organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,5-Bis[bis­­(di­ethyl­amino)phosphino]-9,9-di­methylxanthene

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, England
*Correspondence e-mail: egh1@leicester.ac.uk

(Received 24 June 2005; accepted 2 August 2005; online 6 August 2005)

The structure of the title compound, C31H52N4OP2, reveals a near-planar xanthene skeleton.

Comment

Xantphos, and related bidentate ligands with the xanthene backbone, have been shown to be remarkable ligands for the rhodium-catalysed hydro­formyl­ation of long-chain alkenes, giving exceptionally high selectivity to the industrially useful linear aldehyde (linear/branched ratio = 50:1) (Kranenburg et al., 1995[Kranenburg, M., van der Burgt, Y. E. M., Kamer, P. C. J., van Leeuwen, P. W. N. M. (1995). Organometallics, 14, 3081-3089.]). The title compound, (I)[link], was prepared according to the literature procedure of Goertz et al. (2001[Goertz, W., Kamer, P. C. J., van Leeuwen, P. W. N. M. & Vogt, D. (2001). Chem. Eur. J. 7, 1614-1618.]) as an inter­mediate in work directed towards the synthesis of perfluoro­alkyl­ated derivatives of Xantphos (Adams et al., 2004[Adams, D. J., Cole-Hamilton, D. J., Harding, D. A. J., Hope, E. G., Pogorzelec, P. & Stuart, A. M. (2004). Tetrahedron, 60, 4079-4085.]). Crystals suitable for X-ray analysis were grown from hexane solution. The bond lengths and angles within the structure are unremarkable. The mol­ecule has a pseudo-C2 axis of symmetry through O1 and C6, such that the lone pairs on phospho­rus point either in front or behind an approximately planar xanthene skeleton.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing the atom-labelling scheme and 50% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

The title compound was prepared according to the literature procedure of Goertz et al. (2001[Goertz, W., Kamer, P. C. J., van Leeuwen, P. W. N. M. & Vogt, D. (2001). Chem. Eur. J. 7, 1614-1618.]), Crystals suitable for X-ray analysis were grown from a hexane solution.

Crystal data
  • C31H52N4OP2

  • Mr = 558.71

  • Monoclinic, P 21 /c

  • a = 18.799 (1) Å

  • b = 11.4968 (6) Å

  • c = 15.2179 (8) Å

  • β = 100.880 (1)°

  • V = 3229.9 (3) Å3

  • Z = 4

  • Dx = 1.149 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 6949 reflections

  • θ = 2.2–26.9°

  • μ = 0.16 mm−1

  • T = 150 (2) K

  • Block, colourless

  • 0.34 × 0.21 × 0.16 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])Tmin = 0.93, Tmax = 0.96

  • 22958 measured reflections

  • 5685 independent reflections

  • 4653 reflections with I > 2σ(I)

  • Rint = 0.034

  • θmax = 25.0°

  • h = −22 → 22

  • k = −13 → 13

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.139

  • S = 1.06

  • 5685 reflections

  • 353 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0817P)2 + 0.3182P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.002

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.35 e Å−3

All H atoms were included in calculated positions, riding on the bonded atom [C—H = 0.95 (CH), 0.98 (CH3) and 0.99 Å (CH2)], and with Uiso(H) values set at 1.5Ueq of the bonded C atom for methyl H atoms and at 1.2Ueq for all other H atoms.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

4,5-Bis[bis(diethylamino)phosphino]-9,9-dimethylxanthene top
Crystal data top
C31H52N4OP2F(000) = 1216
Mr = 558.71Dx = 1.149 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.799 (1) ÅCell parameters from 6949 reflections
b = 11.4968 (6) Åθ = 2.2–26.9°
c = 15.2179 (8) ŵ = 0.16 mm1
β = 100.880 (1)°T = 150 K
V = 3229.9 (3) Å3Block, colourless
Z = 40.34 × 0.21 × 0.16 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
5685 independent reflections
Radiation source: fine-focus sealed tube4653 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2222
Tmin = 0.93, Tmax = 0.96k = 1313
22958 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.3182P]
where P = (Fo2 + 2Fc2)/3
5685 reflections(Δ/σ)max = 0.002
353 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.35 e Å3
Special details top

Experimental. absorption correction based on 11566 reflections (SADABS); Rint 0.042 before and 0.029 after correction.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.24064 (3)0.79839 (4)0.15134 (4)0.03314 (17)
P20.34099 (3)0.47707 (4)0.26900 (4)0.03378 (17)
O10.19529 (7)0.58133 (11)0.22875 (9)0.0323 (3)
N10.25398 (9)0.82334 (14)0.26194 (12)0.0335 (4)
N20.22386 (11)0.92669 (15)0.09521 (12)0.0421 (5)
N30.32498 (9)0.47476 (14)0.15649 (12)0.0341 (4)
N40.40281 (10)0.37232 (15)0.30858 (14)0.0460 (5)
C10.14864 (10)0.73710 (17)0.13477 (13)0.0299 (4)
C20.09075 (12)0.78508 (19)0.07518 (14)0.0378 (5)
H20.09810.85350.04310.045*
C30.02307 (12)0.7352 (2)0.06197 (15)0.0450 (6)
H30.01540.76820.01990.054*
C40.01100 (12)0.6380 (2)0.10931 (15)0.0431 (6)
H40.03640.60610.10100.052*
C50.06652 (11)0.58504 (18)0.16925 (14)0.0341 (5)
C60.05264 (12)0.48505 (19)0.22901 (17)0.0436 (6)
C6'0.02674 (16)0.5366 (3)0.3116 (2)0.0691 (9)
H610.01670.47330.35060.104*
H620.01750.58210.29180.104*
H630.06460.58720.34450.104*
C6"0.00587 (16)0.4030 (3)0.1799 (3)0.0886 (11)
H640.01040.36920.12790.133*
H650.05080.44670.15990.133*
H660.01460.34060.22040.133*
C70.12274 (12)0.41934 (17)0.26105 (14)0.0356 (5)
C80.12244 (14)0.30780 (19)0.29698 (17)0.0491 (6)
H80.07760.27090.29890.059*
C90.18592 (16)0.2506 (2)0.32963 (18)0.0571 (7)
H90.18470.17590.35590.069*
C100.25162 (14)0.30120 (19)0.32450 (16)0.0464 (6)
H100.29520.26110.34830.056*
C110.25522 (11)0.40994 (17)0.28504 (13)0.0331 (5)
C120.18949 (11)0.46837 (16)0.25811 (13)0.0301 (5)
C130.13532 (10)0.63374 (17)0.17769 (13)0.0292 (4)
C140.19883 (12)0.85861 (18)0.31332 (14)0.0355 (5)
H14A0.15070.85560.27350.043*
H14B0.20800.94030.33270.043*
C150.19678 (14)0.7844 (2)0.39480 (15)0.0494 (6)
H15A0.19270.70230.37730.074*
H15B0.15490.80650.42100.074*
H15C0.24140.79630.43900.074*
C160.32828 (12)0.8252 (2)0.31135 (18)0.0513 (6)
H16A0.36020.79070.27350.062*
H16B0.33150.77580.36530.062*
C170.35593 (16)0.9459 (3)0.3400 (2)0.0730 (9)
H17A0.35330.99540.28710.110*
H17B0.40630.94080.37180.110*
H17C0.32600.97960.37980.110*
C180.18840 (14)1.02350 (18)0.13247 (16)0.0449 (6)
H18A0.22541.06700.17490.054*
H18B0.15310.99140.16680.054*
C190.14921 (17)1.1079 (2)0.06274 (19)0.0656 (8)
H19A0.18381.14140.02910.098*
H19B0.12731.17020.09260.098*
H19C0.11121.06640.02160.098*
C200.27251 (16)0.9574 (2)0.03463 (18)0.0596 (7)
H20A0.24410.99630.01860.072*
H20B0.29280.88500.01410.072*
C210.33337 (19)1.0348 (3)0.0748 (2)0.0846 (10)
H21A0.31401.10950.09060.127*
H21B0.36521.04760.03160.127*
H21C0.36100.99830.12880.127*
C220.28363 (13)0.38731 (18)0.09829 (15)0.0408 (5)
H22A0.26850.32520.13590.049*
H22B0.31550.35160.06090.049*
C230.21694 (14)0.4359 (2)0.03769 (16)0.0546 (7)
H23A0.18600.47420.07400.082*
H23B0.19010.37250.00340.082*
H23C0.23170.49260.00360.082*
C240.36406 (12)0.55852 (19)0.11121 (16)0.0407 (5)
H24A0.37580.62760.15010.049*
H24B0.33190.58430.05540.049*
C250.43374 (14)0.5114 (2)0.0880 (2)0.0588 (7)
H25A0.46830.49410.14320.088*
H25B0.45460.56950.05320.088*
H25C0.42330.44010.05260.088*
C260.40659 (13)0.2562 (2)0.27059 (19)0.0525 (7)
H26A0.36050.24100.22860.063*
H26B0.41050.19860.31960.063*
C270.46806 (16)0.2363 (2)0.2219 (2)0.0665 (8)
H27A0.46200.28680.16910.100*
H27B0.46820.15480.20320.100*
H27C0.51400.25440.26180.100*
C280.46724 (15)0.4091 (2)0.37006 (19)0.0683 (9)
H28A0.45940.48930.39000.082*
H28B0.50800.41160.33730.082*
C290.4888 (3)0.3344 (3)0.4510 (2)0.1249 (18)
H29A0.44720.32400.48060.187*
H29B0.52850.37170.49240.187*
H29C0.50480.25830.43310.187*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0327 (3)0.0226 (3)0.0477 (4)0.0019 (2)0.0167 (3)0.0019 (2)
P20.0341 (3)0.0233 (3)0.0428 (3)0.0034 (2)0.0045 (2)0.0032 (2)
O10.0293 (8)0.0204 (7)0.0463 (9)0.0018 (6)0.0047 (6)0.0051 (6)
N10.0250 (9)0.0262 (9)0.0489 (11)0.0013 (7)0.0062 (8)0.0015 (8)
N20.0568 (12)0.0292 (10)0.0465 (11)0.0027 (9)0.0252 (9)0.0080 (8)
N30.0348 (10)0.0258 (9)0.0436 (11)0.0028 (7)0.0125 (8)0.0012 (7)
N40.0386 (11)0.0278 (10)0.0656 (13)0.0065 (8)0.0051 (9)0.0067 (9)
C10.0307 (11)0.0280 (10)0.0331 (11)0.0050 (8)0.0114 (9)0.0011 (8)
C20.0434 (13)0.0347 (12)0.0358 (12)0.0090 (10)0.0087 (10)0.0006 (9)
C30.0364 (13)0.0523 (15)0.0432 (13)0.0134 (11)0.0007 (10)0.0033 (11)
C40.0260 (11)0.0506 (14)0.0525 (14)0.0007 (10)0.0070 (10)0.0117 (12)
C50.0289 (11)0.0331 (11)0.0418 (12)0.0006 (9)0.0103 (9)0.0084 (9)
C60.0341 (12)0.0368 (12)0.0630 (16)0.0093 (10)0.0174 (11)0.0005 (11)
C6'0.0724 (19)0.0618 (18)0.090 (2)0.0211 (15)0.0569 (17)0.0227 (15)
C6"0.0591 (19)0.0610 (19)0.135 (3)0.0289 (16)0.0094 (19)0.0131 (19)
C70.0428 (13)0.0282 (11)0.0401 (12)0.0048 (9)0.0192 (10)0.0035 (9)
C80.0601 (16)0.0325 (12)0.0641 (16)0.0069 (11)0.0362 (13)0.0024 (11)
C90.080 (2)0.0314 (13)0.0695 (18)0.0031 (13)0.0380 (15)0.0164 (12)
C100.0589 (16)0.0330 (12)0.0504 (14)0.0099 (11)0.0181 (12)0.0119 (10)
C110.0433 (12)0.0247 (10)0.0328 (11)0.0042 (9)0.0113 (9)0.0006 (8)
C120.0416 (12)0.0212 (10)0.0297 (11)0.0012 (8)0.0122 (9)0.0019 (8)
C130.0277 (11)0.0273 (10)0.0332 (11)0.0032 (8)0.0069 (8)0.0030 (8)
C140.0368 (12)0.0313 (11)0.0381 (12)0.0019 (9)0.0067 (9)0.0003 (9)
C150.0621 (17)0.0458 (14)0.0399 (13)0.0022 (12)0.0085 (12)0.0050 (11)
C160.0311 (12)0.0524 (15)0.0677 (16)0.0042 (11)0.0023 (11)0.0056 (13)
C170.0571 (18)0.079 (2)0.083 (2)0.0322 (16)0.0133 (15)0.0303 (17)
C180.0589 (15)0.0285 (12)0.0488 (14)0.0102 (10)0.0141 (12)0.0087 (10)
C190.088 (2)0.0389 (14)0.0653 (18)0.0120 (14)0.0036 (15)0.0154 (13)
C200.082 (2)0.0461 (14)0.0577 (16)0.0171 (14)0.0310 (15)0.0000 (12)
C210.086 (2)0.073 (2)0.105 (3)0.0281 (18)0.042 (2)0.0244 (19)
C220.0522 (14)0.0318 (11)0.0419 (13)0.0053 (10)0.0183 (11)0.0057 (10)
C230.0701 (18)0.0523 (15)0.0380 (14)0.0116 (13)0.0013 (12)0.0032 (11)
C240.0380 (12)0.0297 (11)0.0583 (15)0.0004 (9)0.0189 (11)0.0027 (10)
C250.0481 (15)0.0462 (14)0.092 (2)0.0016 (12)0.0381 (15)0.0040 (14)
C260.0425 (14)0.0300 (12)0.0789 (18)0.0086 (10)0.0040 (12)0.0097 (12)
C270.072 (2)0.0449 (15)0.085 (2)0.0168 (14)0.0217 (16)0.0054 (14)
C280.0632 (18)0.0544 (16)0.0721 (19)0.0192 (14)0.0260 (15)0.0176 (14)
C290.199 (5)0.078 (2)0.072 (2)0.074 (3)0.039 (3)0.0197 (19)
Geometric parameters (Å, º) top
P1—N11.6789 (19)C14—H14B0.9900
P1—N21.7038 (18)C15—H15A0.9800
P1—C11.840 (2)C15—H15B0.9800
P2—N31.6816 (18)C15—H15C0.9800
P2—N41.7027 (18)C16—C171.517 (4)
P2—C111.845 (2)C16—H16A0.9900
O1—C131.381 (2)C16—H16B0.9900
O1—C121.384 (2)C17—H17A0.9800
N1—C161.456 (3)C17—H17B0.9800
N1—C141.469 (3)C17—H17C0.9800
N2—C201.459 (3)C18—C191.521 (3)
N2—C181.465 (3)C18—H18A0.9900
N3—C241.460 (3)C18—H18B0.9900
N3—C221.463 (3)C19—H19A0.9800
N4—C281.447 (3)C19—H19B0.9800
N4—C261.462 (3)C19—H19C0.9800
C1—C21.392 (3)C20—C211.487 (4)
C1—C131.401 (3)C20—H20A0.9900
C2—C31.375 (3)C20—H20B0.9900
C2—H20.9500C21—H21A0.9800
C3—C41.371 (3)C21—H21B0.9800
C3—H30.9500C21—H21C0.9800
C4—C51.390 (3)C22—C231.516 (3)
C4—H40.9500C22—H22A0.9900
C5—C131.393 (3)C22—H22B0.9900
C5—C61.519 (3)C23—H23A0.9800
C6—C71.517 (3)C23—H23B0.9800
C6—C6"1.532 (3)C23—H23C0.9800
C6—C6'1.549 (4)C24—C251.520 (3)
C6'—H610.9800C24—H24A0.9900
C6'—H620.9800C24—H24B0.9900
C6'—H630.9800C25—H25A0.9800
C6"—H640.9800C25—H25B0.9800
C6"—H650.9800C25—H25C0.9800
C6"—H660.9800C26—C271.503 (4)
C7—C121.384 (3)C26—H26A0.9900
C7—C81.394 (3)C26—H26B0.9900
C8—C91.371 (4)C27—H27A0.9800
C8—H80.9500C27—H27B0.9800
C9—C101.381 (4)C27—H27C0.9800
C9—H90.9500C28—C291.494 (4)
C10—C111.394 (3)C28—H28A0.9900
C10—H100.9500C28—H28B0.9900
C11—C121.398 (3)C29—H29A0.9800
C14—C151.512 (3)C29—H29B0.9800
C14—H14A0.9900C29—H29C0.9800
N1—P1—N2109.46 (9)N1—C16—C17113.9 (2)
N1—P1—C199.29 (9)N1—C16—H16A108.8
N2—P1—C1100.52 (9)C17—C16—H16A108.8
N3—P2—N4109.15 (9)N1—C16—H16B108.8
N3—P2—C1197.77 (9)C17—C16—H16B108.8
N4—P2—C11102.27 (9)H16A—C16—H16B107.7
C13—O1—C12119.03 (15)C16—C17—H17A109.5
C16—N1—C14115.21 (18)C16—C17—H17B109.5
C16—N1—P1117.86 (15)H17A—C17—H17B109.5
C14—N1—P1126.45 (14)C16—C17—H17C109.5
C20—N2—C18116.49 (18)H17A—C17—H17C109.5
C20—N2—P1116.57 (16)H17B—C17—H17C109.5
C18—N2—P1121.22 (14)N2—C18—C19114.2 (2)
C24—N3—C22115.13 (17)N2—C18—H18A108.7
C24—N3—P2117.43 (14)C19—C18—H18A108.7
C22—N3—P2126.86 (14)N2—C18—H18B108.7
C28—N4—C26115.18 (18)C19—C18—H18B108.7
C28—N4—P2117.00 (15)H18A—C18—H18B107.6
C26—N4—P2125.94 (16)C18—C19—H19A109.5
C2—C1—C13116.95 (19)C18—C19—H19B109.5
C2—C1—P1122.44 (16)H19A—C19—H19B109.5
C13—C1—P1120.46 (15)C18—C19—H19C109.5
C3—C2—C1121.2 (2)H19A—C19—H19C109.5
C3—C2—H2119.4H19B—C19—H19C109.5
C1—C2—H2119.4N2—C20—C21114.2 (2)
C4—C3—C2120.2 (2)N2—C20—H20A108.7
C4—C3—H3119.9C21—C20—H20A108.7
C2—C3—H3119.9N2—C20—H20B108.7
C3—C4—C5121.6 (2)C21—C20—H20B108.7
C3—C4—H4119.2H20A—C20—H20B107.6
C5—C4—H4119.2C20—C21—H21A109.5
C4—C5—C13117.0 (2)C20—C21—H21B109.5
C4—C5—C6122.15 (19)H21A—C21—H21B109.5
C13—C5—C6120.70 (19)C20—C21—H21C109.5
C5—C6—C7109.42 (17)H21A—C21—H21C109.5
C5—C6—C6"111.2 (2)H21B—C21—H21C109.5
C7—C6—C6"110.5 (2)N3—C22—C23113.50 (18)
C5—C6—C6'108.16 (19)N3—C22—H22A108.9
C7—C6—C6'108.5 (2)C23—C22—H22A108.9
C6"—C6—C6'109.0 (2)N3—C22—H22B108.9
C6—C6'—H61109.5C23—C22—H22B108.9
C6—C6'—H62109.5H22A—C22—H22B107.7
H61—C6'—H62109.5C22—C23—H23A109.5
C6—C6'—H63109.5C22—C23—H23B109.5
H61—C6'—H63109.5H23A—C23—H23B109.5
H62—C6'—H63109.5C22—C23—H23C109.5
C6—C6"—H64109.5H23A—C23—H23C109.5
C6—C6"—H65109.5H23B—C23—H23C109.5
H64—C6"—H65109.5N3—C24—C25114.03 (18)
C6—C6"—H66109.5N3—C24—H24A108.7
H64—C6"—H66109.5C25—C24—H24A108.7
H65—C6"—H66109.5N3—C24—H24B108.7
C12—C7—C8117.3 (2)C25—C24—H24B108.7
C12—C7—C6121.64 (18)H24A—C24—H24B107.6
C8—C7—C6121.09 (19)C24—C25—H25A109.5
C9—C8—C7121.0 (2)C24—C25—H25B109.5
C9—C8—H8119.5H25A—C25—H25B109.5
C7—C8—H8119.5C24—C25—H25C109.5
C8—C9—C10120.3 (2)H25A—C25—H25C109.5
C8—C9—H9119.9H25B—C25—H25C109.5
C10—C9—H9119.9N4—C26—C27115.7 (2)
C9—C10—C11121.2 (2)N4—C26—H26A108.4
C9—C10—H10119.4C27—C26—H26A108.4
C11—C10—H10119.4N4—C26—H26B108.4
C10—C11—C12116.43 (19)C27—C26—H26B108.4
C10—C11—P2123.15 (17)H26A—C26—H26B107.4
C12—C11—P2120.41 (15)C26—C27—H27A109.5
C7—C12—O1121.31 (18)C26—C27—H27B109.5
C7—C12—C11123.46 (18)H27A—C27—H27B109.5
O1—C12—C11115.23 (17)C26—C27—H27C109.5
O1—C13—C5121.45 (18)H27A—C27—H27C109.5
O1—C13—C1115.70 (17)H27B—C27—H27C109.5
C5—C13—C1122.85 (18)N4—C28—C29115.4 (3)
N1—C14—C15114.25 (18)N4—C28—H28A108.4
N1—C14—H14A108.7C29—C28—H28A108.4
C15—C14—H14A108.7N4—C28—H28B108.4
N1—C14—H14B108.7C29—C28—H28B108.4
C15—C14—H14B108.7H28A—C28—H28B107.5
H14A—C14—H14B107.6C28—C29—H29A109.5
C14—C15—H15A109.5C28—C29—H29B109.5
C14—C15—H15B109.5H29A—C29—H29B109.5
H15A—C15—H15B109.5C28—C29—H29C109.5
C14—C15—H15C109.5H29A—C29—H29C109.5
H15A—C15—H15C109.5H29B—C29—H29C109.5
H15B—C15—H15C109.5
N2—P1—N1—C16101.02 (17)C9—C10—C11—C125.2 (3)
C1—P1—N1—C16154.27 (16)C9—C10—C11—P2175.46 (19)
N2—P1—N1—C1470.55 (18)N3—P2—C11—C10113.93 (19)
C1—P1—N1—C1434.16 (17)N4—P2—C11—C102.3 (2)
N1—P1—N2—C20122.28 (17)N3—P2—C11—C1266.72 (17)
C1—P1—N2—C20133.86 (18)N4—P2—C11—C12178.34 (16)
N1—P1—N2—C1830.1 (2)C8—C7—C12—O1175.96 (18)
C1—P1—N2—C1873.8 (2)C6—C7—C12—O12.4 (3)
N4—P2—N3—C2497.65 (16)C8—C7—C12—C113.2 (3)
C11—P2—N3—C24156.43 (15)C6—C7—C12—C11178.5 (2)
N4—P2—N3—C2273.12 (19)C13—O1—C12—C719.3 (3)
C11—P2—N3—C2232.80 (18)C13—O1—C12—C11161.51 (17)
N3—P2—N4—C28124.9 (2)C10—C11—C12—C76.3 (3)
C11—P2—N4—C28132.3 (2)P2—C11—C12—C7174.29 (16)
N3—P2—N4—C2638.7 (2)C10—C11—C12—O1172.85 (18)
C11—P2—N4—C2664.1 (2)P2—C11—C12—O16.5 (2)
N1—P1—C1—C2122.63 (17)C12—O1—C13—C512.3 (3)
N2—P1—C1—C210.69 (19)C12—O1—C13—C1166.96 (16)
N1—P1—C1—C1362.09 (17)C4—C5—C13—O1173.69 (18)
N2—P1—C1—C13174.03 (16)C6—C5—C13—O111.3 (3)
C13—C1—C2—C32.4 (3)C4—C5—C13—C15.5 (3)
P1—C1—C2—C3177.83 (16)C6—C5—C13—C1169.50 (19)
C1—C2—C3—C41.6 (3)C2—C1—C13—O1173.18 (17)
C2—C3—C4—C52.2 (3)P1—C1—C13—O12.4 (2)
C3—C4—C5—C131.3 (3)C2—C1—C13—C56.1 (3)
C3—C4—C5—C6173.6 (2)P1—C1—C13—C5178.41 (15)
C4—C5—C6—C7160.1 (2)C16—N1—C14—C1559.4 (2)
C13—C5—C6—C725.1 (3)P1—N1—C14—C15128.82 (18)
C4—C5—C6—C6"37.7 (3)C14—N1—C16—C1765.7 (3)
C13—C5—C6—C6"147.5 (2)P1—N1—C16—C17106.8 (2)
C4—C5—C6—C6'81.9 (3)C20—N2—C18—C1952.3 (3)
C13—C5—C6—C6'92.9 (2)P1—N2—C18—C19155.28 (19)
C5—C6—C7—C1218.5 (3)C18—N2—C20—C2158.6 (3)
C6"—C6—C7—C12141.4 (2)P1—N2—C20—C2195.2 (3)
C6'—C6—C7—C1299.3 (2)C24—N3—C22—C2371.2 (2)
C5—C6—C7—C8163.2 (2)P2—N3—C22—C23117.85 (19)
C6"—C6—C7—C840.4 (3)C22—N3—C24—C2577.7 (3)
C6'—C6—C7—C879.0 (3)P2—N3—C24—C2594.1 (2)
C12—C7—C8—C91.3 (3)C28—N4—C26—C2756.6 (3)
C6—C7—C8—C9177.0 (2)P2—N4—C26—C27107.2 (2)
C7—C8—C9—C102.4 (4)C26—N4—C28—C2960.1 (4)
C8—C9—C10—C111.1 (4)P2—N4—C28—C29134.5 (2)
 

Acknowledgements

The authors thank the EPSRC (DJA) and the Royal Society (AMS) for financial support.

References

First citationAdams, D. J., Cole-Hamilton, D. J., Harding, D. A. J., Hope, E. G., Pogorzelec, P. & Stuart, A. M. (2004). Tetrahedron, 60, 4079–4085.  Web of Science CrossRef CAS Google Scholar
First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGoertz, W., Kamer, P. C. J., van Leeuwen, P. W. N. M. & Vogt, D. (2001). Chem. Eur. J. 7, 1614–1618.  CrossRef PubMed CAS Google Scholar
First citationKranenburg, M., van der Burgt, Y. E. M., Kamer, P. C. J., van Leeuwen, P. W. N. M. (1995). Organometallics, 14, 3081–3089.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds