metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

mer-Tris(1H-benzotriazole-κN)(pyridine-2,6-di­carboxyl­ato-κ3N,O,O′)nickel(II)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Manonmaniam Sundaranar University, Tirunelveli 627 012, Tamilnadu, India, and bDepartment of Chemistry, University of Glasgow, Glasgow G12 8QQ, Scotland
*Correspondence e-mail: ken@chem.gla.ac.uk

(Received 17 June 2005; accepted 2 August 2005; online 12 August 2005)

The title complex, [Ni(C7H3NO4)(C6H5N3)3], has been prepared hydro­thermally. Three neutral monodentate benzotriazole ligands occupy meridional sites about the octa­hedrally coordinated nickel(II) cation. The remaining sites are occupied by the N and two O atoms of a tridentate pyridine-2,6-dicarboxyl­ate dianion.

Comment

As part of our work on transition metal salts of pyridine-2,6-dicarboxylic acid (dipicolinic acid, dipicH2) (Kumaresan et al., 2004[Kumaresan, S., Ramadevi, P. & Mobin, S. M. (2004). Indian J. Chem. A, 43, 1635-1638.]; Kumaresan & Ramadevi, 2005[Kumaresan, S. & Ramadevi, P. (2005). Indian J. Chem. A, 44, 299-302.]), we prepared the title compound, (I)[link], from nickel(II) acetate, dipicolinic acid and benzotriazole (see Experimental).

[Scheme 1]

The mononuclear complex contains an octa­hedrally coordinated nickel(II) cation. One N and two O atoms of a planar dipic2− dianion occupy three coordination sites and the remaining three meridional sites are occupied by donor N atoms of identically coordinated benzotriazole ligands (Fig. 1[link]). The mol­ecule can be viewed as a four-bladed paddle wheel, with the Ni—O1 bond as axis and the four ligands, each nearly planar, as paddles.

The Cambridge Structural Database (CSD, Version 5.26, November 2004 update; Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]) contains results for nine complexes in which a nickel(II) cation is coordinated in a κ3-N,O,O′ fashion by a dipic2− dianion. These compounds display Ni—N bond lengths in the narrow range 1.952–1.979 Å, more variable Ni—O distances of 2.092–2.182 Å and O—Ni—O angles of 154.4–156.5°. In the title complex (Table 1[link]), the only non-typical feature of the Ni–dipic bonding is the Ni—N1 distance [1.992 (2) Å], which falls just outside the expected range. The difference in length between the Ni—O1 and Ni—O3 bonds of 0.068 (2) Å is not unusual. Here it is accompanied by differences in the conformations of the two chelate rings formed by the dipic2− ligand. Both rings are envelopes with Ni at the flap; the N1—C5—C7—O3—Ni ring is the more puckered, with endocyclic torsion angles about Ni—O3 and Ni—N1 of −4.7 (1) and 4.8 (1)°, respectively. The corresponding values for the N1—C1—C6—O1—Ni ring are only 1.3 (1) and −1.3 (1)°, respectively. We also note that the structurally characterized examples of nickel(II) bonded to neutral dipicH2 and to monanionic dipicH have Ni—N and Ni—O bond lengths which fall in similar ranges to those found in Ni–dipic2− complexes (Zhang et al., 2003[Zhang, C.-X., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Zhao, B. (2003). Transition Met. Chem. 28, 621-625.]; Nathan & Mai, 2000[Nathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509-513.]).

Each benzotriazole ligand in (I)[link] binds to the metal atom through a single unprotonated N atom. This is by far the most common form of coordination of the benzotriazole mol­ecule to a metal, as a search of the CSD makes clear, but it has not previously been reported for nickel(II). However, a complex in which this ligand bridges two nickel(II) ions has been described (Meunier-Piret et al., 1976[Meunier-Piret, J., Piret, P., Putzeys, J.-P. & van Meerssche, M. (1976). Acta Cryst. B32, 714-717.]). The mutually trans Ni—N21 and Ni—N31 bonds of 2.088 (2) and 2.079 (2) Å, respectively, are significantly longer than the Ni—N11 distance of 2.049 (2) Å, suggesting that the triazole N atom exerts a stronger trans influence than pyridine N. Corresponding bond lengths in the three triazole ligands agree well with each other (Table 2[link]) and with values in benzotriazole ligands and free mol­ecules from the CSD. Evidently, coordination has little effect on the character of the N—N bonds or on the slight tendency to bond alternation in the C6 rings.

The mononuclear complexes are linked by N—H⋯O hydrogen bonds (Table 3[link]). All three benzotriazole N—H bonds act as donors, two to the free carboxyl­ate atoms O2 and O4, and one to the metal-coordinated atom O3 (Fig. 2[link]). This may explain the lengthening of Ni—O3 by 0.068 (2) Å relative to Ni—O1.

The atomic Uij values are moderately well reproduced by a TLS analysis (Schomaker & Trueblood, 1968[Schomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63-76.]): R2 = (ΣΔU2/ΣU2)[{1\over 2}] = 0.20. The worst discrepancy in the Hirshfeld (1976[Hirshfeld, F. L. (1976). Acta Cryst. A32, 239-244.]) rigid-bond test is ΔU = 0.004 (11) Å2 for C6—O1.

[Figure 1]
Figure 1
A view of the title mol­ecule, with the atom-numbering scheme and 20% probability displacement ellipsoids.
[Figure 2]
Figure 2
The unit-cell contents of (I)[link], viewed in projection down b. Dotted lines represent hydrogen bonds. H atoms have been omitted. Symmetry codes are as defined in Table 3[link].

Experimental

A mixture of [Ni(CH3CO2)2]·4H2O (31 mg), dipicolinic acid (20 mg), benzotriazole (24 mg) and water (2.5 ml) in a mole ratio of 1.03:1:1.68:1.15 was homogenized for 30 min. It was then sealed in a 23 ml polyfluoro­ethyl­ene-lined stainless steel bomb and kept at 423 K under autogenous pressure for 72 h. On cooling to room temperature at 10 K h−1, blue crystals of (I)[link] formed. These were collected by filtration, washed in de-ionized water and then in diethyl ether, and finally dried.

Crystal data
  • [Ni(C7H3NO4)(C6H5N3)3]

  • Mr = 581.2

  • Monoclinic, P 21 /c

  • a = 9.8964 (1) Å

  • b = 10.3253 (1) Å

  • c = 26.0261 (4) Å

  • β = 98.971 (1)°

  • V = 2626.90 (6) Å3

  • Z = 4

  • Dx = 1.47 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 15068 reflections

  • θ = 1–27°

  • μ = 0.79 mm−1

  • T = 100 K

  • Needle, blue

  • 0.56 × 0.18 × 0.18 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.])Tmin = 0.731, Tmax = 0.867

  • 35667 measured reflections

  • 6231 independent reflections

  • 5149 reflections with I > 2σ(I)

  • Rint = 0.061

  • θmax = 27.9°

  • h = −13 → 13

  • k = −13 → 12

  • l = −32 → 34

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.094

  • S = 1.06

  • 6231 reflections

  • 361 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0507P)2 + 1.0906P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Ni—N1 1.9922 (15)
Ni—N11 2.0489 (15)
Ni—N31 2.0788 (14)
Ni—N21 2.0879 (15)
Ni—O1 2.1124 (12)
Ni—O3 2.1802 (12)
O1—C6 1.265 (2)
O2—C6 1.245 (2)
O3—C7 1.270 (2)
O4—C7 1.246 (2)
C35—C36 1.375 (3)
N1—Ni—N11 177.23 (6)
N31—Ni—N21 173.43 (6)
O1—Ni—O3 154.82 (5)
O1—Ni—N11—N12 151.94 (13)
O1—Ni—N21—N22 149.03 (13)
O1—Ni—N31—N32 −15.81 (13)

Table 2
Comparison of selected ligand bond lengths (Å)

Ligand n = 1 n = 2 n = 3
Nn1—Nn2 1.310 (2) 1.311 (2) 1.318 (2)
Nn1—Cn1 1.373 (2) 1.379 (2) 1.379 (2)
Nn2—Nn3 1.334 (2) 1.339 (2) 1.336 (2)
Nn3—Cn2 1.361 (2) 1.360 (2) 1.355 (2)
Cn1—Cn2 1.393 (3) 1.395 (2) 1.395 (2)
Cn1—Cn6 1.406 (2) 1.408 (2) 1.407 (3)
Cn2—Cn3 1.404 (3) 1.404 (3) 1.403 (3)
Cn3—Cn4 1.369 (3) 1.369 (3) 1.373 (3)
Cn4—Cn5 1.413 (3) 1.412 (3) 1.417 (3)
Cn5—Cn6 1.375 (3) 1.379 (3) 1.375 (3)

Table 3
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N13—H13⋯O3i 0.86 1.96 2.7777 (19) 160
N23—H23⋯O4ii 0.86 1.88 2.6612 (18) 151
N33—H33⋯O2iii 0.86 1.78 2.617 (2) 165
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

The inter­pretation of the structure depends critically on the positioning of the H atoms and it is therefore important to note that all H atoms were unambiguously located in difference maps. In the final refinement, their positions were idealized geometrically and they then rode on their parent atoms, with C—H = 0.93 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C or N).

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SORTAV in WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX.

Supporting information


Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SORTAV in WinGX (Farrugia, 1999); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

mer-Tris(benzotriazole-κN)(pyridine-2,6-dicarboxylato-κ3N,O,O')nickel(II) top
Crystal data top
[Ni(C7H3NO4)(C6H5N3)3]F(000) = 1192
Mr = 581.2Dx = 1.47 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15068 reflections
a = 9.8964 (1) Åθ = 1–27°
b = 10.3253 (1) ŵ = 0.79 mm1
c = 26.0261 (4) ÅT = 100 K
β = 98.971 (1)°Needle, blue
V = 2626.90 (6) Å30.56 × 0.18 × 0.18 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
5149 reflections with I > 2σ(I)
CCD; rotation images; thick–slice scansRint = 0.061
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 27.9°, θmin = 1.6°
Tmin = 0.731, Tmax = 0.867h = 1313
35667 measured reflectionsk = 1312
6231 independent reflectionsl = 3234
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0507P)2 + 1.0906P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.43 e Å3
6231 reflectionsΔρmin = 0.47 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni0.12095 (2)0.09710 (2)0.382311 (8)0.01177 (8)
O10.10783 (12)0.06269 (12)0.30168 (5)0.0153 (3)
O20.22625 (15)0.09316 (13)0.23589 (5)0.0258 (3)
O30.21352 (12)0.17539 (12)0.45740 (5)0.0151 (3)
O40.40362 (12)0.27270 (12)0.49653 (5)0.0184 (3)
N10.29089 (14)0.18225 (13)0.36702 (6)0.0126 (3)
N110.05029 (15)0.00120 (14)0.39692 (5)0.0147 (3)
N120.05370 (15)0.04745 (15)0.44320 (6)0.0173 (3)
N130.17786 (16)0.09760 (15)0.44343 (6)0.0186 (3)
H130.2040.13410.46990.022*
N210.22638 (15)0.07625 (14)0.40030 (6)0.0145 (3)
N220.31645 (15)0.08786 (14)0.44266 (6)0.0153 (3)
N230.35794 (15)0.21138 (14)0.44641 (6)0.0160 (3)
H230.4160.24190.47150.019*
N310.00169 (14)0.26337 (14)0.37053 (5)0.0141 (3)
N320.02301 (15)0.32273 (14)0.32521 (6)0.0170 (3)
N330.10059 (16)0.42614 (15)0.33065 (6)0.0188 (3)
H330.130.47930.3060.023*
C10.31712 (18)0.17748 (16)0.31845 (7)0.0148 (4)
C20.43634 (19)0.22958 (19)0.30545 (7)0.0210 (4)
H20.45320.22840.27130.025*
C30.5299 (2)0.28356 (19)0.34498 (8)0.0236 (4)
H30.61110.31860.33740.028*
C40.50262 (18)0.28541 (18)0.39578 (7)0.0193 (4)
H40.56510.32040.42260.023*
C50.37983 (18)0.23371 (16)0.40543 (7)0.0141 (3)
C60.20750 (19)0.10608 (16)0.28182 (7)0.0158 (4)
C70.33000 (17)0.22710 (16)0.45749 (7)0.0135 (3)
C110.17446 (18)0.01866 (17)0.36617 (7)0.0151 (4)
C120.25780 (19)0.08346 (18)0.39624 (7)0.0182 (4)
C130.3917 (2)0.1210 (2)0.37571 (8)0.0255 (4)
H13A0.44720.16480.39560.031*
C140.4361 (2)0.0897 (2)0.32476 (8)0.0271 (5)
H140.52440.11250.30980.033*
C150.3520 (2)0.0238 (2)0.29413 (8)0.0262 (4)
H150.38650.00490.25960.031*
C160.22077 (19)0.01327 (19)0.31388 (7)0.0200 (4)
H160.16570.0570.29380.024*
C210.20973 (17)0.19459 (17)0.37556 (7)0.0143 (3)
C220.29633 (17)0.28227 (17)0.40530 (7)0.0156 (4)
C230.3065 (2)0.41260 (18)0.39099 (8)0.0212 (4)
H23A0.36470.47050.41090.025*
C240.2253 (2)0.44898 (19)0.34581 (8)0.0243 (4)
H240.22890.53440.33470.029*
C250.1363 (2)0.36188 (19)0.31540 (7)0.0214 (4)
H250.08290.39170.28510.026*
C260.12625 (19)0.23377 (18)0.32936 (7)0.0181 (4)
H260.06760.17640.30930.022*
C310.06213 (17)0.32993 (16)0.40595 (7)0.0144 (3)
C320.12705 (18)0.43664 (18)0.38003 (7)0.0170 (4)
C330.20051 (19)0.52754 (18)0.40474 (8)0.0228 (4)
H33A0.24280.59870.38720.027*
C340.2063 (2)0.5053 (2)0.45638 (8)0.0259 (4)
H340.25360.56310.47440.031*
C350.1418 (2)0.39635 (19)0.48281 (8)0.0238 (4)
H350.14810.3850.51780.029*
C360.07033 (19)0.30674 (18)0.45864 (7)0.0188 (4)
H360.02970.23480.47620.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.01316 (12)0.01008 (12)0.01152 (12)0.00039 (8)0.00022 (8)0.00009 (8)
O10.0171 (6)0.0140 (6)0.0144 (6)0.0029 (5)0.0012 (5)0.0006 (5)
O20.0342 (8)0.0280 (8)0.0161 (7)0.0136 (6)0.0073 (6)0.0065 (6)
O30.0170 (6)0.0146 (6)0.0131 (6)0.0001 (5)0.0003 (5)0.0006 (5)
O40.0168 (6)0.0192 (7)0.0169 (6)0.0037 (5)0.0048 (5)0.0056 (5)
N10.0147 (7)0.0080 (7)0.0145 (7)0.0008 (5)0.0005 (5)0.0006 (5)
N110.0161 (7)0.0153 (7)0.0123 (7)0.0005 (6)0.0005 (6)0.0018 (6)
N120.0188 (8)0.0166 (8)0.0158 (8)0.0018 (6)0.0010 (6)0.0014 (6)
N130.0197 (8)0.0198 (8)0.0165 (8)0.0035 (6)0.0037 (6)0.0041 (6)
N210.0144 (7)0.0131 (7)0.0151 (7)0.0004 (6)0.0006 (6)0.0011 (6)
N220.0148 (7)0.0131 (7)0.0172 (8)0.0008 (6)0.0004 (6)0.0006 (6)
N230.0158 (7)0.0136 (7)0.0174 (8)0.0026 (6)0.0013 (6)0.0016 (6)
N310.0154 (7)0.0134 (7)0.0129 (7)0.0005 (6)0.0001 (6)0.0011 (6)
N320.0193 (8)0.0139 (8)0.0171 (7)0.0014 (6)0.0006 (6)0.0031 (6)
N330.0215 (8)0.0148 (8)0.0191 (8)0.0037 (6)0.0002 (6)0.0053 (6)
C10.0183 (9)0.0103 (8)0.0158 (8)0.0002 (7)0.0026 (7)0.0002 (7)
C20.0249 (10)0.0202 (10)0.0192 (9)0.0034 (8)0.0073 (8)0.0020 (8)
C30.0206 (10)0.0241 (10)0.0274 (10)0.0088 (8)0.0079 (8)0.0043 (8)
C40.0168 (9)0.0175 (9)0.0223 (10)0.0031 (7)0.0009 (7)0.0053 (8)
C50.0162 (8)0.0083 (8)0.0166 (9)0.0018 (6)0.0011 (7)0.0016 (7)
C60.0213 (9)0.0111 (8)0.0147 (9)0.0008 (7)0.0015 (7)0.0014 (7)
C70.0154 (8)0.0089 (8)0.0153 (8)0.0046 (6)0.0005 (7)0.0001 (6)
C110.0161 (8)0.0131 (8)0.0158 (8)0.0001 (7)0.0015 (7)0.0020 (7)
C120.0201 (9)0.0174 (9)0.0172 (9)0.0007 (7)0.0038 (7)0.0012 (7)
C130.0182 (9)0.0302 (11)0.0289 (11)0.0071 (8)0.0064 (8)0.0021 (9)
C140.0152 (9)0.0356 (12)0.0289 (11)0.0026 (8)0.0015 (8)0.0074 (9)
C150.0241 (10)0.0345 (12)0.0177 (9)0.0029 (9)0.0039 (8)0.0018 (9)
C160.0217 (9)0.0229 (10)0.0155 (9)0.0019 (8)0.0032 (7)0.0002 (7)
C210.0155 (8)0.0116 (8)0.0161 (8)0.0004 (6)0.0039 (7)0.0002 (7)
C220.0140 (8)0.0140 (9)0.0190 (9)0.0015 (7)0.0032 (7)0.0015 (7)
C230.0233 (10)0.0130 (9)0.0273 (10)0.0038 (7)0.0042 (8)0.0004 (8)
C240.0300 (11)0.0122 (9)0.0314 (11)0.0002 (8)0.0072 (9)0.0048 (8)
C250.0256 (10)0.0197 (10)0.0188 (9)0.0050 (8)0.0035 (7)0.0059 (8)
C260.0200 (9)0.0162 (9)0.0175 (9)0.0015 (7)0.0011 (7)0.0001 (7)
C310.0121 (8)0.0107 (8)0.0200 (9)0.0012 (6)0.0013 (7)0.0016 (7)
C320.0153 (8)0.0140 (9)0.0210 (9)0.0011 (7)0.0004 (7)0.0001 (7)
C330.0196 (9)0.0135 (9)0.0352 (11)0.0029 (7)0.0037 (8)0.0030 (8)
C340.0207 (10)0.0215 (10)0.0371 (12)0.0003 (8)0.0099 (8)0.0114 (9)
C350.0223 (10)0.0293 (11)0.0208 (10)0.0034 (8)0.0068 (8)0.0049 (8)
C360.0187 (9)0.0192 (9)0.0185 (9)0.0002 (7)0.0032 (7)0.0008 (7)
Geometric parameters (Å, º) top
Ni—N11.9922 (15)N32—N331.336 (2)
Ni—N112.0489 (15)N33—C321.355 (2)
Ni—N312.0788 (14)N33—H330.86
Ni—N212.0879 (15)C11—C121.393 (3)
Ni—O12.1124 (12)C11—C161.406 (2)
Ni—O32.1802 (12)C12—C131.404 (3)
O1—C61.265 (2)C13—C141.369 (3)
O2—C61.245 (2)C13—H13A0.93
O3—C71.270 (2)C14—C151.413 (3)
O4—C71.246 (2)C14—H140.93
N1—C11.330 (2)C15—C161.375 (3)
N1—C51.335 (2)C15—H150.93
C1—C21.386 (3)C16—H160.93
C1—C61.519 (2)C21—C221.395 (2)
C2—C31.389 (3)C21—C261.408 (2)
C2—H20.93C22—C231.404 (3)
C3—C41.390 (3)C23—C241.369 (3)
C3—H30.93C23—H23A0.93
C4—C51.386 (3)C24—C251.412 (3)
C4—H40.93C24—H240.93
C5—C71.514 (2)C25—C261.379 (3)
N11—N121.310 (2)C25—H250.93
N11—C111.373 (2)C26—H260.93
N12—N131.334 (2)C31—C321.395 (2)
N13—C121.361 (2)C31—C361.407 (3)
N13—H130.86C32—C331.403 (3)
N21—N221.311 (2)C33—C341.373 (3)
N21—C211.379 (2)C33—H33A0.93
N22—N231.339 (2)C34—C351.417 (3)
N23—C221.360 (2)C34—H340.93
N23—H230.86C35—C361.375 (3)
N31—N321.318 (2)C35—H350.93
N31—C311.379 (2)C36—H360.93
N1—Ni—N11177.23 (6)O1—C6—C1116.21 (15)
N1—Ni—N3194.80 (6)O4—C7—O3125.12 (16)
N11—Ni—N3187.68 (6)O4—C7—C5118.81 (16)
N1—Ni—N2190.87 (6)O3—C7—C5116.06 (14)
N11—Ni—N2186.73 (6)N11—C11—C12107.38 (15)
N31—Ni—N21173.43 (6)N11—C11—C16131.01 (17)
N1—Ni—O178.39 (5)C12—C11—C16121.61 (17)
N11—Ni—O1100.29 (5)N13—C12—C11104.28 (16)
N31—Ni—O192.69 (5)N13—C12—C13134.03 (18)
N21—Ni—O191.70 (5)C11—C12—C13121.68 (17)
N1—Ni—O376.44 (5)C14—C13—C12116.40 (18)
N11—Ni—O3104.89 (5)C14—C13—H13A121.8
N31—Ni—O388.60 (5)C12—C13—H13A121.8
N21—Ni—O389.51 (5)C13—C14—C15122.15 (18)
O1—Ni—O3154.82 (5)C13—C14—H14118.9
C6—O1—Ni114.54 (11)C15—C14—H14118.9
C7—O3—Ni114.33 (11)C16—C15—C14121.87 (18)
C1—N1—C5121.51 (15)C16—C15—H15119.1
C1—N1—Ni117.99 (11)C14—C15—H15119.1
C5—N1—Ni120.31 (12)C15—C16—C11116.30 (18)
N12—N11—C11109.24 (14)C15—C16—H16121.8
N12—N11—Ni119.77 (11)C11—C16—H16121.8
C11—N11—Ni130.91 (12)N21—C21—C22107.32 (15)
N11—N12—N13107.98 (14)N21—C21—C26131.67 (16)
N12—N13—C12111.12 (15)C22—C21—C26121.01 (17)
N12—N13—H13124.4N23—C22—C21104.39 (15)
C12—N13—H13124.4N23—C22—C23133.06 (17)
N22—N21—C21109.13 (14)C21—C22—C23122.55 (17)
N22—N21—Ni121.17 (11)C24—C23—C22115.71 (17)
C21—N21—Ni129.48 (11)C24—C23—H23A122.1
N21—N22—N23108.00 (14)C22—C23—H23A122.1
N22—N23—C22111.15 (14)C23—C24—C25122.55 (18)
N22—N23—H23124.4C23—C24—H24118.7
C22—N23—H23124.4C25—C24—H24118.7
N32—N31—C31109.03 (14)C26—C25—C24121.83 (18)
N32—N31—Ni122.54 (11)C26—C25—H25119.1
C31—N31—Ni128.43 (12)C24—C25—H25119.1
N31—N32—N33107.85 (14)C25—C26—C21116.34 (17)
N32—N33—C32111.32 (15)C25—C26—H26121.8
N32—N33—H33124.3C21—C26—H26121.8
C32—N33—H33124.3N31—C31—C32107.14 (15)
N1—C1—C2121.15 (16)N31—C31—C36131.97 (16)
N1—C1—C6112.85 (15)C32—C31—C36120.90 (16)
C2—C1—C6125.95 (16)N33—C32—C31104.65 (16)
C1—C2—C3118.00 (17)N33—C32—C33132.73 (17)
C1—C2—H2121C31—C32—C33122.62 (18)
C3—C2—H2121C34—C33—C32116.12 (18)
C2—C3—C4120.29 (17)C34—C33—H33A121.9
C2—C3—H3119.9C32—C33—H33A121.9
C4—C3—H3119.9C33—C34—C35121.57 (18)
C5—C4—C3118.21 (17)C33—C34—H34119.2
C5—C4—H4120.9C35—C34—H34119.2
C3—C4—H4120.9C36—C35—C34122.46 (19)
N1—C5—C4120.81 (16)C36—C35—H35118.8
N1—C5—C7112.55 (15)C34—C35—H35118.8
C4—C5—C7126.64 (16)C35—C36—C31116.32 (17)
O2—C6—O1126.64 (16)C35—C36—H36121.8
O2—C6—C1117.12 (16)C31—C36—H36121.8
N1—Ni—O1—C61.26 (12)C3—C4—C5—C7179.49 (17)
N11—Ni—O1—C6176.26 (12)Ni—O1—C6—O2176.65 (15)
N31—Ni—O1—C695.61 (12)Ni—O1—C6—C11.33 (19)
N21—Ni—O1—C689.28 (12)N1—C1—C6—O2177.61 (16)
O3—Ni—O1—C63.19 (19)C2—C1—C6—O20.1 (3)
N1—Ni—O3—C74.68 (11)N1—C1—C6—O10.6 (2)
N11—Ni—O3—C7172.82 (11)C2—C1—C6—O1178.12 (17)
N31—Ni—O3—C799.96 (12)Ni—O3—C7—O4176.72 (13)
N21—Ni—O3—C786.33 (12)Ni—O3—C7—C53.96 (18)
O1—Ni—O3—C76.62 (18)N1—C5—C7—O4179.60 (15)
N31—Ni—N1—C192.71 (13)C4—C5—C7—O40.6 (3)
N21—Ni—N1—C190.61 (13)N1—C5—C7—O30.2 (2)
O1—Ni—N1—C10.95 (12)C4—C5—C7—O3179.95 (17)
O3—Ni—N1—C1179.90 (13)N12—N11—C11—C120.1 (2)
N31—Ni—N1—C592.16 (13)Ni—N11—C11—C12176.43 (12)
N21—Ni—N1—C584.52 (13)N12—N11—C11—C16178.86 (18)
O1—Ni—N1—C5176.08 (13)Ni—N11—C11—C164.6 (3)
O3—Ni—N1—C54.77 (12)N12—N13—C12—C110.7 (2)
N31—Ni—N11—N12115.75 (13)N12—N13—C12—C13178.0 (2)
N21—Ni—N11—N1260.80 (13)N11—C11—C12—N130.3 (2)
O1—Ni—N11—N12151.94 (13)C16—C11—C12—N13179.44 (16)
O3—Ni—N11—N1227.82 (14)N11—C11—C12—C13178.55 (17)
N31—Ni—N11—C1160.49 (16)C16—C11—C12—C130.5 (3)
N21—Ni—N11—C11122.96 (16)N13—C12—C13—C14179.0 (2)
O1—Ni—N11—C1131.82 (16)C11—C12—C13—C140.5 (3)
O3—Ni—N11—C11148.42 (15)C12—C13—C14—C150.4 (3)
C11—N11—N12—N130.54 (19)C13—C14—C15—C160.3 (3)
Ni—N11—N12—N13176.45 (11)C14—C15—C16—C110.3 (3)
N11—N12—N13—C120.8 (2)N11—C11—C16—C15178.41 (19)
N1—Ni—N21—N2270.61 (13)C12—C11—C16—C150.4 (3)
N11—Ni—N21—N22110.76 (13)N22—N21—C21—C220.18 (19)
O1—Ni—N21—N22149.03 (13)Ni—N21—C21—C22174.72 (12)
O3—Ni—N21—N225.82 (13)N22—N21—C21—C26179.94 (18)
N1—Ni—N21—C21115.42 (15)Ni—N21—C21—C265.4 (3)
N11—Ni—N21—C2163.20 (15)N22—N23—C22—C211.28 (19)
O1—Ni—N21—C2137.01 (15)N22—N23—C22—C23178.84 (19)
O3—Ni—N21—C21168.14 (15)N21—C21—C22—N230.87 (19)
C21—N21—N22—N230.61 (19)C26—C21—C22—N23179.24 (16)
Ni—N21—N22—N23174.46 (11)N21—C21—C22—C23179.24 (17)
N21—N22—N23—C221.21 (19)C26—C21—C22—C230.7 (3)
N1—Ni—N31—N3262.76 (13)N23—C22—C23—C24179.59 (19)
N11—Ni—N31—N32116.01 (13)C21—C22—C23—C240.3 (3)
O1—Ni—N31—N3215.81 (13)C22—C23—C24—C250.2 (3)
O3—Ni—N31—N32139.03 (13)C23—C24—C25—C260.3 (3)
N1—Ni—N31—C31116.67 (15)C24—C25—C26—C210.0 (3)
N11—Ni—N31—C3164.56 (15)N21—C21—C26—C25179.34 (18)
O1—Ni—N31—C31164.76 (14)C22—C21—C26—C250.5 (3)
O3—Ni—N31—C3140.40 (14)N32—N31—C31—C320.92 (19)
C31—N31—N32—N330.28 (19)Ni—N31—C31—C32178.57 (12)
Ni—N31—N32—N33179.25 (11)N32—N31—C31—C36178.63 (18)
N31—N32—N33—C320.5 (2)Ni—N31—C31—C361.9 (3)
C5—N1—C1—C22.1 (3)N32—N33—C32—C311.0 (2)
Ni—N1—C1—C2177.12 (13)N32—N33—C32—C33178.98 (19)
C5—N1—C1—C6175.63 (15)N31—C31—C32—N331.17 (19)
Ni—N1—C1—C60.56 (19)C36—C31—C32—N33178.44 (16)
N1—C1—C2—C31.9 (3)N31—C31—C32—C33178.85 (16)
C6—C1—C2—C3175.43 (17)C36—C31—C32—C331.5 (3)
C1—C2—C3—C40.5 (3)N33—C32—C33—C34179.46 (19)
C2—C3—C4—C50.8 (3)C31—C32—C33—C340.5 (3)
C1—N1—C5—C40.7 (3)C32—C33—C34—C350.2 (3)
Ni—N1—C5—C4175.64 (13)C33—C34—C35—C360.1 (3)
C1—N1—C5—C7179.13 (15)C34—C35—C36—C311.1 (3)
Ni—N1—C5—C74.18 (19)N31—C31—C36—C35178.75 (18)
C3—C4—C5—N10.7 (3)C32—C31—C36—C351.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N13—H13···O3i0.861.962.7777 (19)160
N23—H23···O4ii0.861.882.6612 (18)151
N33—H33···O2iii0.861.782.617 (2)165
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y+1/2, z+1/2.
Comparison of selected bond lengths (Å) top
Ligandn = 1n = 2n = 3
Nn1—Nn21.310 (2)1.311 (2)1.318 (2)
Nn1—Cn11.373 (2)1.379 (2)1.379 (2)
Nn2—Nn31.334 (2)1.339 (2)1.336 (2)
Nn3—Cn21.361 (2)1.360 (2)1.355 (2)
Cn1—Cn21.393 (3)1.395 (2)1.395 (2)
Cn1—Cn61.406 (2)1.408 (2)1.407 (3)
Cn2—Cn31.404 (3)1.404 (3)1.403 (3)
Cn3—Cn41.369 (3)1.369 (3)1.373 (3)
Cn4—Cn51.413 (3)1.412 (3)1.417 (3)
Cn5—Cn61.375 (3)1.379 (3)1.375 (3)
 

Acknowledgements

The authors thank the EPSRC and Glasgow and Manonmaniam Sundaranar Universities for support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1976). Acta Cryst. A32, 239–244.  CrossRef IUCr Journals Web of Science Google Scholar
First citationKumaresan, S. & Ramadevi, P. (2005). Indian J. Chem. A, 44, 299–302.  Google Scholar
First citationKumaresan, S., Ramadevi, P. & Mobin, S. M. (2004). Indian J. Chem. A, 43, 1635–1638.  Google Scholar
First citationMeunier-Piret, J., Piret, P., Putzeys, J.-P. & van Meerssche, M. (1976). Acta Cryst. B32, 714–717.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationNathan, L. C. & Mai, T. D. (2000). J. Chem. Crystallogr. 30, 509–513.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSchomaker, V. & Trueblood, K. N. (1968). Acta Cryst. B24, 63–76.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationZhang, C.-X., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P. & Zhao, B. (2003). Transition Met. Chem. 28, 621–625.  Web of Science CSD CrossRef CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds