inorganic compounds
Strontium nitride carbodiimide, Sr4N2(CN2)
aDepartment of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England
*Correspondence e-mail: simon.clarke@chem.ox.ac.uk
Strontium nitride carbodiimide, Sr4N2(CN2), is isostructural with the calcium analogue and consists of a framework of edge- and vertex-sharing Sr6N octahedra forming channels within which almost linear and almost symmetrical carbodiimide anions reside, surrounded by eight strontium ions.
Comment
There is increasing interest in the chemistry of the nitrides of the elements and one way to grow crystals of alkaline earth main group nitrides is to make use of a molten sodium ; Reckeweg & DiSalvo, 2000). In attempting to grow crystals of strontium aluminium nitrides we grew crystals of the title phase. Strontium nitride carbodiimide is isostructural with the calcium analogue Ca4N2(CN2) (Reckeweg & DiSalvo, 2000) and with Ca3.2Sr0.8N2(CN2) (Höhn et al., 2000). The structure consists of a three-dimensional framework of Sr6N octahedra, centred by atoms N3 and N4, linked by their edges and vertices. Channels are formed which accommodate the carbodiimide anions. Each N atom of the carbodiimide anion is within 3.0 Å of four strontium ions and the [CN2]2− anions should be considered eight-coordinate by strontium cations. Atoms Sr1 and Sr3 are coordinated by five N atoms within 3 Å, Sr2 is in approximately octahedral coordination by six N atoms, and Sr4 is in distorted tetrahedral coordination by four N atoms within 2.7 Å, with a fifth N atom 3.228 (4) Å distant. The carbodiimide anions are almost linear, with an N—C—N bond angle of 178.0 (5)°, and the anion is in the symmetrical carbodiimide form, with C—N bond lengths of 1.240 (6) and 1.235 (6) Å, which are equal within experimental uncertainty. The geometry of the carbodiimide anions in Ca4N2(CN2) is similar: C—N bond lengths of 1.22 (1) and 1.24 (1) Å, and an N—C—N angle of 179.7 (10)° (Reckeweg & DiSalvo, 2000). The structure of Sr4N2(CN2) is shown in Fig. 1.
(Yamane & DiSalvo, 1996Experimental
Strontium nitride carbodiimide was synthesized by reacting together Sr (99%, Aldrich, 100 mg), NaN3 (99%, Aldrich, 85 mg), Al (99.99%, Aldrich, 31 mg) and Na (99+ %, BDH, 200 mg) in a sealed nickel tube at 1073 K for 4 d, with slow cooling to 673 K prior to removal of the tube from the furnace. A small number of colourless crystals of the product were obtained after of excess sodium from the reactants. No other crystalline products were identified in the reaction. The carbon forming the carbodiimide units presumably arises adventitiously from the nickel tube or from one or more of the reactants, as noted by Reckeweg & DiSalvo (2000).
Crystal data
|
Refinement
|
The highest residdual electron-density peak is located 1.57 Å from atom Sr3. [1.12 e Å−3].
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536805030850/br6219sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock new. DOI: 10.1107/S1600536805030850/br6219Isup2.hkl
Strontium nitride carbodiimide was synthesized by reacting together Sr (99%, Aldrich, 100 mg), NaN3 (99%, Aldrich, 85 mg), Al (99.99%, Aldrich, 31 mg) and Na (99+ %, BDH, 200 mg) in a sealed nickel tube at 1073 K for 4 d, with slow cooling to 673 K prior to removal of the tube from the furnace. A small numbers of colourless crystals of the product were obtained after
of excess sodium from the reactants. No other crystalline products were identified in the reaction. The carbon forming the carbodiimide units presumably arises adventitiously from the nickel tube or from one or more of the reactants, as noted by Reckeweg & DiSalvo (2000).Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The structure of Sr4N2(CN2), showing the framework of Sr6N octahedra and the channels containing the carbodiimide anions. The detail shows the asymmetric unit depicting 99% displacement ellipsoids. |
Sr4N2(CN2) | F(000) = 744 |
Mr = 418.53 | Dx = 4.125 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 43855 reflections |
a = 12.2928 (4) Å | θ = 1.0–33.1° |
b = 3.8261 (1) Å | µ = 31.39 mm−1 |
c = 14.3291 (5) Å | T = 150 K |
V = 673.95 (4) Å3 | Prism, white |
Z = 4 | 0.09 × 0.05 × 0.02 mm |
Nonius KappaCCD diffractometer | 1156 independent reflections |
Radiation source: Enraf Nonius FR590 | 942 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.076 |
CCD rotation images, thick slices scans | θmax = 30.5°, θmin = 5.2° |
Absorption correction: analytical (Alcock, 1970) | h = −17→17 |
Tmin = 0.062, Tmax = 0.301 | k = −5→5 |
14693 measured reflections | l = −20→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0142P)2 + 1.6092P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.050 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 1.12 e Å−3 |
1156 reflections | Δρmin = −0.99 e Å−3 |
56 parameters | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00093 (15) |
Sr4N2(CN2) | V = 673.95 (4) Å3 |
Mr = 418.53 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.2928 (4) Å | µ = 31.39 mm−1 |
b = 3.8261 (1) Å | T = 150 K |
c = 14.3291 (5) Å | 0.09 × 0.05 × 0.02 mm |
Nonius KappaCCD diffractometer | 1156 independent reflections |
Absorption correction: analytical (Alcock, 1970) | 942 reflections with I > 2σ(I) |
Tmin = 0.062, Tmax = 0.301 | Rint = 0.076 |
14693 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 56 parameters |
wR(F2) = 0.050 | 0 restraints |
S = 1.07 | Δρmax = 1.12 e Å−3 |
1156 reflections | Δρmin = −0.99 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.11185 (3) | 0.25 | 0.59628 (3) | 0.00995 (11) | |
Sr2 | 0.12505 (3) | 0.25 | 0.03205 (3) | 0.00994 (11) | |
Sr3 | 0.33905 (3) | 0.25 | 0.73997 (3) | 0.00994 (11) | |
Sr4 | 0.40728 (3) | 0.25 | 0.31366 (3) | 0.01062 (11) | |
N1 | 0.0547 (3) | 0.25 | 0.3728 (3) | 0.0178 (9) | |
N2 | 0.2420 (3) | 0.25 | 0.4360 (3) | 0.0164 (9) | |
N3 | 0.2803 (3) | 0.25 | 0.1692 (3) | 0.0115 (8) | |
N4 | 0.4864 (3) | 0.25 | 0.6207 (3) | 0.0115 (8) | |
C5 | 0.1492 (4) | 0.25 | 0.4031 (4) | 0.0144 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.0104 (2) | 0.00829 (19) | 0.0111 (2) | 0 | −0.00008 (16) | 0 |
Sr2 | 0.0105 (2) | 0.00805 (19) | 0.0112 (2) | 0 | 0.00027 (16) | 0 |
Sr3 | 0.0103 (2) | 0.00786 (18) | 0.0117 (2) | 0 | −0.00007 (16) | 0 |
Sr4 | 0.0118 (2) | 0.00723 (19) | 0.0128 (2) | 0 | −0.00272 (17) | 0 |
N1 | 0.0107 (19) | 0.0163 (19) | 0.026 (2) | 0 | 0.0005 (18) | 0 |
N2 | 0.014 (2) | 0.0161 (19) | 0.019 (2) | 0 | 0.0015 (17) | 0 |
N3 | 0.0130 (19) | 0.0081 (17) | 0.014 (2) | 0 | −0.0004 (16) | 0 |
N4 | 0.0109 (18) | 0.0096 (17) | 0.014 (2) | 0 | 0.0006 (15) | 0 |
C5 | 0.020 (2) | 0.0086 (19) | 0.015 (2) | 0 | 0.005 (2) | 0 |
Sr1—N3i | 2.551 (3) | Sr3—Sr4i | 3.7341 (5) |
Sr1—N3ii | 2.551 (3) | Sr4—N4xi | 2.500 (2) |
Sr1—N2 | 2.799 (4) | Sr4—N4xii | 2.500 (2) |
Sr1—C5 | 2.807 (5) | Sr4—N3 | 2.592 (4) |
Sr1—N1iii | 2.837 (3) | Sr4—N2 | 2.683 (4) |
Sr1—N1iv | 2.837 (3) | Sr4—N1xiii | 3.228 (4) |
Sr1—N1 | 3.279 (5) | Sr4—Sr2xiii | 3.4720 (6) |
Sr1—Sr3 | 3.4699 (6) | Sr4—Sr1vii | 3.6629 (5) |
Sr1—Sr4i | 3.6629 (5) | Sr4—Sr1viii | 3.6629 (5) |
Sr1—Sr4ii | 3.6629 (5) | Sr4—Sr2i | 3.6893 (5) |
Sr1—Sr1v | 3.8261 (1) | Sr4—Sr2ii | 3.6893 (5) |
Sr1—Sr1vi | 3.8261 (1) | Sr4—Sr3vii | 3.7341 (5) |
Sr2—N4vii | 2.674 (3) | Sr4—Sr3viii | 3.7341 (5) |
Sr2—N4viii | 2.674 (3) | N1—C5 | 1.240 (6) |
Sr2—N3 | 2.740 (4) | N1—Sr1iii | 2.837 (3) |
Sr2—N4ix | 2.774 (4) | N1—Sr1iv | 2.837 (3) |
Sr2—N2viii | 2.867 (3) | N1—Sr3vii | 2.998 (3) |
Sr2—N2vii | 2.867 (3) | N1—Sr3viii | 2.998 (3) |
Sr2—Sr4ix | 3.4720 (6) | N1—Sr4ix | 3.228 (4) |
Sr2—Sr3viii | 3.5680 (5) | N2—C5 | 1.235 (6) |
Sr2—Sr3vii | 3.5680 (5) | N2—Sr2i | 2.867 (3) |
Sr2—Sr4vii | 3.6893 (5) | N2—Sr2ii | 2.867 (3) |
Sr2—Sr4viii | 3.6893 (5) | N3—Sr1viii | 2.551 (3) |
Sr2—Sr2x | 3.7358 (7) | N3—Sr1vii | 2.551 (3) |
Sr3—N4 | 2.490 (4) | N3—Sr3vii | 2.616 (3) |
Sr3—N3ii | 2.616 (3) | N3—Sr3viii | 2.616 (3) |
Sr3—N3i | 2.616 (3) | N4—Sr4xi | 2.500 (2) |
Sr3—N1i | 2.998 (3) | N4—Sr4xii | 2.500 (2) |
Sr3—N1ii | 2.998 (3) | N4—Sr2ii | 2.674 (3) |
Sr3—C5i | 3.024 (4) | N4—Sr2i | 2.674 (3) |
Sr3—C5ii | 3.024 (4) | N4—Sr2xiii | 2.774 (4) |
Sr3—Sr2ii | 3.5680 (5) | C5—Sr3vii | 3.024 (4) |
Sr3—Sr2i | 3.5680 (5) | C5—Sr3viii | 3.024 (4) |
Sr3—Sr4ii | 3.7341 (5) | ||
N3i—Sr1—N3ii | 97.16 (13) | N4—Sr3—Sr2i | 48.48 (6) |
N3i—Sr1—N2 | 92.24 (10) | N3ii—Sr3—Sr2i | 97.93 (8) |
N3ii—Sr1—N2 | 92.24 (10) | N3i—Sr3—Sr2i | 49.73 (9) |
N3i—Sr1—C5 | 108.62 (11) | N1i—Sr3—Sr2i | 97.70 (7) |
N3ii—Sr1—C5 | 108.62 (11) | N1ii—Sr3—Sr2i | 144.92 (8) |
N2—Sr1—C5 | 25.46 (13) | C5i—Sr3—Sr2i | 107.47 (6) |
N3i—Sr1—N1iii | 144.73 (12) | C5ii—Sr3—Sr2i | 168.16 (9) |
N3ii—Sr1—N1iii | 78.77 (10) | Sr1—Sr3—Sr2i | 66.676 (11) |
N2—Sr1—N1iii | 122.75 (10) | Sr2ii—Sr3—Sr2i | 64.846 (11) |
C5—Sr1—N1iii | 105.80 (11) | N4—Sr3—Sr4ii | 141.62 (5) |
N3i—Sr1—N1iv | 78.77 (10) | N3ii—Sr3—Sr4ii | 43.93 (9) |
N3ii—Sr1—N1iv | 144.73 (12) | N3i—Sr3—Sr4ii | 91.68 (8) |
N2—Sr1—N1iv | 122.75 (10) | N1i—Sr3—Sr4ii | 120.05 (8) |
C5—Sr1—N1iv | 105.80 (11) | N1ii—Sr3—Sr4ii | 81.19 (7) |
N1iii—Sr1—N1iv | 84.80 (11) | C5i—Sr3—Sr4ii | 98.30 (9) |
N3i—Sr1—N1 | 120.76 (9) | C5ii—Sr3—Sr4ii | 59.74 (9) |
N3ii—Sr1—N1 | 120.76 (9) | Sr1—Sr3—Sr4ii | 60.992 (11) |
N2—Sr1—N1 | 47.24 (11) | Sr2ii—Sr3—Sr4ii | 93.538 (10) |
C5—Sr1—N1 | 21.78 (12) | Sr2i—Sr3—Sr4ii | 127.667 (15) |
N1iii—Sr1—N1 | 89.89 (11) | N4—Sr3—Sr4i | 141.62 (5) |
N1iv—Sr1—N1 | 89.89 (11) | N3ii—Sr3—Sr4i | 91.68 (8) |
N3i—Sr1—Sr3 | 48.61 (7) | N3i—Sr3—Sr4i | 43.93 (9) |
N3ii—Sr1—Sr3 | 48.61 (7) | N1i—Sr3—Sr4i | 81.19 (7) |
N2—Sr1—Sr3 | 91.52 (9) | N1ii—Sr3—Sr4i | 120.05 (8) |
C5—Sr1—Sr3 | 116.98 (10) | C5i—Sr3—Sr4i | 59.74 (9) |
N1iii—Sr1—Sr3 | 119.22 (8) | C5ii—Sr3—Sr4i | 98.30 (9) |
N1iv—Sr1—Sr3 | 119.22 (8) | Sr1—Sr3—Sr4i | 60.992 (11) |
N1—Sr1—Sr3 | 138.77 (7) | Sr2ii—Sr3—Sr4i | 127.667 (15) |
N3i—Sr1—Sr4i | 45.03 (9) | Sr2i—Sr3—Sr4i | 93.538 (10) |
N3ii—Sr1—Sr4i | 94.39 (8) | Sr4ii—Sr3—Sr4i | 61.636 (9) |
N2—Sr1—Sr4i | 137.25 (6) | N4xi—Sr4—N4xii | 99.84 (13) |
C5—Sr1—Sr4i | 148.147 (16) | N4xi—Sr4—N3 | 127.95 (7) |
N1iii—Sr1—Sr4i | 99.96 (8) | N4xii—Sr4—N3 | 127.95 (7) |
N1iv—Sr1—Sr4i | 57.90 (9) | N4xi—Sr4—N2 | 98.62 (11) |
N1—Sr1—Sr4i | 144.77 (3) | N4xii—Sr4—N2 | 98.62 (11) |
Sr3—Sr1—Sr4i | 63.069 (11) | N3—Sr4—N2 | 93.79 (12) |
N3i—Sr1—Sr4ii | 94.39 (8) | N4xi—Sr4—N1xiii | 91.02 (10) |
N3ii—Sr1—Sr4ii | 45.03 (9) | N4xii—Sr4—N1xiii | 91.02 (10) |
N2—Sr1—Sr4ii | 137.25 (6) | N3—Sr4—N1xiii | 71.17 (12) |
C5—Sr1—Sr4ii | 148.147 (16) | N2—Sr4—N1xiii | 164.96 (12) |
N1iii—Sr1—Sr4ii | 57.90 (9) | N4xi—Sr4—Sr2xiii | 50.03 (7) |
N1iv—Sr1—Sr4ii | 99.96 (8) | N4xii—Sr4—Sr2xiii | 50.03 (7) |
N1—Sr1—Sr4ii | 144.77 (3) | N3—Sr4—Sr2xiii | 166.57 (9) |
Sr3—Sr1—Sr4ii | 63.069 (11) | N2—Sr4—Sr2xiii | 99.65 (9) |
Sr4i—Sr1—Sr4ii | 62.969 (10) | N1xiii—Sr4—Sr2xiii | 95.39 (8) |
N3i—Sr1—Sr1v | 41.42 (7) | N4xi—Sr4—Sr1vii | 138.85 (9) |
N3ii—Sr1—Sr1v | 138.58 (7) | N4xii—Sr4—Sr1vii | 87.35 (8) |
N2—Sr1—Sr1v | 90 | N3—Sr4—Sr1vii | 44.14 (6) |
C5—Sr1—Sr1v | 90 | N2—Sr4—Sr1vii | 120.47 (7) |
N1iii—Sr1—Sr1v | 132.40 (6) | N1xiii—Sr4—Sr1vii | 48.12 (5) |
N1iv—Sr1—Sr1v | 47.60 (6) | Sr2xiii—Sr4—Sr1vii | 126.227 (13) |
N1—Sr1—Sr1v | 90 | N4xi—Sr4—Sr1viii | 87.35 (8) |
Sr3—Sr1—Sr1v | 90 | N4xii—Sr4—Sr1viii | 138.85 (9) |
Sr4i—Sr1—Sr1v | 58.515 (5) | N3—Sr4—Sr1viii | 44.14 (6) |
Sr4ii—Sr1—Sr1v | 121.485 (5) | N2—Sr4—Sr1viii | 120.47 (7) |
N3i—Sr1—Sr1vi | 138.58 (7) | N1xiii—Sr4—Sr1viii | 48.12 (5) |
N3ii—Sr1—Sr1vi | 41.42 (7) | Sr2xiii—Sr4—Sr1viii | 126.227 (13) |
N2—Sr1—Sr1vi | 90 | Sr1vii—Sr4—Sr1viii | 62.970 (10) |
C5—Sr1—Sr1vi | 90 | N4xi—Sr4—Sr2i | 48.74 (9) |
N1iii—Sr1—Sr1vi | 47.60 (6) | N4xii—Sr4—Sr2i | 97.70 (8) |
N1iv—Sr1—Sr1vi | 132.40 (6) | N3—Sr4—Sr2i | 127.77 (7) |
N1—Sr1—Sr1vi | 90 | N2—Sr4—Sr2i | 50.52 (7) |
Sr3—Sr1—Sr1vi | 90 | N1xiii—Sr4—Sr2i | 139.68 (5) |
Sr4i—Sr1—Sr1vi | 121.485 (5) | Sr2xiii—Sr4—Sr2i | 62.802 (12) |
Sr4ii—Sr1—Sr1vi | 58.515 (5) | Sr1vii—Sr4—Sr2i | 170.134 (16) |
Sr1v—Sr1—Sr1vi | 180.00 (2) | Sr1viii—Sr4—Sr2i | 116.332 (6) |
N4vii—Sr2—N4viii | 91.34 (12) | N4xi—Sr4—Sr2ii | 97.70 (8) |
N4vii—Sr2—N3 | 90.93 (10) | N4xii—Sr4—Sr2ii | 48.74 (9) |
N4viii—Sr2—N3 | 90.93 (10) | N3—Sr4—Sr2ii | 127.77 (7) |
N4vii—Sr2—N4ix | 93.45 (10) | N2—Sr4—Sr2ii | 50.52 (7) |
N4viii—Sr2—N4ix | 93.45 (10) | N1xiii—Sr4—Sr2ii | 139.68 (5) |
N3—Sr2—N4ix | 173.73 (11) | Sr2xiii—Sr4—Sr2ii | 62.802 (12) |
N4vii—Sr2—N2viii | 175.70 (9) | Sr1vii—Sr4—Sr2ii | 116.332 (6) |
N4viii—Sr2—N2viii | 92.45 (8) | Sr1viii—Sr4—Sr2ii | 170.134 (16) |
N3—Sr2—N2viii | 86.98 (10) | Sr2i—Sr4—Sr2ii | 62.469 (10) |
N4ix—Sr2—N2viii | 88.36 (10) | N4xi—Sr4—Sr3vii | 157.24 (8) |
N4vii—Sr2—N2vii | 92.45 (8) | N4xii—Sr4—Sr3vii | 97.94 (7) |
N4viii—Sr2—N2vii | 175.70 (9) | N3—Sr4—Sr3vii | 44.44 (6) |
N3—Sr2—N2vii | 86.98 (10) | N2—Sr4—Sr3vii | 64.59 (7) |
N4ix—Sr2—N2vii | 88.36 (10) | N1xiii—Sr4—Sr3vii | 102.79 (7) |
N2viii—Sr2—N2vii | 83.70 (11) | Sr2xiii—Sr4—Sr3vii | 143.640 (9) |
N4vii—Sr2—Sr4ix | 45.76 (6) | Sr1vii—Sr4—Sr3vii | 55.940 (10) |
N4viii—Sr2—Sr4ix | 45.76 (6) | Sr1viii—Sr4—Sr3vii | 88.571 (12) |
N3—Sr2—Sr4ix | 94.61 (8) | Sr2i—Sr4—Sr3vii | 114.717 (14) |
N4ix—Sr2—Sr4ix | 91.65 (8) | Sr2ii—Sr4—Sr3vii | 83.502 (11) |
N2viii—Sr2—Sr4ix | 138.15 (6) | N4xi—Sr4—Sr3viii | 97.94 (7) |
N2vii—Sr2—Sr4ix | 138.15 (6) | N4xii—Sr4—Sr3viii | 157.24 (8) |
N4vii—Sr2—Sr3viii | 92.88 (7) | N3—Sr4—Sr3viii | 44.44 (6) |
N4viii—Sr2—Sr3viii | 44.21 (8) | N2—Sr4—Sr3viii | 64.59 (7) |
N3—Sr2—Sr3viii | 46.75 (6) | N1xiii—Sr4—Sr3viii | 102.79 (7) |
N4ix—Sr2—Sr3viii | 137.30 (5) | Sr2xiii—Sr4—Sr3viii | 143.640 (9) |
N2viii—Sr2—Sr3viii | 88.43 (7) | Sr1vii—Sr4—Sr3viii | 88.571 (12) |
N2vii—Sr2—Sr3viii | 133.47 (8) | Sr1viii—Sr4—Sr3viii | 55.940 (10) |
Sr4ix—Sr2—Sr3viii | 64.129 (11) | Sr2i—Sr4—Sr3viii | 83.502 (11) |
N4vii—Sr2—Sr3vii | 44.21 (8) | Sr2ii—Sr4—Sr3viii | 114.717 (14) |
N4viii—Sr2—Sr3vii | 92.88 (7) | Sr3vii—Sr4—Sr3viii | 61.636 (9) |
N3—Sr2—Sr3vii | 46.75 (6) | C5—N1—Sr1iii | 128.41 (19) |
N4ix—Sr2—Sr3vii | 137.30 (5) | C5—N1—Sr1iv | 128.41 (19) |
N2viii—Sr2—Sr3vii | 133.47 (8) | Sr1iii—N1—Sr1iv | 84.80 (11) |
N2vii—Sr2—Sr3vii | 88.43 (7) | C5—N1—Sr3vii | 79.3 (2) |
Sr4ix—Sr2—Sr3vii | 64.129 (11) | Sr1iii—N1—Sr3vii | 89.04 (5) |
Sr3viii—Sr2—Sr3vii | 64.846 (11) | Sr1iv—N1—Sr3vii | 147.56 (17) |
N4vii—Sr2—Sr4vii | 88.67 (7) | C5—N1—Sr3viii | 79.3 (2) |
N4viii—Sr2—Sr4vii | 135.95 (8) | Sr1iii—N1—Sr3viii | 147.56 (17) |
N3—Sr2—Sr4vii | 133.12 (6) | Sr1iv—N1—Sr3viii | 89.04 (5) |
N4ix—Sr2—Sr4vii | 42.65 (5) | Sr3vii—N1—Sr3viii | 79.31 (11) |
N2viii—Sr2—Sr4vii | 90.02 (7) | C5—N1—Sr4ix | 144.7 (4) |
N2vii—Sr2—Sr4vii | 46.24 (8) | Sr1iii—N1—Sr4ix | 73.99 (9) |
Sr4ix—Sr2—Sr4vii | 117.198 (12) | Sr1iv—N1—Sr4ix | 73.99 (9) |
Sr3viii—Sr2—Sr4vii | 178.441 (13) | Sr3vii—N1—Sr4ix | 73.70 (9) |
Sr3vii—Sr2—Sr4vii | 116.332 (6) | Sr3viii—N1—Sr4ix | 73.70 (9) |
N4vii—Sr2—Sr4viii | 135.95 (8) | C5—N1—Sr1 | 57.1 (3) |
N4viii—Sr2—Sr4viii | 88.67 (7) | Sr1iii—N1—Sr1 | 90.11 (11) |
N3—Sr2—Sr4viii | 133.12 (6) | Sr1iv—N1—Sr1 | 90.11 (11) |
N4ix—Sr2—Sr4viii | 42.65 (5) | Sr3vii—N1—Sr1 | 121.78 (10) |
N2viii—Sr2—Sr4viii | 46.24 (8) | Sr3viii—N1—Sr1 | 121.78 (10) |
N2vii—Sr2—Sr4viii | 90.02 (7) | Sr4ix—N1—Sr1 | 158.21 (14) |
Sr4ix—Sr2—Sr4viii | 117.198 (12) | C5—N2—Sr4 | 116.7 (3) |
Sr3viii—Sr2—Sr4viii | 116.332 (6) | C5—N2—Sr1 | 77.6 (3) |
Sr3vii—Sr2—Sr4viii | 178.441 (13) | Sr4—N2—Sr1 | 165.68 (17) |
Sr4vii—Sr2—Sr4viii | 62.469 (10) | C5—N2—Sr2i | 135.23 (12) |
N4vii—Sr2—Sr2x | 47.84 (8) | Sr4—N2—Sr2i | 83.24 (10) |
N4viii—Sr2—Sr2x | 93.52 (7) | Sr1—N2—Sr2i | 86.11 (10) |
N3—Sr2—Sr2x | 138.57 (5) | C5—N2—Sr2ii | 135.23 (12) |
N4ix—Sr2—Sr2x | 45.61 (6) | Sr4—N2—Sr2ii | 83.24 (10) |
N2viii—Sr2—Sr2x | 133.83 (8) | Sr1—N2—Sr2ii | 86.11 (10) |
N2vii—Sr2—Sr2x | 90.53 (7) | Sr2i—N2—Sr2ii | 83.70 (11) |
Sr4ix—Sr2—Sr2x | 61.445 (13) | Sr1viii—N3—Sr1vii | 97.16 (13) |
Sr3viii—Sr2—Sr2x | 125.567 (19) | Sr1viii—N3—Sr4 | 90.83 (11) |
Sr3vii—Sr2—Sr2x | 91.864 (12) | Sr1vii—N3—Sr4 | 90.83 (11) |
Sr4vii—Sr2—Sr2x | 55.753 (12) | Sr1viii—N3—Sr3vii | 177.10 (16) |
Sr4viii—Sr2—Sr2x | 88.184 (16) | Sr1vii—N3—Sr3vii | 84.366 (11) |
N4—Sr3—N3ii | 98.18 (10) | Sr4—N3—Sr3vii | 91.62 (11) |
N4—Sr3—N3i | 98.18 (10) | Sr1viii—N3—Sr3viii | 84.366 (11) |
N3ii—Sr3—N3i | 94.01 (13) | Sr1vii—N3—Sr3viii | 177.10 (16) |
N4—Sr3—N1i | 96.81 (11) | Sr4—N3—Sr3viii | 91.62 (11) |
N3ii—Sr3—N1i | 163.18 (11) | Sr3vii—N3—Sr3viii | 94.01 (13) |
N3i—Sr3—N1i | 91.36 (9) | Sr1viii—N3—Sr2 | 93.90 (11) |
N4—Sr3—N1ii | 96.81 (11) | Sr1vii—N3—Sr2 | 93.90 (11) |
N3ii—Sr3—N1ii | 91.36 (9) | Sr4—N3—Sr2 | 172.85 (17) |
N3i—Sr3—N1ii | 163.18 (11) | Sr3vii—N3—Sr2 | 83.52 (10) |
N1i—Sr3—N1ii | 79.31 (11) | Sr3viii—N3—Sr2 | 83.52 (10) |
N4—Sr3—C5i | 119.71 (11) | Sr3—N4—Sr4xi | 97.01 (11) |
N3ii—Sr3—C5i | 142.10 (13) | Sr3—N4—Sr4xii | 97.01 (11) |
N3i—Sr3—C5i | 82.16 (10) | Sr4xi—N4—Sr4xii | 99.84 (13) |
N1i—Sr3—C5i | 23.76 (12) | Sr3—N4—Sr2ii | 87.32 (10) |
N1ii—Sr3—C5i | 83.82 (9) | Sr4xi—N4—Sr2ii | 173.62 (16) |
N4—Sr3—C5ii | 119.71 (11) | Sr4xii—N4—Sr2ii | 84.211 (15) |
N3ii—Sr3—C5ii | 82.16 (10) | Sr3—N4—Sr2i | 87.32 (10) |
N3i—Sr3—C5ii | 142.10 (13) | Sr4xi—N4—Sr2i | 84.211 (15) |
N1i—Sr3—C5ii | 83.82 (9) | Sr4xii—N4—Sr2i | 173.62 (16) |
N1ii—Sr3—C5ii | 23.76 (12) | Sr2ii—N4—Sr2i | 91.34 (12) |
C5i—Sr3—C5ii | 78.50 (12) | Sr3—N4—Sr2xiii | 171.22 (17) |
N4—Sr3—Sr1 | 100.28 (9) | Sr4xi—N4—Sr2xiii | 88.61 (10) |
N3ii—Sr3—Sr1 | 47.03 (6) | Sr4xii—N4—Sr2xiii | 88.61 (10) |
N3i—Sr3—Sr1 | 47.03 (6) | Sr2ii—N4—Sr2xiii | 86.55 (10) |
N1i—Sr3—Sr1 | 136.66 (6) | Sr2i—N4—Sr2xiii | 86.55 (10) |
N1ii—Sr3—Sr1 | 136.66 (6) | N2—C5—N1 | 178.0 (5) |
C5i—Sr3—Sr1 | 119.81 (9) | N2—C5—Sr1 | 76.9 (3) |
C5ii—Sr3—Sr1 | 119.81 (9) | N1—C5—Sr1 | 101.1 (3) |
N4—Sr3—Sr2ii | 48.48 (6) | N2—C5—Sr3vii | 104.6 (3) |
N3ii—Sr3—Sr2ii | 49.73 (9) | N1—C5—Sr3vii | 76.9 (2) |
N3i—Sr3—Sr2ii | 97.93 (8) | Sr1—C5—Sr3vii | 140.38 (6) |
N1i—Sr3—Sr2ii | 144.92 (8) | N2—C5—Sr3viii | 104.6 (3) |
N1ii—Sr3—Sr2ii | 97.70 (7) | N1—C5—Sr3viii | 76.9 (2) |
C5i—Sr3—Sr2ii | 168.16 (9) | Sr1—C5—Sr3viii | 140.38 (6) |
C5ii—Sr3—Sr2ii | 107.47 (6) | Sr3vii—C5—Sr3viii | 78.50 (12) |
Sr1—Sr3—Sr2ii | 66.676 (11) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1/2, −y, z+1/2; (iii) −x, −y, −z+1; (iv) −x, −y+1, −z+1; (v) x, y+1, z; (vi) x, y−1, z; (vii) −x+1/2, −y, z−1/2; (viii) −x+1/2, −y+1, z−1/2; (ix) x−1/2, y, −z+1/2; (x) −x, −y, −z; (xi) −x+1, −y+1, −z+1; (xii) −x+1, −y, −z+1; (xiii) x+1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Sr4N2(CN2) |
Mr | 418.53 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 150 |
a, b, c (Å) | 12.2928 (4), 3.8261 (1), 14.3291 (5) |
V (Å3) | 673.95 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 31.39 |
Crystal size (mm) | 0.09 × 0.05 × 0.02 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Analytical (Alcock, 1970) |
Tmin, Tmax | 0.062, 0.301 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14693, 1156, 942 |
Rint | 0.076 |
(sin θ/λ)max (Å−1) | 0.714 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.050, 1.07 |
No. of reflections | 1156 |
No. of parameters | 56 |
Δρmax, Δρmin (e Å−3) | 1.12, −0.99 |
Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELX97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 2005), WinGX (Farrugia, 1999).
Sr1—N3i | 2.551 (3) | Sr3—N4 | 2.490 (4) |
Sr1—N3ii | 2.551 (3) | Sr3—N3ii | 2.616 (3) |
Sr1—N2 | 2.799 (4) | Sr3—N3i | 2.616 (3) |
Sr1—N1iii | 2.837 (3) | Sr3—N1i | 2.998 (3) |
Sr1—N1iv | 2.837 (3) | Sr3—N1ii | 2.998 (3) |
Sr2—N4v | 2.674 (3) | Sr4—N4viii | 2.500 (2) |
Sr2—N4vi | 2.674 (3) | Sr4—N4ix | 2.500 (2) |
Sr2—N3 | 2.740 (4) | Sr4—N3 | 2.592 (4) |
Sr2—N4vii | 2.774 (4) | Sr4—N2 | 2.683 (4) |
Sr2—N2vi | 2.867 (3) | N1—C5 | 1.240 (6) |
Sr2—N2v | 2.867 (3) | N2—C5 | 1.235 (6) |
N2—C5—N1 | 178.0 (5) |
Symmetry codes: (i) −x+1/2, −y+1, z+1/2; (ii) −x+1/2, −y, z+1/2; (iii) −x, −y, −z+1; (iv) −x, −y+1, −z+1; (v) −x+1/2, −y, z−1/2; (vi) −x+1/2, −y+1, z−1/2; (vii) x−1/2, y, −z+1/2; (viii) −x+1, −y+1, −z+1; (ix) −x+1, −y, −z+1. |
Footnotes
‡Current address: Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, England.
References
Alcock, N. W. (1970). Crystallographic Computing, Proceedings of the International Summer School, edited by S. R. Hall, pp. 271–278. Copenhagen: Munksgaard. Google Scholar
Dowty, E. (2005). ATOMS. Version 6-2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Höhn, P., Niewa, R. & Kniep R. (2000). Z. Kristallogr. New Cryst. Struct. 215, 323–324. Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Reckeweg, O. & DiSalvo, F. J. (2000). Angew. Chem. Int. Ed. 39, 412–414. CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany. Google Scholar
Yamane, H. & DiSalvo, F. J. (1996). J. Alloys Compd. 240, 33–36. CrossRef CAS Web of Science Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
There is increasing interest in the chemistry of the nitrides of the elements and one way to grow crystals of alkaline earth main group nitrides is to make use of a molten sodium flux (Yamane & DiSalvo, 1996; Reckeweg & DiSalvo, 2000). In attempting to grow crystals of strontium aluminium nitrides we grew crystals of the title phase. Strontium nitride carbodiimide is isostructural with the calcium analogue Ca4N2(CN2) (Reckeweg & DiSalvo, 2000) and with Ca3.2Sr0.8N2(CN2) (Höhn et al., 2000). The structure consists of a three-dimensional framework of Sr6N octahedra, centred by atoms N3 and N4, linked by their edges and vertices. Channels are formed which accommodate the carbodiimide anions. Each N atom of the carbodiimide anion is within 3.0 Å of four strontium ions and the [CN2]2− anions should be considered eight-coordinate by strontium cations. Atoms Sr1 and Sr3 are coordinated by five N atoms within 3 Å, Sr2 is in approximately octahedral coordination by six N atoms, and Sr4 is in distorted tetrahedral coordination by four N atoms within 2.7 Å, with a fifth N atom 3.228 (4) Å distant. The carbodiimide anions are almost linear, with an N—C—N bond angle of 178.0 (5)°, and the anion is in the symmetrical carbodiimide form, with C—N bond lengths of 1.240 (6) and 1.235 (6) Å, which are equal within experimental uncertainty. The geometry of the carbodiimide anions in Ca4N2(CN2) is similar: C—N bond lengths of 1.22 (1) and 1.24 (1) Å, and an N—C—N angle of 179.7 (10)° (Reckeweg & DiSalvo, 2000). The structure of Sr4N2(CN2) is shown in Fig. 1.