organic compounds
1,2:3,4-Di-O-isopropylidene-α-D-tagatofuranose
aDepartment of Chemical Crystallography, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, bDepartment of Organic Chemistry, Chemical Research Laboratory, Oxford University, Mansfield Road, Oxford OX1 3TA, England, cArla Foods Ingredients, Viby J, DK-8260 Denmark, and dGlycobiology Institute, Department of Biochemistry, Oxford University, South Parks Road, Oxford OX1 3QU, England
*Correspondence e-mail: david.watkin@chem.ox.ac.uk
The 12H20O6, establishes the stereochemistry of the anomeric spiroacetal as 1,2:3,4-di-O-isopropylidene-α-D-tagatofuranose. Molecules are linked by O—H⋯O hydrogen bonds [O⋯O = 2.862 (2) Å] to form chains running parallel to the b axis.
of diacetone tagatose, CComment
). D-Tagatose, (1), is the first example for more than 50 years of a sugar that has changed its status from rare ($5,000 per lb) to common ($2.5 per lb). The driving force for the production of large quantities of hitherto scarce is their potential as enhanced dietary targets. D-Tagatose is a healthy sweetener prepared cheaply from galactose (Beadle et al., 1992). Its use as a dietary substitute in soft drinks and ready-to-eat cereals (Skytte, 2002) is rapidly increasing. So far, there has been little exploitation of tagatose as a chiral building block, although recently the easy preparation of branched sugar by the Kiliani cyanohydrin reaction on D-tagatose has been reported (Soengas, Izumori et al., 2005); the structures of the diacetonide products could only be firmly established by X-ray crystallographic analysis (Harding et al., 2005; Shallard-Brown et al., 2004). For a sugar to be used as a chiral starting material in organic synthesis, it must not only be cheap but also efficiently protected (Bols, 1996).
provide a rich source of chirons (Lichtenthaler & Peters, 2004The first reports of the protection of tagatose, (1), with acetone (Reichstein & Bosshard, 1934; Barnett & Reichstein, 1937) gave no indication of the chemistry at the anomeric position of the diacetonide, (3). Otherwise, compound (3) has only been prepared by lengthy synthesis from D-fructose (Cubero et al., 1988); the of (3) was derived from a multi-step procedure from L-sorbose (Furneaux et al., 1993). No previous publication has provided any evidence for the anomeric configuration of the diacetonide, (3). In recent studies, treatment of tagatose, (1), which exists in both its crystalline form and in solution in the pyranose form, (2), with acetone produces high yields of crystalline (3) (Soengas, Wormald et al., 2005). The present report of the of (3) unequivocally establishes the anomeric configuration of the diacetonide, (3), as the β-form.
The b axis (Table 1 and Fig. 2). There are no other short intermolecular contacts. Atoms C17 and C18 refined to have very anisotropic displacement parameters. A difference electron-density map phased on all the structure except for atoms C17 and C18 showed only a single elongated peak at these sites, indicating that the anisotropic displacement parameter model would be appropriate. The large anisotropic displacement parameters for these atoms are due to disorder of these atoms arising from out-of-plane displacements of atoms in the adjacent ring, and in particular of O15. A single-temperature experiment cannot resolve static from dynamic disorder.
of (3) consists of O—H⋯O hydrogen-bonded chains running parallel to theExperimental
The title material (Soengas, Wormald et al., 2005) was crystallized from petroleum ether (333–353 K).
Crystal data
|
Data collection
Refinement
|
In the absence of significant Uiso(H) in the range 1.2–1.5 times Ueq of the parent atom], after which they were refined with riding constraints.
Friedel pairs were merged and the was assigned from known chiral centres. The relatively large ratio of minimum to maximum corrections applied in the multi-scan process (1:1.16) is due to the prismatic shape of the crystal. The H atoms were all located in a difference map, but those attached to C atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on their bond lengths and angles to regularize their geometry (C—H distances in the range 0.93–0.98 Å and O—H distances of 0.82 Å) and displacement parameters [Data collection: COLLECT (Nonius, 2001); cell DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS
Supporting information
https://doi.org/10.1107/S1600536805025092/lh6485sup1.cif
contains datablocks global, 3. DOI:Structure factors: contains datablock 3. DOI: https://doi.org/10.1107/S1600536805025092/lh64853sup2.hkl
Data collection: COLLECT (Nonius, 2001); cell
DENZO/SCALEPACK; data reduction: DENZO/SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.C12H20O6 | F(000) = 560 |
Mr = 260.29 | Dx = 1.285 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 1961 reflections |
a = 5.8241 (1) Å | θ = 5–30° |
b = 8.4972 (2) Å | µ = 0.10 mm−1 |
c = 27.1899 (7) Å | T = 190 K |
V = 1345.59 (5) Å3 | Prism, colourless |
Z = 4 | 0.60 × 0.20 × 0.20 mm |
Nonius KappaCCD area-detector diffractometer | 1980 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.027 |
ω scans | θmax = 30.0°, θmin = 5.1° |
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −8→8 |
Tmin = 0.84, Tmax = 0.98 | k = −11→11 |
7561 measured reflections | l = −37→37 |
2239 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.036 | H-atom parameters constrained |
wR(F2) = 0.087 | w = 1/[σ2(F2) + ( 0.04P)2 + 0.29P] where P = (max(Fo2,0) + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
2239 reflections | Δρmax = 0.31 e Å−3 |
163 parameters | Δρmin = −0.18 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8104 (3) | 0.67374 (17) | 0.62049 (5) | 0.0221 | |
C2 | 0.5871 (3) | 0.71970 (17) | 0.64639 (5) | 0.0253 | |
C3 | 0.5892 (3) | 0.90127 (17) | 0.64648 (5) | 0.0264 | |
C4 | 0.8065 (3) | 0.94288 (17) | 0.61795 (5) | 0.0256 | |
O5 | 0.95355 (19) | 0.80726 (12) | 0.62382 (4) | 0.0237 | |
C6 | 0.9294 (4) | 1.08802 (18) | 0.63558 (6) | 0.0348 | |
O7 | 1.1138 (3) | 1.12609 (14) | 0.60326 (5) | 0.0445 | |
O8 | 0.6151 (2) | 0.94136 (13) | 0.69726 (4) | 0.0291 | |
C9 | 0.5377 (3) | 0.81064 (19) | 0.72565 (5) | 0.0249 | |
O10 | 0.6022 (2) | 0.67635 (12) | 0.69686 (4) | 0.0308 | |
C11 | 0.2794 (3) | 0.8147 (2) | 0.73296 (6) | 0.0324 | |
C12 | 0.6658 (3) | 0.8066 (2) | 0.77381 (6) | 0.0339 | |
O13 | 0.7586 (2) | 0.63541 (13) | 0.57085 (4) | 0.0278 | |
C14 | 0.9287 (3) | 0.52851 (19) | 0.55314 (6) | 0.0331 | |
O15 | 1.0252 (3) | 0.45663 (14) | 0.59641 (4) | 0.0413 | |
C16 | 0.9356 (3) | 0.52887 (17) | 0.63902 (6) | 0.0284 | |
C17 | 1.1201 (4) | 0.6157 (3) | 0.52718 (8) | 0.0539 | |
C18 | 0.8104 (6) | 0.4066 (3) | 0.52222 (10) | 0.0721 | |
H21 | 0.4514 | 0.6744 | 0.6302 | 0.0359* | |
H31 | 0.4509 | 0.9496 | 0.6316 | 0.0365* | |
H41 | 0.7674 | 0.9559 | 0.5835 | 0.0352* | |
H61 | 0.8183 | 1.1751 | 0.6360 | 0.0488* | |
H62 | 0.9859 | 1.0683 | 0.6693 | 0.0490* | |
H111 | 0.2308 | 0.7218 | 0.7514 | 0.0568* | |
H112 | 0.2002 | 0.8174 | 0.7024 | 0.0569* | |
H113 | 0.2387 | 0.9082 | 0.7525 | 0.0565* | |
H121 | 0.6235 | 0.7138 | 0.7913 | 0.0598* | |
H122 | 0.8263 | 0.8083 | 0.7675 | 0.0608* | |
H123 | 0.6238 | 0.8987 | 0.7933 | 0.0594* | |
H161 | 0.8265 | 0.4586 | 0.6557 | 0.0409* | |
H162 | 1.0590 | 0.5539 | 0.6614 | 0.0421* | |
H181 | 0.9248 | 0.3339 | 0.5111 | 0.1291* | |
H182 | 0.7341 | 0.4578 | 0.4946 | 0.1288* | |
H183 | 0.6983 | 0.3525 | 0.5434 | 0.1289* | |
H15 | 1.1118 | 1.2217 | 0.6016 | 0.0793* | |
H171 | 1.2372 | 0.5416 | 0.5168 | 0.0958* | |
H172 | 1.0592 | 0.6686 | 0.4986 | 0.0958* | |
H173 | 1.1836 | 0.6950 | 0.5500 | 0.0968* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0280 (7) | 0.0193 (6) | 0.0190 (6) | 0.0001 (6) | −0.0002 (6) | −0.0015 (5) |
C2 | 0.0276 (7) | 0.0233 (6) | 0.0250 (6) | −0.0002 (6) | 0.0016 (7) | −0.0024 (5) |
C3 | 0.0303 (8) | 0.0236 (7) | 0.0252 (6) | 0.0064 (7) | −0.0007 (7) | −0.0004 (5) |
C4 | 0.0340 (8) | 0.0193 (6) | 0.0236 (6) | 0.0055 (7) | 0.0010 (7) | 0.0023 (5) |
O5 | 0.0268 (5) | 0.0165 (4) | 0.0279 (5) | 0.0014 (5) | −0.0001 (4) | −0.0005 (4) |
C6 | 0.0465 (11) | 0.0196 (6) | 0.0382 (8) | −0.0008 (8) | 0.0129 (9) | 0.0003 (6) |
O7 | 0.0510 (8) | 0.0227 (5) | 0.0599 (8) | 0.0018 (6) | 0.0241 (7) | 0.0059 (6) |
O8 | 0.0398 (6) | 0.0226 (5) | 0.0248 (5) | −0.0013 (5) | 0.0066 (5) | −0.0033 (4) |
C9 | 0.0265 (7) | 0.0238 (6) | 0.0243 (6) | 0.0003 (7) | 0.0029 (6) | −0.0024 (6) |
O10 | 0.0449 (7) | 0.0229 (5) | 0.0245 (5) | 0.0028 (6) | 0.0091 (5) | −0.0001 (4) |
C11 | 0.0260 (8) | 0.0407 (9) | 0.0305 (7) | −0.0009 (8) | 0.0016 (6) | −0.0045 (7) |
C12 | 0.0273 (7) | 0.0457 (9) | 0.0286 (7) | −0.0001 (8) | −0.0010 (6) | 0.0004 (7) |
O13 | 0.0340 (6) | 0.0280 (5) | 0.0214 (5) | 0.0051 (5) | −0.0024 (5) | −0.0055 (4) |
C14 | 0.0438 (10) | 0.0302 (8) | 0.0252 (7) | 0.0105 (8) | 0.0017 (7) | −0.0039 (6) |
O15 | 0.0630 (9) | 0.0325 (6) | 0.0284 (5) | 0.0227 (7) | 0.0122 (6) | 0.0056 (5) |
C16 | 0.0400 (9) | 0.0198 (6) | 0.0252 (6) | 0.0057 (7) | −0.0009 (7) | −0.0003 (5) |
C17 | 0.0534 (12) | 0.0664 (14) | 0.0420 (10) | 0.0165 (12) | 0.0199 (10) | 0.0190 (10) |
C18 | 0.0824 (19) | 0.0585 (14) | 0.0755 (16) | 0.0166 (15) | −0.0150 (15) | −0.0442 (13) |
C1—C2 | 1.530 (2) | C9—C12 | 1.507 (2) |
C1—O5 | 1.4108 (18) | C11—H111 | 0.978 |
C1—O13 | 1.4209 (16) | C11—H112 | 0.951 |
C1—C16 | 1.517 (2) | C11—H113 | 0.985 |
C2—C3 | 1.543 (2) | C12—H121 | 0.953 |
C2—O10 | 1.4235 (18) | C12—H122 | 0.950 |
C2—H21 | 0.983 | C12—H123 | 0.977 |
C3—C4 | 1.526 (2) | O13—C14 | 1.428 (2) |
C3—O8 | 1.4302 (18) | C14—O15 | 1.4399 (19) |
C3—H31 | 0.990 | C14—C17 | 1.513 (3) |
C4—O5 | 1.4448 (18) | C14—C18 | 1.501 (3) |
C4—C6 | 1.505 (2) | O15—C16 | 1.4110 (19) |
C4—H41 | 0.969 | C16—H161 | 0.983 |
C6—O7 | 1.425 (2) | C16—H162 | 0.966 |
C6—H61 | 0.983 | C17—H171 | 0.970 |
C6—H62 | 0.989 | C17—H172 | 0.964 |
O7—H15 | 0.814 | C17—H173 | 0.988 |
O8—C9 | 1.4256 (19) | C18—H181 | 0.957 |
C9—O10 | 1.4339 (18) | C18—H182 | 0.975 |
C9—C11 | 1.518 (2) | C18—H183 | 0.984 |
C2—C1—O5 | 105.52 (11) | C9—O10—C2 | 107.71 (11) |
C2—C1—O13 | 108.37 (13) | C9—C11—H111 | 109.6 |
O5—C1—O13 | 111.77 (11) | C9—C11—H112 | 111.5 |
C2—C1—C16 | 117.58 (13) | H111—C11—H112 | 109.2 |
O5—C1—C16 | 110.31 (13) | C9—C11—H113 | 109.1 |
O13—C1—C16 | 103.39 (11) | H111—C11—H113 | 107.7 |
C1—C2—C3 | 104.43 (14) | H112—C11—H113 | 109.6 |
C1—C2—O10 | 108.97 (13) | C9—C12—H121 | 109.0 |
C3—C2—O10 | 104.88 (12) | C9—C12—H122 | 109.2 |
C1—C2—H21 | 112.1 | H121—C12—H122 | 111.0 |
C3—C2—H21 | 113.5 | C9—C12—H123 | 109.2 |
O10—C2—H21 | 112.4 | H121—C12—H123 | 109.1 |
C2—C3—C4 | 103.75 (14) | H122—C12—H123 | 109.4 |
C2—C3—O8 | 103.92 (12) | C1—O13—C14 | 108.59 (12) |
C4—C3—O8 | 110.39 (14) | O13—C14—O15 | 105.38 (11) |
C2—C3—H31 | 114.1 | O13—C14—C17 | 110.92 (14) |
C4—C3—H31 | 111.7 | O15—C14—C17 | 107.53 (16) |
O8—C3—H31 | 112.4 | O13—C14—C18 | 108.04 (17) |
C3—C4—O5 | 104.52 (11) | O15—C14—C18 | 110.12 (17) |
C3—C4—C6 | 115.00 (13) | C17—C14—C18 | 114.48 (19) |
O5—C4—C6 | 109.66 (14) | C14—O15—C16 | 110.00 (12) |
C3—C4—H41 | 108.8 | C1—C16—O15 | 104.95 (12) |
O5—C4—H41 | 109.7 | C1—C16—H161 | 109.6 |
C6—C4—H41 | 109.0 | O15—C16—H161 | 110.7 |
C4—O5—C1 | 106.49 (11) | C1—C16—H162 | 112.9 |
C4—C6—O7 | 110.38 (13) | O15—C16—H162 | 109.8 |
C4—C6—H61 | 107.9 | H161—C16—H162 | 108.9 |
O7—C6—H61 | 109.4 | C14—C17—H171 | 109.6 |
C4—C6—H62 | 108.4 | C14—C17—H172 | 109.4 |
O7—C6—H62 | 111.1 | H171—C17—H172 | 109.1 |
H61—C6—H62 | 109.6 | C14—C17—H173 | 108.5 |
C6—O7—H15 | 104.5 | H171—C17—H173 | 111.2 |
C3—O8—C9 | 107.69 (11) | H172—C17—H173 | 109.0 |
O8—C9—O10 | 103.99 (10) | C14—C18—H181 | 107.6 |
O8—C9—C11 | 111.48 (15) | C14—C18—H182 | 109.4 |
O10—C9—C11 | 110.43 (15) | H181—C18—H182 | 111.3 |
O8—C9—C12 | 109.38 (13) | C14—C18—H183 | 107.4 |
O10—C9—C12 | 109.06 (14) | H181—C18—H183 | 110.2 |
C11—C9—C12 | 112.17 (13) | H182—C18—H183 | 110.9 |
D—H···A | D—H | H···A | D···A | D—H···A |
O7—H15···O15i | 0.81 | 2.06 | 2.862 (2) | 167 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
Financial support (RS) provided by the Xunta de Galicia is gratefully acknowledged.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Barnett, T. & Reichstein, T. (1937). Helv. Chim. Acta, 20, 1529–1536. CrossRef CAS Google Scholar
Beadle, J. R., Saunders, J. P. & Wajda, T. J. (1992). US Patent 5078796. Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, C. K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Bols, M. (1996). Carbohydrate Building Blocks. New York: John Wiley & Sons. Google Scholar
Cubero, I., Lopez-Espinosa, M. T. P. & Osorio, P. L. T. (1988). An. Quim. 84, 340–343. Google Scholar
Furneaux, R. H., Tyler, P. C. & Whitehouse, L. A. (1993). Tetrahedron Lett. 34, 3609–3612. CrossRef CAS Web of Science Google Scholar
Harding, C. C., Watkin, D. J., Cowley, A. R., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2005). Acta Cryst. E61, o250–o252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lichtenthaler, F. W. & Peters, S. (2004). C. R. Chim. 7, 65–90. Web of Science CrossRef CAS Google Scholar
Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Reichstein, T. & Bosshard, W. (1934). Helv. Chim. Acta, 17, 753–761. CrossRef CAS Google Scholar
Shallard-Brown, H. A., Harding, C. C., Watkin, D. J., Soengas, R., Skytte, U. P. & Fleet, G. W. J. (2004). Acta Cryst. E60, o2163–o2164. Web of Science CSD CrossRef IUCr Journals Google Scholar
Soengas, R., Izumori, K., Simone, M. I., Watkin, D. J., Skytte, U. P., Soetaert, W. & Fleet, G. W. J. (2005). Tetrahedron Lett. 46, 5755–5759. Web of Science CrossRef CAS Google Scholar
Soengas, R., Wormald, M. R., Dwek, R. A., Izumori, K., Watkin, D. J., Skytte, U. P. & Fleet, G. W. J. (2005). In preparation. Google Scholar
Skytte, U. P. (2002). Cereal Foods World, 47, 224-227. Google Scholar
Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.