (13)
H9A1.19610.54370.75520.077*
H9B1.23190.63060.76850.077*
C101.2183 (3)0.5823 (3)0.8716 (3)0.0704 (15)
H10A1.28690.56260.89330.085*
H10B1.21690.63220.89720.085*
C111.1503 (3)0.5279 (3)0.8932 (3)0.0628 (13)
H11A1.17020.52480.95320.075*
H11B1.15740.47660.87270.075*
C121.0422 (3)0.5523 (2)0.8578 (2)0.0471 (9)
H12A1.03290.60040.88370.057*
H12B0.99980.51290.86950.057*
C130.8532 (3)0.68499 (19)0.7312 (2)0.0384 (8)
H130.77970.68900.71660.046*
C140.8966 (3)0.7102 (2)0.8199 (3)0.0458 (10)
H14A0.96950.71430.83630.055*
H14B0.88140.67170.85510.055*
C150.8535 (3)0.7872 (2)0.8314 (3)0.0522 (11)
H15A0.78130.78210.81880.063*
H15B0.88370.80340.88880.063*
C160.8730 (3)0.8466 (2)0.7768 (4)0.0729 (16)
H16A0.83810.89410.78100.087*
H16B0.94480.85780.79570.087*
C170.8395 (4)0.8219 (2)0.6896 (4)0.0763 (16)
H17A0.86040.86050.65770.092*
H17B0.76620.81970.66810.092*
C180.8804 (3)0.7446 (2)0.6775 (3)0.0558 (11)
H18A0.95330.74750.69270.067*
H18B0.85200.72940.61960.067*
P20.68959 (6)0.38828 (5)0.77267 (5)0.02974 (19)
C19A0.6372 (3)0.3377 (2)0.6741 (2)0.0401 (8)0.50
H19A0.59250.29800.68320.048*0.50
C20A0.5691 (10)0.3909 (7)0.6098 (7)0.048 (3)0.50
H20A0.52230.41550.63240.057*0.50
H20B0.60960.43150.59770.057*0.50
C21A0.5101 (6)0.3507 (5)0.5308 (5)0.0484 (19)0.50
H21A0.46120.31590.54050.058*0.50
H21B0.47350.38880.48980.058*0.50
C22A0.5778 (8)0.3061 (6)0.4990 (5)0.057 (3)0.50
H22A0.62060.34170.48230.068*0.50
H22B0.53790.27690.45040.068*0.50
C23A0.6416 (6)0.2522 (5)0.5623 (4)0.054 (2)0.50
H23A0.68660.22460.54020.065*0.50
H23B0.59910.21430.57610.065*0.50
C24A0.7039 (5)0.2961 (4)0.6408 (4)0.0453 (19)0.50
H24A0.74490.25980.68180.054*0.50
H24B0.74880.33250.62770.054*0.50
C19B0.6372 (3)0.3377 (2)0.6741 (2)0.0401 (8)0.50
H19B0.69890.31680.66800.048*0.50
C20B0.5776 (8)0.2670 (5)0.6658 (5)0.071 (3)0.50
H20C0.51610.27960.67630.085*0.50
H20D0.61560.23060.70830.085*0.50
C21B0.5498 (9)0.2282 (5)0.5847 (5)0.078 (3)0.50
H21C0.60750.19870.58270.094*0.50
H21D0.49570.19170.57990.094*0.50
C22B0.5173 (8)0.2807 (5)0.5139 (5)0.070 (3)0.50
H22C0.45100.30110.50780.084*0.50
H22D0.51150.25190.46390.084*0.50
C23B0.5886 (8)0.3467 (6)0.5228 (5)0.065 (3)0.50
H23C0.56180.38190.47620.078*0.50
H23D0.65310.32720.52260.078*0.50
C24B0.6040 (13)0.3903 (7)0.6040 (6)0.086 (7)0.50
H24C0.65410.43080.61100.104*0.50
H24D0.54100.41470.60150.104*0.50
C250.7717 (2)0.31674 (19)0.8418 (2)0.0331 (7)
H250.80920.29290.80940.040*
C260.8509 (3)0.3522 (2)0.9158 (2)0.0456 (9)
H26A0.88420.39440.89800.055*
H26B0.81940.37340.95320.055*
C270.9271 (3)0.2923 (3)0.9601 (2)0.0572 (12)
H27A0.96080.27300.92340.069*
H27B0.97780.31571.00790.069*
C280.8783 (4)0.2267 (3)0.9877 (3)0.0710 (15)
H28A0.85000.24511.02840.085*
H28B0.92860.18751.01390.085*
C290.7965 (3)0.1914 (2)0.9163 (3)0.0649 (13)
H29A0.76230.15180.93680.078*
H29B0.82630.16650.87960.078*
C300.7210 (3)0.2505 (2)0.8683 (3)0.0508 (10)
H30A0.68410.27010.90250.061*
H30B0.67280.22620.81970.061*
C31A0.5831 (3)0.4050 (3)0.8060 (2)0.0489 (10)0.50
H31A0.55650.45420.77820.059*0.50
C32A0.6122 (3)0.4270 (2)0.8949 (2)0.0443 (9)0.50
H32A0.67000.46170.90960.053*0.50
H32B0.63190.38080.92900.053*0.50
C33A0.5262 (6)0.4666 (5)0.9123 (6)0.042 (2)0.50
H33A0.54580.48060.97050.051*0.50
H33B0.50550.51320.87900.051*0.50
C34A0.4422 (8)0.4077 (7)0.8894 (6)0.053 (3)0.50
H34A0.38740.42490.90720.064*0.50
H34B0.46660.35800.91520.064*0.50
C35A0.4062 (3)0.4009 (3)0.7938 (3)0.0759 (16)0.50
H35A0.39660.45180.76800.091*0.50
H35B0.34340.37200.77260.091*0.50
C36A0.4950 (4)0.3559 (3)0.7779 (4)0.0249 (13)0.50
H36A0.50810.30720.80830.030*0.50
H36B0.47740.34450.71930.030*0.50
C31B0.5831 (3)0.4050 (3)0.8060 (2)0.0489 (10)0.50
H31B0.56660.35050.81170.059*0.50
C32B0.6122 (3)0.4270 (2)0.8949 (2)0.0443 (9)0.50
H32C0.63680.48010.90160.053*0.50
H32D0.66730.39390.92740.053*0.50
C33B0.5268 (7)0.4206 (8)0.9287 (6)0.071 (3)0.50
H33C0.52250.36700.94450.085*0.50
H33D0.54420.45170.97890.085*0.50
C34B0.4285 (8)0.4442 (9)0.8746 (7)0.072 (5)0.50
H34C0.42740.49980.86490.087*0.50
H34D0.37810.43200.89930.087*0.50
C35B0.4062 (3)0.4009 (3)0.7938 (3)0.0759 (16)0.50
H35C0.33870.41300.75620.091*0.50
H35D0.41080.34530.80360.091*0.50
C36B0.4887 (6)0.4284 (8)0.7554 (5)0.090 (4)0.50
H36C0.47360.40600.70060.108*0.50
H36D0.48710.48450.75000.108*0.50
C370.6927 (3)0.5734 (2)0.7802 (2)0.0408 (9)
C390.6011 (3)0.6009 (2)0.7148 (3)0.0541 (11)
F10.6128 (2)0.67065 (17)0.6855 (2)0.0983 (11)
F20.57053 (19)0.55666 (17)0.64982 (17)0.0774 (8)
F30.5209 (2)0.61073 (19)0.7352 (2)0.1052 (12)
C38A0.7296 (9)0.5939 (6)0.8625 (8)0.040 (2)0.50
H38A0.78780.56930.89690.048*0.50
C40A0.6824 (8)0.6523 (5)0.8991 (6)0.072 (3)0.50
F4A0.7516 (8)0.6848 (6)0.9645 (7)0.117 (4)0.50
F5A0.6174 (7)0.6236 (3)0.9322 (5)0.132 (4)0.50
F6A0.6384 (4)0.7102 (3)0.8556 (4)0.0712 (15)0.50
C38B0.6898 (9)0.6144 (8)0.8429 (8)0.050 (3)0.50
H38B0.63670.64950.83310.060*0.50
C40B0.7581 (7)0.6105 (5)0.9221 (6)0.058 (2)0.50
F4B0.7977 (6)0.6787 (4)0.9529 (5)0.067 (2)0.50
F5B0.8343 (4)0.5635 (3)0.9327 (3)0.0573 (12)0.50
F6B0.7135 (4)0.5881 (3)0.9757 (3)0.0708 (15)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03075 (8)0.03668 (8)0.03080 (8)0.00114 (6)0.01600 (6)0.00202 (6)
Cl10.0546 (6)0.0428 (5)0.0764 (7)0.0099 (4)0.0466 (6)0.0089 (5)
P10.0316 (5)0.0368 (5)0.0375 (5)0.0015 (4)0.0180 (4)0.0028 (4)
C10.0328 (19)0.048 (2)0.040 (2)0.0013 (16)0.0187 (16)0.0045 (16)
C20.042 (2)0.050 (2)0.043 (2)0.0006 (17)0.0212 (18)0.0012 (17)
C30.048 (2)0.060 (3)0.043 (2)0.0017 (19)0.0250 (19)0.0012 (18)
C40.055 (3)0.086 (3)0.041 (2)0.005 (2)0.018 (2)0.002 (2)
C50.049 (2)0.087 (3)0.044 (3)0.015 (2)0.017 (2)0.013 (2)
C60.037 (2)0.064 (3)0.043 (2)0.0087 (18)0.0173 (18)0.0082 (19)
C70.0309 (18)0.045 (2)0.049 (2)0.0019 (16)0.0148 (17)0.0035 (17)
C80.035 (2)0.059 (3)0.062 (3)0.0033 (18)0.022 (2)0.006 (2)
C90.032 (2)0.073 (3)0.087 (4)0.002 (2)0.020 (2)0.023 (3)
C100.034 (2)0.074 (3)0.090 (4)0.010 (2)0.005 (2)0.028 (3)
C110.060 (3)0.054 (3)0.059 (3)0.022 (2)0.001 (2)0.019 (2)
C120.049 (2)0.042 (2)0.045 (2)0.0099 (18)0.0091 (19)0.0051 (17)
C130.0355 (19)0.0348 (19)0.051 (2)0.0001 (15)0.0231 (17)0.0019 (16)
C140.038 (2)0.039 (2)0.068 (3)0.0012 (16)0.028 (2)0.0109 (19)
C150.041 (2)0.039 (2)0.085 (3)0.0044 (17)0.034 (2)0.013 (2)
C160.063 (3)0.036 (2)0.148 (5)0.003 (2)0.073 (3)0.003 (3)
C170.095 (4)0.043 (3)0.125 (5)0.017 (2)0.080 (4)0.028 (3)
C180.062 (3)0.040 (2)0.085 (3)0.0046 (19)0.050 (3)0.009 (2)
P20.0257 (4)0.0365 (5)0.0282 (5)0.0011 (3)0.0109 (4)0.0005 (4)
C19A0.040 (2)0.046 (2)0.033 (2)0.0000 (16)0.0103 (16)0.0065 (16)
C20A0.056 (6)0.041 (6)0.042 (7)0.005 (4)0.013 (5)0.001 (4)
C21A0.048 (5)0.059 (5)0.034 (4)0.010 (4)0.009 (4)0.009 (4)
C22A0.045 (6)0.088 (8)0.037 (6)0.004 (6)0.013 (5)0.024 (5)
C23A0.072 (6)0.056 (5)0.031 (4)0.024 (4)0.016 (4)0.011 (4)
C24A0.047 (4)0.046 (4)0.041 (4)0.016 (4)0.013 (4)0.000 (3)
C19B0.040 (2)0.046 (2)0.033 (2)0.0000 (16)0.0103 (16)0.0065 (16)
C20B0.092 (7)0.046 (5)0.048 (5)0.007 (5)0.010 (5)0.008 (4)
C21B0.101 (8)0.067 (7)0.045 (6)0.003 (6)0.001 (6)0.016 (5)
C22B0.069 (7)0.076 (7)0.046 (6)0.016 (6)0.004 (6)0.022 (5)
C23B0.070 (7)0.099 (9)0.023 (5)0.011 (7)0.013 (5)0.011 (5)
C24B0.140 (17)0.072 (9)0.027 (6)0.039 (10)0.003 (8)0.002 (6)
C250.0316 (18)0.0366 (19)0.0333 (19)0.0028 (14)0.0140 (15)0.0018 (14)
C260.045 (2)0.052 (2)0.036 (2)0.0085 (18)0.0086 (18)0.0042 (17)
C270.055 (3)0.076 (3)0.033 (2)0.022 (2)0.007 (2)0.002 (2)
C280.084 (4)0.085 (4)0.050 (3)0.042 (3)0.030 (3)0.030 (3)
C290.072 (3)0.053 (3)0.086 (4)0.019 (2)0.048 (3)0.027 (2)
C300.051 (2)0.045 (2)0.065 (3)0.0076 (18)0.031 (2)0.014 (2)
C31A0.0271 (19)0.082 (3)0.040 (2)0.0004 (18)0.0134 (17)0.016 (2)
C32A0.0311 (19)0.063 (3)0.040 (2)0.0038 (17)0.0136 (17)0.0090 (18)
C33A0.042 (5)0.055 (5)0.037 (5)0.016 (4)0.022 (4)0.001 (4)
C34A0.030 (6)0.086 (9)0.056 (7)0.007 (5)0.029 (5)0.003 (6)
C35A0.027 (2)0.141 (5)0.065 (3)0.015 (3)0.023 (2)0.031 (3)
C36A0.020 (3)0.031 (3)0.027 (3)0.006 (2)0.013 (3)0.001 (3)
C31B0.0271 (19)0.082 (3)0.040 (2)0.0004 (18)0.0134 (17)0.016 (2)
C32B0.0311 (19)0.063 (3)0.040 (2)0.0038 (17)0.0136 (17)0.0090 (18)
C33B0.053 (7)0.116 (10)0.044 (6)0.040 (7)0.018 (5)0.002 (7)
C34B0.043 (6)0.114 (13)0.070 (8)0.010 (7)0.032 (6)0.017 (8)
C35B0.027 (2)0.141 (5)0.065 (3)0.015 (3)0.023 (2)0.031 (3)
C36B0.043 (5)0.176 (13)0.052 (6)0.020 (7)0.017 (5)0.016 (7)
C370.048 (2)0.037 (2)0.051 (2)0.0033 (16)0.0351 (19)0.0001 (17)
C390.043 (2)0.052 (3)0.081 (3)0.0038 (19)0.039 (2)0.006 (2)
F10.0573 (17)0.0695 (19)0.162 (3)0.0108 (14)0.0300 (19)0.047 (2)
F20.0616 (17)0.089 (2)0.0743 (19)0.0347 (15)0.0140 (15)0.0071 (16)
F30.0667 (19)0.104 (2)0.177 (4)0.0031 (17)0.083 (2)0.015 (2)
C38A0.051 (7)0.036 (6)0.041 (7)0.000 (4)0.027 (6)0.004 (5)
C40A0.116 (9)0.034 (5)0.078 (7)0.002 (6)0.048 (7)0.017 (5)
F4A0.181 (12)0.083 (5)0.092 (6)0.008 (7)0.053 (7)0.032 (4)
F5A0.244 (10)0.052 (4)0.194 (8)0.022 (5)0.196 (8)0.026 (4)
F6A0.088 (4)0.044 (3)0.106 (4)0.000 (3)0.064 (4)0.012 (3)
C38B0.050 (7)0.056 (8)0.059 (8)0.010 (5)0.038 (6)0.004 (6)
C40B0.074 (7)0.054 (6)0.052 (6)0.005 (5)0.029 (5)0.015 (5)
F4B0.088 (5)0.048 (4)0.067 (5)0.008 (3)0.028 (4)0.007 (3)
F5B0.066 (3)0.061 (3)0.047 (3)0.000 (2)0.022 (2)0.009 (2)
F6B0.090 (4)0.073 (4)0.061 (3)0.006 (3)0.042 (3)0.006 (3)
Geometric parameters (Å, º) top
Pt1—C372.033 (4)C19B—H19B1.0000
Pt1—P12.3426 (9)C20B—C21B1.499 (10)
Pt1—P22.3535 (9)C20B—H20C0.9900
Pt1—Cl12.3688 (9)C20B—H20D0.9900
P1—C71.848 (4)C21B—C22B1.486 (10)
P1—C11.854 (4)C21B—H21C0.9900
P1—C131.858 (4)C21B—H21D0.9900
C1—C21.525 (5)C22B—C23B1.520 (11)
C1—C61.533 (5)C22B—H22C0.9900
C1—H11.0000C22B—H22D0.9900
C2—C31.534 (5)C23B—C24B1.563 (12)
C2—H2A0.9900C23B—H23C0.9900
C2—H2B0.9900C23B—H23D0.9900
C3—C41.517 (6)C24B—H24C0.9900
C3—H3A0.9900C24B—H24D0.9900
C3—H3B0.9900C25—C301.530 (5)
C4—C51.515 (6)C25—C261.533 (5)
C4—H4A0.9900C25—H251.0000
C4—H4B0.9900C26—C271.524 (5)
C5—C61.530 (5)C26—H26A0.9900
C5—H5A0.9900C26—H26B0.9900
C5—H5B0.9900C27—C281.514 (6)
C6—H6A0.9900C27—H27A0.9900
C6—H6B0.9900C27—H27B0.9900
C7—C81.526 (5)C28—C291.521 (7)
C7—C121.536 (5)C28—H28A0.9900
C7—H71.0000C28—H28B0.9900
C8—C91.531 (5)C29—C301.528 (5)
C8—H8A0.9900C29—H29A0.9900
C8—H8B0.9900C29—H29B0.9900
C9—C101.512 (7)C30—H30A0.9900
C9—H9A0.9900C30—H30B0.9900
C9—H9B0.9900C31A—C36A1.471 (6)
C10—C111.507 (7)C31A—C32A1.516 (5)
C10—H10A0.9900C31A—H31A1.0000
C10—H10B0.9900C32A—C33A1.540 (8)
C11—C121.523 (6)C32A—H32A0.9900
C11—H11A0.9900C32A—H32B0.9900
C11—H11B0.9900C33A—C34A1.536 (11)
C12—H12A0.9900C33A—H33A0.9900
C12—H12B0.9900C33A—H33B0.9900
C13—C141.527 (5)C34A—C35A1.578 (10)
C13—C181.546 (5)C34A—H34A0.9900
C13—H131.0000C34A—H34B0.9900
C14—C151.529 (5)C35A—C36A1.607 (7)
C14—H14A0.9900C35A—H35A0.9900
C14—H14B0.9900C35A—H35B0.9900
C15—C161.507 (6)C36A—H36A0.9900
C15—H15A0.9900C36A—H36B0.9900
C15—H15B0.9900C31B—C36B1.402 (9)
C16—C171.499 (7)C31B—C32B1.516 (5)
C16—H16A0.9900C31B—H31B1.0000
C16—H16B0.9900C32B—C33B1.543 (9)
C17—C181.525 (6)C32B—H32C0.9900
C17—H17A0.9900C32B—H32D0.9900
C17—H17B0.9900C33B—C34B1.464 (11)
C18—H18A0.9900C33B—H33C0.9900
C18—H18B0.9900C33B—H33D0.9900
P2—C31B1.843 (3)C34B—C35B1.540 (11)
P2—C31A1.843 (3)C34B—H34C0.9900
P2—C19A1.855 (4)C34B—H34D0.9900
P2—C19B1.855 (4)C35B—C36B1.628 (9)
P2—C251.858 (3)C35B—H35C0.9900
C19A—C24A1.478 (7)C35B—H35D0.9900
C19A—C20A1.529 (11)C36B—H36C0.9900
C19A—H19A1.0000C36B—H36D0.9900
C20A—C21A1.525 (12)C37—C38B1.327 (13)
C20A—H20A0.9900C37—C38A1.402 (13)
C20A—H20B0.9900C37—C391.496 (6)
C21A—C22A1.499 (9)C39—F21.322 (5)
C21A—H21A0.9900C39—F31.332 (4)
C21A—H21B0.9900C39—F11.361 (5)
C22A—C23A1.506 (10)C38A—C40A1.493 (13)
C22A—H22A0.9900C38A—H38A0.9500
C22A—H22B0.9900C40A—F6A1.297 (10)
C23A—C24A1.561 (9)C40A—F5A1.357 (10)
C23A—H23A0.9900C40A—F4A1.358 (11)
C23A—H23B0.9900C38B—C40B1.398 (16)
C24A—H24A0.9900C38B—H38B0.9500
C24A—H24B0.9900C40B—F5B1.333 (9)
C19B—C24B1.478 (12)C40B—F4B1.356 (10)
C19B—C20B1.489 (8)C40B—F6B1.368 (9)
C37—Pt1—P194.52 (10)C20B—C19B—P2121.7 (4)
C37—Pt1—P295.55 (10)C24B—C19B—H19B100.7
P1—Pt1—P2168.08 (3)C20B—C19B—H19B100.7
C37—Pt1—Cl1175.69 (11)P2—C19B—H19B100.7
P1—Pt1—Cl186.29 (3)C19B—C20B—C21B115.3 (8)
P2—Pt1—Cl184.14 (3)C19B—C20B—H20C108.4
C7—P1—C1104.57 (16)C21B—C20B—H20C108.4
C7—P1—C13109.17 (17)C19B—C20B—H20D108.4
C1—P1—C13102.30 (17)C21B—C20B—H20D108.4
C7—P1—Pt1111.89 (13)H20C—C20B—H20D107.5
C1—P1—Pt1111.27 (12)C22B—C21B—C20B114.4 (7)
C13—P1—Pt1116.59 (11)C22B—C21B—H21C108.7
C2—C1—C6109.6 (3)C20B—C21B—H21C108.7
C2—C1—P1116.8 (3)C22B—C21B—H21D108.7
C6—C1—P1110.6 (2)C20B—C21B—H21D108.7
C2—C1—H1106.4H21C—C21B—H21D107.6
C6—C1—H1106.4C21B—C22B—C23B112.4 (8)
P1—C1—H1106.4C21B—C22B—H22C109.1
C1—C2—C3110.4 (3)C23B—C22B—H22C109.1
C1—C2—H2A109.6C21B—C22B—H22D109.1
C3—C2—H2A109.6C23B—C22B—H22D109.1
C1—C2—H2B109.6H22C—C22B—H22D107.8
C3—C2—H2B109.6C22B—C23B—C24B110.2 (9)
H2A—C2—H2B108.1C22B—C23B—H23C109.6
C4—C3—C2111.2 (3)C24B—C23B—H23C109.6
C4—C3—H3A109.4C22B—C23B—H23D109.6
C2—C3—H3A109.4C24B—C23B—H23D109.6
C4—C3—H3B109.4H23C—C23B—H23D108.1
C2—C3—H3B109.4C19B—C24B—C23B110.6 (9)
H3A—C3—H3B108.0C19B—C24B—H24C109.5
C5—C4—C3111.0 (4)C23B—C24B—H24C109.5
C5—C4—H4A109.4C19B—C24B—H24D109.5
C3—C4—H4A109.4C23B—C24B—H24D109.5
C5—C4—H4B109.4H24C—C24B—H24D108.1
C3—C4—H4B109.4C30—C25—C26110.2 (3)
H4A—C4—H4B108.0C30—C25—P2116.7 (2)
C4—C5—C6111.3 (4)C26—C25—P2113.3 (2)
C4—C5—H5A109.4C30—C25—H25105.1
C6—C5—H5A109.4C26—C25—H25105.1
C4—C5—H5B109.4P2—C25—H25105.1
C6—C5—H5B109.4C27—C26—C25110.1 (3)
H5A—C5—H5B108.0C27—C26—H26A109.6
C5—C6—C1110.8 (3)C25—C26—H26A109.6
C5—C6—H6A109.5C27—C26—H26B109.6
C1—C6—H6A109.5C25—C26—H26B109.6
C5—C6—H6B109.5H26A—C26—H26B108.2
C1—C6—H6B109.5C28—C27—C26110.9 (4)
H6A—C6—H6B108.1C28—C27—H27A109.5
C8—C7—C12111.3 (3)C26—C27—H27A109.5
C8—C7—P1115.8 (3)C28—C27—H27B109.5
C12—C7—P1112.8 (3)C26—C27—H27B109.5
C8—C7—H7105.3H27A—C27—H27B108.0
C12—C7—H7105.3C27—C28—C29111.1 (4)
P1—C7—H7105.3C27—C28—H28A109.4
C7—C8—C9111.1 (4)C29—C28—H28A109.4
C7—C8—H8A109.4C27—C28—H28B109.4
C9—C8—H8A109.4C29—C28—H28B109.4
C7—C8—H8B109.4H28A—C28—H28B108.0
C9—C8—H8B109.4C28—C29—C30112.1 (4)
H8A—C8—H8B108.0C28—C29—H29A109.2
C10—C9—C8110.6 (4)C30—C29—H29A109.2
C10—C9—H9A109.5C28—C29—H29B109.2
C8—C9—H9A109.5C30—C29—H29B109.2
C10—C9—H9B109.5H29A—C29—H29B107.9
C8—C9—H9B109.5C29—C30—C25111.1 (3)
H9A—C9—H9B108.1C29—C30—H30A109.4
C11—C10—C9111.6 (4)C25—C30—H30A109.4
C11—C10—H10A109.3C29—C30—H30B109.4
C9—C10—H10A109.3C25—C30—H30B109.4
C11—C10—H10B109.3H30A—C30—H30B108.0
C9—C10—H10B109.3C36A—C31A—C32A113.1 (4)
H10A—C10—H10B108.0C36A—C31A—P2121.0 (3)
C10—C11—C12112.3 (4)C32A—C31A—P2113.7 (2)
C10—C11—H11A109.1C36A—C31A—H31A101.8
C12—C11—H11A109.1C32A—C31A—H31A101.8
C10—C11—H11B109.1P2—C31A—H31A101.8
C12—C11—H11B109.1C31A—C32A—C33A111.3 (4)
H11A—C11—H11B107.9C31A—C32A—H32A109.4
C11—C12—C7110.5 (3)C33A—C32A—H32A109.4
C11—C12—H12A109.6C31A—C32A—H32B109.4
C7—C12—H12A109.6C33A—C32A—H32B109.4
C11—C12—H12B109.6H32A—C32A—H32B108.0
C7—C12—H12B109.6C34A—C33A—C32A105.0 (7)
H12A—C12—H12B108.1C34A—C33A—H33A110.8
C14—C13—C18108.8 (3)C32A—C33A—H33A110.8
C14—C13—P1112.9 (3)C34A—C33A—H33B110.8
C18—C13—P1118.0 (2)C32A—C33A—H33B110.8
C14—C13—H13105.3H33A—C33A—H33B108.8
C18—C13—H13105.3C33A—C34A—C35A105.5 (7)
P1—C13—H13105.3C33A—C34A—H34A110.6
C13—C14—C15110.4 (3)C35A—C34A—H34A110.6
C13—C14—H14A109.6C33A—C34A—H34B110.6
C15—C14—H14A109.6C35A—C34A—H34B110.6
C13—C14—H14B109.6H34A—C34A—H34B108.8
C15—C14—H14B109.6C34A—C35A—C36A103.5 (5)
H14A—C14—H14B108.1C34A—C35A—H35A111.1
C16—C15—C14110.9 (3)C36A—C35A—H35A111.1
C16—C15—H15A109.5C34A—C35A—H35B111.1
C14—C15—H15A109.5C36A—C35A—H35B111.1
C16—C15—H15B109.5H35A—C35A—H35B109.0
C14—C15—H15B109.5C31A—C36A—C35A107.3 (4)
H15A—C15—H15B108.1C31A—C36A—H36A110.2
C17—C16—C15112.4 (4)C35A—C36A—H36A110.2
C17—C16—H16A109.1C31A—C36A—H36B110.2
C15—C16—H16A109.1C35A—C36A—H36B110.2
C17—C16—H16B109.1H36A—C36A—H36B108.5
C15—C16—H16B109.1C36B—C31B—C32B116.0 (5)
H16A—C16—H16B107.8C36B—C31B—P2125.2 (4)
C16—C17—C18113.4 (4)C32B—C31B—P2113.7 (2)
C16—C17—H17A108.9C36B—C31B—H31B97.6
C18—C17—H17A108.9C32B—C31B—H31B97.6
C16—C17—H17B108.9P2—C31B—H31B97.6
C18—C17—H17B108.9C31B—C32B—C33B113.8 (5)
H17A—C17—H17B107.7C31B—C32B—H32C108.8
C17—C18—C13109.1 (3)C33B—C32B—H32C108.8
C17—C18—H18A109.9C31B—C32B—H32D108.8
C13—C18—H18A109.9C33B—C32B—H32D108.8
C17—C18—H18B109.9H32C—C32B—H32D107.7
C13—C18—H18B109.9C34B—C33B—C32B116.7 (9)
H18A—C18—H18B108.3C34B—C33B—H33C108.1
C31B—P2—C19A104.93 (16)C32B—C33B—H33C108.1
C31A—P2—C19A104.93 (16)C34B—C33B—H33D108.1
C31B—P2—C19B104.93 (16)C32B—C33B—H33D108.1
C31A—P2—C19B104.93 (16)H33C—C33B—H33D107.3
C31B—P2—C25108.22 (18)C33B—C34B—C35B107.7 (8)
C31A—P2—C25108.22 (18)C33B—C34B—H34C110.2
C19A—P2—C25104.16 (16)C35B—C34B—H34C110.2
C19B—P2—C25104.16 (16)C33B—C34B—H34D110.2
C31B—P2—Pt1118.53 (15)C35B—C34B—H34D110.2
C31A—P2—Pt1118.53 (15)H34C—C34B—H34D108.5
C19A—P2—Pt1108.61 (12)C34B—C35B—C36B106.5 (7)
C19B—P2—Pt1108.61 (12)C34B—C35B—H35C110.4
C25—P2—Pt1111.27 (11)C36B—C35B—H35C110.4
C24A—C19A—C20A110.5 (6)C34B—C35B—H35D110.4
C24A—C19A—P2119.6 (4)C36B—C35B—H35D110.4
C20A—C19A—P2110.1 (5)H35C—C35B—H35D108.6
C24A—C19A—H19A105.1C31B—C36B—C35B109.7 (7)
C20A—C19A—H19A105.1C31B—C36B—H36C109.7
P2—C19A—H19A105.1C35B—C36B—H36C109.7
C21A—C20A—C19A113.5 (8)C31B—C36B—H36D109.7
C21A—C20A—H20A108.9C35B—C36B—H36D109.7
C19A—C20A—H20A108.9H36C—C36B—H36D108.2
C21A—C20A—H20B108.9C38B—C37—C39100.8 (6)
C19A—C20A—H20B108.9C38A—C37—C39128.7 (5)
H20A—C20A—H20B107.7C38B—C37—Pt1138.9 (6)
C22A—C21A—C20A110.5 (8)C38A—C37—Pt1111.0 (5)
C22A—C21A—H21A109.5C39—C37—Pt1120.3 (3)
C20A—C21A—H21A109.5F2—C39—F3104.3 (4)
C22A—C21A—H21B109.5F2—C39—F1104.6 (4)
C20A—C21A—H21B109.5F3—C39—F1102.5 (3)
H21A—C21A—H21B108.1F2—C39—C37114.3 (3)
C21A—C22A—C23A111.3 (7)F3—C39—C37116.9 (4)
C21A—C22A—H22A109.4F1—C39—C37112.8 (3)
C23A—C22A—H22A109.4C37—C38A—C40A123.5 (10)
C21A—C22A—H22B109.4C37—C38A—H38A118.3
C23A—C22A—H22B109.4C40A—C38A—H38A118.3
H22A—C22A—H22B108.0F6A—C40A—F5A105.9 (9)
C22A—C23A—C24A110.8 (7)F6A—C40A—F4A103.5 (8)
C22A—C23A—H23A109.5F5A—C40A—F4A102.0 (9)
C24A—C23A—H23A109.5F6A—C40A—C38A119.3 (9)
C22A—C23A—H23B109.5F5A—C40A—C38A114.3 (8)
C24A—C23A—H23B109.5F4A—C40A—C38A110.0 (10)
H23A—C23A—H23B108.1C37—C38B—C40B125.7 (10)
C19A—C24A—C23A109.8 (5)C37—C38B—H38B117.2
C19A—C24A—H24A109.7C40B—C38B—H38B117.2
C23A—C24A—H24A109.7F5B—C40B—F4B106.3 (8)
C19A—C24A—H24B109.7F5B—C40B—F6B106.5 (7)
C23A—C24A—H24B109.7F4B—C40B—F6B102.3 (8)
H24A—C24A—H24B108.2F5B—C40B—C38B115.5 (9)
C24B—C19B—C20B115.6 (7)F4B—C40B—C38B114.0 (9)
C24B—C19B—P2112.6 (5)F6B—C40B—C38B111.1 (9)
Pt1—C37—C38A—C40A178.6 (8)C39—C37—C38A—C40A2.8 (14)
Pt1—C37—C38B—C40B2.2 (19)C39—C37—C38B—C40B178.5 (11)
Geometric parameters (Å, °) for structural components of (E/Z)-(I) expressed as ranges; the ranges are somewhat extended by the inclusion of values associated with disordered atoms top
GroupMin.Max.
CF3C—F1.297 (10)1.368 (9)
F—C—F102.0 (9)106.5 (7)
F—C—C110.0 (10)119.3 (9)
phosphineC—P1.843 (3)1.858 (4)
C—P—Pt108.61 (12)118.53 (15)
C—P—C102.30 (17)109.17 (19)
cyclohexylC—C1.402 (9)1.628 (9)
C—C—P110.6 (2)125.2 (4)
C—C—C103.5 (7)116.7 (9)
 

Acknowledgements

We acknowledge the use of both the EPSRC's Chemical Database Service at Daresbury and X-ray crystallographic service at Southampton.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAttig, T. G., Clark, H. C. & Wong, C. S. (1979). Can. J. Chem. 55, 189–198.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSelmeczy, A. D. & Jones, W. D. (2000). Inorg. Chim. Acta, 300, 138–150.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds