organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(4-Methyl­phenyl­sulfon­yl)-1H-1,2,3-benzotriazole: sheets built from C—H⋯N, C—H⋯O and C—H⋯π(arene) hydrogen bonds

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 27 July 2005; accepted 28 July 2005; online 6 August 2005)

The mol­ecules of the title compound, C13H11N3O2S, are linked into chains of edge-fused rings by a combination of C—H⋯N and C—H⋯O hydrogen bonds, and these chains are linked into sheets by a combination of a C—H⋯π(arene) hydrogen bond and a second, rather weak, C—H⋯O hydrogen bond.

Comment

Sulfonyl­benzotriazole derivatives are versatile synthetic inter­mediates both as benzotriazol­yl donors (Katritzky et al., 2001[Katritzky, A. R., Kurz, T., Zhang, S., Voronkov, M. & Steel, P. J. (2001). Heterocycles, 55, 1703-1710.]) and as sulfon­yl donors (Katritzky et al., 2004[Katritzky, A. R., Rodríguez-García, V. & Fair, S. K. (2004). J. Org. Chem. 69, 1849-1852.]) because both have good leaving groups. The sulfonyl­benzotriazoles can be readily prepared from benzotriazole and sulfon­yl chlorides or from 1-chloro­benzotriazole and sulfonic acids. We report here the structure of 1-(4-methyl­phenyl­sulfon­yl)-1H-1,2,3-benzotriazole, (I)[link], which was obtained adventitiously in 54% yield when the addition of benzotriazole to the double bond in (4S,5R,6R)-diphenyl­meth­yl (E)-4,5,6,7-tetra­hydr­oxy-2-heptenoate was attempted in the presence of 4-toluene­sulfonic acid. The direct reaction between benzotriazole and 4-toluene­sulfonic acid in ethanol under reflux did not give any product and addition of diphenyl­methanol to such a mixture yielded only the reported 1-diphenyl­meth­yl-benzotriazole (Märky et al., 1979[Märky, M., Schmid, H. & Hansen, H.-J. (1979). Helv. Chim. Acta, 62, 2129-2153.]), suggesting that transesterification, via a sulfonic ester, is required to produce the title compound in this way.

[Scheme 1]

Within the mol­ecules of (I)[link], the bond distances (Table 1[link]) show some evidence for modest bond fixation in the carbocyclic ring of the benzotriazole unit. Thus, the bonds C4—C5 and C6—C7 are significantly shorter than the bonds C3A—C4, C5—C6 and C7—C7A; the cross-ring bond C3A—C7A, expected to be the longest bond in this ring is, in fact, one of the shorter bonds. By contrast with this ring, the C—C distances in the benzenesulfonyl ring span the rather narrow range 1.386 (2)–1.395 (2) Å. There is clear bond fixation within the triazole ring. The exocyclic angles at the planar-configuration atom N1 differ by ca 10° and the O—S—O angle in the sulfon­yl group is, as usually found in such fragments, much larger than the ideal tetra­hedral value.

The mol­ecules of (I)[link] are linked by one C—H⋯N and one C—H⋯O hydrogen bond (Table 2[link]) into chains of edge-fused rings. Ar­yl atom C16 in the mol­ecule at (x, y, z) acts as hydrogen-bond donor to atom N2 in the mol­ecule at (1 − x, 1 − y, 1 − z), so generating a centrosymmetric R22(8) motif (Bernstein et al., 1995[Bernstein, J. Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); in addition, atom C12 at (x, y, z) acts as donor to atom O1 in the mol­ecule at (−x, −y, −z), thus generating a second centrosymmetric R22(8) motif. The combination of these two motifs then generates a chain of edge-fused rings running parallel to the [111] direction with the rings built from C—H⋯N hydrogen bonds centred at (n + 0.5, n + 0.5, n + 0.5) (n = zero or integer) and the rings built from C—H⋯O hydrogen bonds centred at (n, n, n) (n = zero or integer) (Fig. 2[link]).

Two further, but weaker, hydrogen bonds (Table 2[link]) act co-operatively to link the [111] chains into sheets. Benzotriazole atoms C6 and C4 in the mol­ecule at (x, y, z) act as hydrogen-bond donors, respectively, to atom O2 in the mol­ecule at (x, −1 + y, z) and to ar­yl ring C11–C16 in the mol­ecule at (1 − x, −y, 1 − z), both of which lie in a [111] chain offset from the reference chain by a unit translation along [010] (Fig. 3[link]). Propagation by inversion of these hydrogen bonds then links [111] chains into (10[\overline{1}]) sheets, but there are no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain along [111] containing two types of centrosymmetric R22(8) ring. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.
[Figure 3]
Figure 3
Stereoscopic view of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded chain along [010]. For the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

Experimental

A solution of (4S,5R,6R)-diphenyl­meth­yl (E)-4,5,6,7-tetra­hydr­oxy-2-heptenoate (0.15 g, 0.418 mmol), benzotriazole (0.05 g, 0.4 mmol) and 4-toluene­sulfonic acid monohydrate (0.078 g, 0.41 mmol) in ethanol (20 ml) was heated under reflux for 45 min. The reaction mixture was cooled and then neutralized with saturated aqueous sodium carbonate solution; this neutralized mixture was then extracted with dieth­yl ether (2 × 10 ml). The organic extract was dried with sodium sulfate and the solvent was removed under reduced pressure to give the title compound in 54% yield (m.p. 407–409 K). Crystals suitable for single-crystal X-ray diffraction were grown from a solution in dieth­yl ether.

Crystal data
  • C13H11N3O2S

  • Mr = 273.31

  • Triclinic, [P \overline 1]

  • a = 7.4211 (3) Å

  • b = 9.2176 (3) Å

  • c = 9.7823 (3) Å

  • α = 98.614 (3)°

  • β = 104.249 (2)°

  • γ = 102.684 (3)°

  • V = 617.87 (4) Å3

  • Z = 2

  • Dx = 1.469 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2825 reflections

  • θ = 4.1–27.5°

  • μ = 0.26 mm−1

  • T = 120 (2) K

  • Needle, colourless

  • 0.42 × 0.18 × 0.13 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.931, Tmax = 0.967

  • 14360 measured reflections

  • 2825 independent reflections

  • 2398 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.5°

  • h = −9 → 9

  • k = −11 → 11

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.05

  • 2825 reflections

  • 173 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0482P)2 + 0.2971P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

N1—N2 1.390 (2)
N2—N3 1.288 (2)
N3—C3A 1.387 (2)
C3A—C7A 1.394 (2)
C7A—N1 1.3821 (19)
C3A—C4 1.402 (2)
C4—C5 1.375 (2)
C5—C6 1.407 (2)
C6—C7 1.382 (2)
C7—C7A 1.396 (2)
N2—N1—S1 119.98 (10)
C7A—N1—S1 129.49 (11)
N2—N1—C7A 109.89 (12)
O1—S1—O2 121.89 (7)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯Cg1i 0.95 2.84 3.641 (2) 143
C6—H6⋯O2ii 0.95 2.59 3.247 (2) 127
C12—H12⋯O1iii 0.95 2.48 3.244 (2) 137
C16—H16⋯N2iv 0.95 2.62 3.299 (2) 129
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y-1, z; (iii) -x, -y, -z; (iv) -x+1, -y+1, -z+1.

All H atoms were located from difference maps and then treated as riding atoms, with C—H = 0.95 (aromatic) or 0.98 Å (meth­yl) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(meth­yl C).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL 97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL 97 and PRPKAPPA (Ferguson, 1999).

1-(4-Methylphenylsulfonyl)-1H-1,2,3-benzotriazole top
Crystal data top
C13H11N3O2SZ = 2
Mr = 273.31F(000) = 284
Triclinic, P1Dx = 1.469 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4211 (3) ÅCell parameters from 2825 reflections
b = 9.2176 (3) Åθ = 4.1–27.5°
c = 9.7823 (3) ŵ = 0.26 mm1
α = 98.614 (3)°T = 120 K
β = 104.249 (2)°Needle, colourless
γ = 102.684 (3)°0.42 × 0.18 × 0.13 mm
V = 617.87 (4) Å3
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
2825 independent reflections
Radiation source: Bruker–Nonius FR91 rotating anode2398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 4.1°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.931, Tmax = 0.967l = 1212
14360 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.2971P]
where P = (Fo2 + 2Fc2)/3
2825 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.48 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.11158 (5)0.24195 (4)0.27755 (4)0.01978 (12)
O10.04859 (16)0.12509 (12)0.18262 (12)0.0239 (3)
O20.09049 (17)0.38368 (12)0.34172 (13)0.0271 (3)
N10.19364 (18)0.16134 (14)0.41598 (13)0.0192 (3)
N20.30931 (19)0.25264 (15)0.54843 (14)0.0233 (3)
N30.36838 (19)0.16548 (15)0.63068 (14)0.0237 (3)
C3A0.2980 (2)0.01522 (18)0.55519 (16)0.0203 (3)
C40.3228 (2)0.11862 (19)0.59964 (17)0.0243 (3)
C50.2353 (2)0.25318 (19)0.49941 (18)0.0255 (3)
C60.1253 (2)0.25627 (18)0.35900 (18)0.0245 (3)
C70.0970 (2)0.12581 (17)0.31394 (17)0.0219 (3)
C7A0.1871 (2)0.01037 (16)0.41622 (16)0.0181 (3)
C110.2978 (2)0.27397 (17)0.19644 (16)0.0195 (3)
C120.2910 (2)0.16746 (19)0.07693 (17)0.0247 (3)
C130.4358 (3)0.1974 (2)0.01053 (17)0.0283 (4)
C140.5868 (2)0.3303 (2)0.06199 (17)0.0262 (4)
C150.5907 (2)0.43337 (19)0.18311 (18)0.0270 (4)
C160.4467 (2)0.40703 (17)0.25090 (17)0.0233 (3)
C1410.7412 (3)0.3617 (2)0.0133 (2)0.0364 (4)
H40.39680.11640.69460.029*
H50.24930.34620.52560.031*
H60.06850.35160.29270.029*
H70.02110.12860.21950.026*
H120.18920.07620.04170.030*
H130.43210.12600.07160.034*
H14A0.81190.46970.01730.055*
H14B0.68140.33630.11800.055*
H14C0.83070.29950.01200.055*
H150.69410.52350.22000.032*
H160.44990.47850.33280.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0225 (2)0.0162 (2)0.0206 (2)0.00567 (15)0.00558 (15)0.00415 (14)
O10.0221 (5)0.0214 (6)0.0243 (6)0.0029 (4)0.0020 (5)0.0053 (4)
O20.0341 (6)0.0182 (6)0.0333 (6)0.0105 (5)0.0144 (5)0.0055 (5)
N10.0224 (6)0.0159 (6)0.0167 (6)0.0034 (5)0.0042 (5)0.0007 (5)
N20.0249 (7)0.0224 (7)0.0180 (6)0.0025 (5)0.0052 (5)0.0019 (5)
N30.0235 (7)0.0278 (7)0.0176 (6)0.0046 (6)0.0056 (5)0.0020 (5)
C3A0.0181 (7)0.0266 (8)0.0168 (7)0.0057 (6)0.0072 (6)0.0035 (6)
C40.0226 (8)0.0338 (9)0.0217 (8)0.0115 (7)0.0087 (6)0.0121 (7)
C50.0270 (8)0.0256 (8)0.0313 (9)0.0117 (7)0.0130 (7)0.0135 (7)
C60.0258 (8)0.0187 (7)0.0291 (9)0.0057 (6)0.0091 (7)0.0043 (6)
C70.0242 (8)0.0200 (8)0.0192 (7)0.0052 (6)0.0039 (6)0.0024 (6)
C7A0.0189 (7)0.0177 (7)0.0191 (7)0.0049 (6)0.0074 (6)0.0047 (6)
C110.0224 (7)0.0196 (7)0.0171 (7)0.0062 (6)0.0049 (6)0.0059 (6)
C120.0279 (8)0.0238 (8)0.0184 (7)0.0052 (6)0.0026 (6)0.0021 (6)
C130.0335 (9)0.0335 (9)0.0180 (8)0.0117 (7)0.0068 (7)0.0031 (7)
C140.0265 (8)0.0342 (9)0.0217 (8)0.0111 (7)0.0072 (7)0.0127 (7)
C150.0257 (8)0.0261 (8)0.0278 (9)0.0036 (7)0.0063 (7)0.0087 (7)
C160.0276 (8)0.0189 (7)0.0219 (8)0.0051 (6)0.0056 (6)0.0041 (6)
C1410.0321 (9)0.0555 (12)0.0311 (9)0.0170 (9)0.0152 (8)0.0198 (9)
Geometric parameters (Å, º) top
N1—N21.390 (2)C12—C131.386 (2)
N2—N31.288 (2)C12—H120.95
N3—C3A1.387 (2)C13—C141.395 (2)
C3A—C7A1.394 (2)C13—H130.95
C7A—N11.3821 (19)C14—C151.393 (2)
C3A—C41.402 (2)C14—C1411.507 (2)
C4—C51.375 (2)C141—H14A0.98
C5—C61.407 (2)C141—H14B0.98
C6—C71.382 (2)C141—H14C0.98
C7—C7A1.396 (2)C15—C161.387 (2)
N1—S11.6885 (13)C15—H150.95
S1—O21.4205 (11)C16—H160.95
S1—O11.4248 (11)C4—H40.95
S1—C111.7486 (15)C5—H50.95
C11—C161.389 (2)C6—H60.95
C11—C121.392 (2)C7—H70.95
N2—N1—S1119.98 (10)C16—C15—C14121.32 (15)
C7A—N1—S1129.49 (11)C16—C15—H15119.3
N2—N1—C7A109.89 (12)C14—C15—H15119.3
O1—S1—O2121.89 (7)C15—C16—C11118.58 (15)
O2—S1—N1105.81 (7)C15—C16—H16120.7
O1—S1—N1103.96 (6)C11—C16—H16120.7
O2—S1—C11109.56 (7)N3—N2—N1108.15 (12)
O1—S1—C11109.29 (7)N2—N3—C3A109.35 (13)
N1—S1—C11104.84 (7)N3—C3A—C7A108.99 (13)
C16—C11—C12121.61 (15)N3—C3A—C4129.97 (14)
C16—C11—S1119.06 (12)C7A—C3A—C4121.03 (14)
C12—C11—S1119.31 (12)C5—C4—C3A116.89 (14)
C13—C12—C11118.56 (15)C5—C4—H4121.6
C13—C12—H12120.7C3A—C4—H4121.6
C11—C12—H12120.7C4—C5—C6121.48 (15)
C12—C13—C14121.27 (15)C4—C5—H5119.3
C12—C13—H13119.4C6—C5—H5119.3
C14—C13—H13119.4C7—C6—C5122.44 (15)
C15—C14—C13118.65 (15)C7—C6—H6118.8
C15—C14—C141120.97 (16)C5—C6—H6118.8
C13—C14—C141120.37 (16)C6—C7—C7A115.69 (14)
C14—C141—H14A109.5C6—C7—H7122.2
C14—C141—H14B109.5C7A—C7—H7122.2
H14A—C141—H14B109.5N1—C7A—C3A103.57 (13)
C14—C141—H14C109.5N1—C7A—C7133.95 (14)
H14A—C141—H14C109.5C3A—C7A—C7122.46 (14)
H14B—C141—H14C109.5
C7A—N1—S1—O2159.42 (13)S1—C11—C16—C15178.13 (12)
N2—N1—S1—O230.75 (13)C7A—N1—N2—N32.03 (16)
C7A—N1—S1—O129.92 (15)S1—N1—N2—N3173.70 (10)
N2—N1—S1—O1160.25 (11)N1—N2—N3—C3A1.29 (16)
C7A—N1—S1—C1184.79 (14)N2—N3—C3A—C7A0.12 (17)
N2—N1—S1—C1185.03 (12)N2—N3—C3A—C4179.63 (15)
O2—S1—C11—C1627.59 (14)N3—C3A—C4—C5179.67 (15)
O1—S1—C11—C16163.52 (12)C7A—C3A—C4—C50.9 (2)
N1—S1—C11—C1685.56 (13)C3A—C4—C5—C60.2 (2)
O2—S1—C11—C12150.89 (12)C4—C5—C6—C70.7 (2)
O1—S1—C11—C1214.97 (14)C5—C6—C7—C7A0.9 (2)
N1—S1—C11—C1295.96 (13)N2—N1—C7A—C3A1.86 (16)
C16—C11—C12—C130.9 (2)S1—N1—C7A—C3A172.49 (11)
S1—C11—C12—C13177.53 (12)N2—N1—C7A—C7179.17 (16)
C11—C12—C13—C140.5 (2)S1—N1—C7A—C78.5 (3)
C12—C13—C14—C150.4 (3)N3—C3A—C7A—N11.08 (16)
C12—C13—C14—C141179.08 (15)C4—C3A—C7A—N1178.48 (13)
C13—C14—C15—C161.0 (2)N3—C3A—C7A—C7179.80 (13)
C141—C14—C15—C16178.45 (15)C4—C3A—C7A—C70.6 (2)
C14—C15—C16—C110.7 (2)C6—C7—C7A—N1179.09 (16)
C12—C11—C16—C150.3 (2)C6—C7—C7A—C3A0.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cg1i0.952.843.641 (2)143
C6—H6···O2ii0.952.593.247 (2)127
C12—H12···O1iii0.952.483.244 (2)137
C16—H16···N2iv0.952.623.299 (2)129
Symmetry codes: (i) x+1, y, z+1; (ii) x, y1, z; (iii) x, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England JC and MN thank the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) and the Universidad de Jaén for financial support. RR thanks FUNDACIÓN CAROLINA for a fellowship grant.

References

First citationBernstein, J. Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKatritzky, A. R., Kurz, T., Zhang, S., Voronkov, M. & Steel, P. J. (2001). Heterocycles, 55, 1703–1710.  CAS Google Scholar
First citationKatritzky, A. R., Rodríguez-García, V. & Fair, S. K. (2004). J. Org. Chem. 69, 1849–1852.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMärky, M., Schmid, H. & Hansen, H.-J. (1979). Helv. Chim. Acta, 62, 2129–2153.  CrossRef Web of Science Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds