inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Strontium nitride carbodi­imide, Sr4N2(CN2)

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, England
*Correspondence e-mail: simon.clarke@chem.ox.ac.uk

(Received 19 September 2005; accepted 27 September 2005; online 30 September 2005)

Strontium nitride carbodiimide, Sr4N2(CN2), is isostructural with the calcium analogue and consists of a framework of edge- and vertex-sharing Sr6N octa­hedra forming channels within which almost linear and almost symmetrical carbo­diimide anions reside, surrounded by eight strontium ions.

Comment

There is increasing inter­est in the chemistry of the nitrides of the elements and one way to grow crystals of alkaline earth main group nitrides is to make use of a molten sodium flux (Yamane & DiSalvo, 1996[Yamane, H. & DiSalvo, F. J. (1996). J. Alloys Compd. 240, 33-36.]; Reckeweg & DiSalvo, 2000[Reckeweg, O. & DiSalvo, F. J. (2000). Angew. Chem. Int. Ed. 39, 412-414.]). In attempting to grow crystals of strontium aluminium nitrides we grew crystals of the title phase. Strontium nitride carbodiimide is isostructural with the calcium analogue Ca4N2(CN2) (Reckeweg & DiSalvo, 2000[Reckeweg, O. & DiSalvo, F. J. (2000). Angew. Chem. Int. Ed. 39, 412-414.]) and with Ca3.2Sr0.8N2(CN2) (Höhn et al., 2000[Höhn, P., Niewa, R. & Kniep R. (2000). Z. Kristallogr. New Cryst. Struct. 215, 323-324.]). The structure consists of a three-dimensional framework of Sr6N octa­hedra, centred by atoms N3 and N4, linked by their edges and vertices. Channels are formed which accommodate the carbodiimide anions. Each N atom of the carbodiimide anion is within 3.0 Å of four strontium ions and the [CN2]2− anions should be considered eight-coordinate by strontium cations. Atoms Sr1 and Sr3 are coordinated by five N atoms within 3 Å, Sr2 is in approximately octa­hedral coordination by six N atoms, and Sr4 is in distorted tetra­hedral coordination by four N atoms within 2.7 Å, with a fifth N atom 3.228 (4) Å distant. The carbodiimide anions are almost linear, with an N—C—N bond angle of 178.0 (5)°, and the anion is in the symmetrical carbodiimide form, with C—N bond lengths of 1.240 (6) and 1.235 (6) Å, which are equal within experimental uncertainty. The geometry of the carbodiimide anions in Ca4N2(CN2) is similar: C—N bond lengths of 1.22 (1) and 1.24 (1) Å, and an N—C—N angle of 179.7 (10)° (Reckeweg & DiSalvo, 2000[Reckeweg, O. & DiSalvo, F. J. (2000). Angew. Chem. Int. Ed. 39, 412-414.]). The structure of Sr4N2(CN2) is shown in Fig. 1[link].

[Figure 1]
Figure 1
The structure of Sr4N2(CN2), showing the framework of Sr6N octa­hedra and the channels containing the carbodiimide anions. The detail shows the asymmetric unit, with 99% displacement ellipsoids.

Experimental

Strontium nitride carbodiimide was synthesized by reacting together Sr (99%, Aldrich, 100 mg), NaN3 (99%, Aldrich, 85 mg), Al (99.99%, Aldrich, 31 mg) and Na (99+ %, BDH, 200 mg) in a sealed nickel tube at 1073 K for 4 d, with slow cooling to 673 K prior to removal of the tube from the furnace. A small number of colourless crystals of the product were obtained after sublimation of excess sodium from the reactants. No other crystalline products were identified in the reaction. The carbon forming the carbodiimide units presumably arises adventitiously from the nickel tube or from one or more of the reactants, as noted by Reckeweg & DiSalvo (2000[Reckeweg, O. & DiSalvo, F. J. (2000). Angew. Chem. Int. Ed. 39, 412-414.]).

Crystal data
  • Sr4N2(CN2)

  • Mr = 418.53

  • Orthorhombic, P n m a

  • a = 12.2928 (4) Å

  • b = 3.8261 (1) Å

  • c = 14.3291 (5) Å

  • V = 673.95 (4) Å3

  • Z = 4

  • Dx = 4.125 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 43855 reflections

  • θ = 1.0–33.1°

  • μ = 31.39 mm−1

  • T = 150 (2) K

  • Prism, colourless above

  • 0.09 × 0.05 × 0.02 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: analytical(Alcock, 1970[Alcock, N. W. (1970). Crystallographic Computing, Proceedings of the International Summer School, edited by S. R. Hall, pp. 271-278. Copenhagen: Munksgaard.])Tmin = 0.062, Tmax = 0.301

  • 14693 measured reflections

  • 1156 independent reflections

  • 942 reflections with I > 2σ(I)

  • Rint = 0.076

  • θmax = 30.5°

  • h = −17 → 17

  • k = −5 → 5

  • l = −20 → 20

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.050

  • S = 1.07

  • 1156 reflections

  • 56 parameters

  • w = 1/[σ2(Fo2) + (0.0142P)2 + 1.6092P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.99 e Å−3

  • Extinction correction: SHELXL97

  • Extinction coefficient: 0.00093 (15)

Table 1
Selected geometric parameters (Å, °)

Sr1—N3i 2.551 (3)
Sr1—N3ii 2.551 (3)
Sr1—N2 2.799 (4)
Sr1—N1iii 2.837 (3)
Sr1—N1iv 2.837 (3)
Sr2—N4v 2.674 (3)
Sr2—N4vi 2.674 (3)
Sr2—N3 2.740 (4)
Sr2—N4vii 2.774 (4)
Sr2—N2vi 2.867 (3)
Sr2—N2v 2.867 (3)
Sr3—N4 2.490 (4)
Sr3—N3ii 2.616 (3)
Sr3—N3i 2.616 (3)
Sr3—N1i 2.998 (3)
Sr3—N1ii 2.998 (3)
Sr4—N4viii 2.500 (2)
Sr4—N4ix 2.500 (2)
Sr4—N3 2.592 (4)
Sr4—N2 2.683 (4)
N1—C5 1.240 (6)
N2—C5 1.235 (6)
N2—C5—N1 178.0 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) -x, -y, -z+1; (iv) -x, -y+1, -z+1; (v) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (vi) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (vii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (viii) -x+1, -y+1, -z+1; (ix) -x+1, -y, -z+1.

The highest residdual electron-density peak is located 1.57 Å from atom Sr3. [1.12 e Å−3].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELX97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.]); molecular graphics: ATOMS (Dowty, 2005[Dowty, E. (2005). ATOMS. Version 6-2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There is increasing interest in the chemistry of the nitrides of the elements and one way to grow crystals of alkaline earth main group nitrides is to make use of a molten sodium flux (Yamane & DiSalvo, 1996; Reckeweg & DiSalvo, 2000). In attempting to grow crystals of strontium aluminium nitrides we grew crystals of the title phase. Strontium nitride carbodiimide is isostructural with the calcium analogue Ca4N2(CN2) (Reckeweg & DiSalvo, 2000) and with Ca3.2Sr0.8N2(CN2) (Höhn et al., 2000). The structure consists of a three-dimensional framework of Sr6N octahedra, centred by atoms N3 and N4, linked by their edges and vertices. Channels are formed which accommodate the carbodiimide anions. Each N atom of the carbodiimide anion is within 3.0 Å of four strontium ions and the [CN2]2− anions should be considered eight-coordinate by strontium cations. Atoms Sr1 and Sr3 are coordinated by five N atoms within 3 Å, Sr2 is in approximately octahedral coordination by six N atoms, and Sr4 is in distorted tetrahedral coordination by four N atoms within 2.7 Å, with a fifth N atom 3.228 (4) Å distant. The carbodiimide anions are almost linear, with an N—C—N bond angle of 178.0 (5)°, and the anion is in the symmetrical carbodiimide form, with C—N bond lengths of 1.240 (6) and 1.235 (6) Å, which are equal within experimental uncertainty. The geometry of the carbodiimide anions in Ca4N2(CN2) is similar: C—N bond lengths of 1.22 (1) and 1.24 (1) Å, and an N—C—N angle of 179.7 (10)° (Reckeweg & DiSalvo, 2000). The structure of Sr4N2(CN2) is shown in Fig. 1.

Experimental top

Strontium nitride carbodiimide was synthesized by reacting together Sr (99%, Aldrich, 100 mg), NaN3 (99%, Aldrich, 85 mg), Al (99.99%, Aldrich, 31 mg) and Na (99+ %, BDH, 200 mg) in a sealed nickel tube at 1073 K for 4 d, with slow cooling to 673 K prior to removal of the tube from the furnace. A small numbers of colourless crystals of the product were obtained after sublimation of excess sodium from the reactants. No other crystalline products were identified in the reaction. The carbon forming the carbodiimide units presumably arises adventitiously from the nickel tube or from one or more of the reactants, as noted by Reckeweg & DiSalvo (2000).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ATOMS (Dowty, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of Sr4N2(CN2), showing the framework of Sr6N octahedra and the channels containing the carbodiimide anions. The detail shows the asymmetric unit depicting 99% displacement ellipsoids.
Strontium nitride carbodiimide top
Crystal data top
Sr4N2(CN2)F(000) = 744
Mr = 418.53Dx = 4.125 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 43855 reflections
a = 12.2928 (4) Åθ = 1.0–33.1°
b = 3.8261 (1) ŵ = 31.39 mm1
c = 14.3291 (5) ÅT = 150 K
V = 673.95 (4) Å3Prism, white
Z = 40.09 × 0.05 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1156 independent reflections
Radiation source: Enraf Nonius FR590942 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
CCD rotation images, thick slices scansθmax = 30.5°, θmin = 5.2°
Absorption correction: analytical
(Alcock, 1970)
h = 1717
Tmin = 0.062, Tmax = 0.301k = 55
14693 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0142P)2 + 1.6092P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.050(Δ/σ)max = 0.001
S = 1.07Δρmax = 1.12 e Å3
1156 reflectionsΔρmin = 0.99 e Å3
56 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00093 (15)
Crystal data top
Sr4N2(CN2)V = 673.95 (4) Å3
Mr = 418.53Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.2928 (4) ŵ = 31.39 mm1
b = 3.8261 (1) ÅT = 150 K
c = 14.3291 (5) Å0.09 × 0.05 × 0.02 mm
Data collection top
Nonius KappaCCD
diffractometer
1156 independent reflections
Absorption correction: analytical
(Alcock, 1970)
942 reflections with I > 2σ(I)
Tmin = 0.062, Tmax = 0.301Rint = 0.076
14693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02656 parameters
wR(F2) = 0.0500 restraints
S = 1.07Δρmax = 1.12 e Å3
1156 reflectionsΔρmin = 0.99 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.11185 (3)0.250.59628 (3)0.00995 (11)
Sr20.12505 (3)0.250.03205 (3)0.00994 (11)
Sr30.33905 (3)0.250.73997 (3)0.00994 (11)
Sr40.40728 (3)0.250.31366 (3)0.01062 (11)
N10.0547 (3)0.250.3728 (3)0.0178 (9)
N20.2420 (3)0.250.4360 (3)0.0164 (9)
N30.2803 (3)0.250.1692 (3)0.0115 (8)
N40.4864 (3)0.250.6207 (3)0.0115 (8)
C50.1492 (4)0.250.4031 (4)0.0144 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0104 (2)0.00829 (19)0.0111 (2)00.00008 (16)0
Sr20.0105 (2)0.00805 (19)0.0112 (2)00.00027 (16)0
Sr30.0103 (2)0.00786 (18)0.0117 (2)00.00007 (16)0
Sr40.0118 (2)0.00723 (19)0.0128 (2)00.00272 (17)0
N10.0107 (19)0.0163 (19)0.026 (2)00.0005 (18)0
N20.014 (2)0.0161 (19)0.019 (2)00.0015 (17)0
N30.0130 (19)0.0081 (17)0.014 (2)00.0004 (16)0
N40.0109 (18)0.0096 (17)0.014 (2)00.0006 (15)0
C50.020 (2)0.0086 (19)0.015 (2)00.005 (2)0
Geometric parameters (Å, º) top
Sr1—N3i2.551 (3)Sr3—Sr4i3.7341 (5)
Sr1—N3ii2.551 (3)Sr4—N4xi2.500 (2)
Sr1—N22.799 (4)Sr4—N4xii2.500 (2)
Sr1—C52.807 (5)Sr4—N32.592 (4)
Sr1—N1iii2.837 (3)Sr4—N22.683 (4)
Sr1—N1iv2.837 (3)Sr4—N1xiii3.228 (4)
Sr1—N13.279 (5)Sr4—Sr2xiii3.4720 (6)
Sr1—Sr33.4699 (6)Sr4—Sr1vii3.6629 (5)
Sr1—Sr4i3.6629 (5)Sr4—Sr1viii3.6629 (5)
Sr1—Sr4ii3.6629 (5)Sr4—Sr2i3.6893 (5)
Sr1—Sr1v3.8261 (1)Sr4—Sr2ii3.6893 (5)
Sr1—Sr1vi3.8261 (1)Sr4—Sr3vii3.7341 (5)
Sr2—N4vii2.674 (3)Sr4—Sr3viii3.7341 (5)
Sr2—N4viii2.674 (3)N1—C51.240 (6)
Sr2—N32.740 (4)N1—Sr1iii2.837 (3)
Sr2—N4ix2.774 (4)N1—Sr1iv2.837 (3)
Sr2—N2viii2.867 (3)N1—Sr3vii2.998 (3)
Sr2—N2vii2.867 (3)N1—Sr3viii2.998 (3)
Sr2—Sr4ix3.4720 (6)N1—Sr4ix3.228 (4)
Sr2—Sr3viii3.5680 (5)N2—C51.235 (6)
Sr2—Sr3vii3.5680 (5)N2—Sr2i2.867 (3)
Sr2—Sr4vii3.6893 (5)N2—Sr2ii2.867 (3)
Sr2—Sr4viii3.6893 (5)N3—Sr1viii2.551 (3)
Sr2—Sr2x3.7358 (7)N3—Sr1vii2.551 (3)
Sr3—N42.490 (4)N3—Sr3vii2.616 (3)
Sr3—N3ii2.616 (3)N3—Sr3viii2.616 (3)
Sr3—N3i2.616 (3)N4—Sr4xi2.500 (2)
Sr3—N1i2.998 (3)N4—Sr4xii2.500 (2)
Sr3—N1ii2.998 (3)N4—Sr2ii2.674 (3)
Sr3—C5i3.024 (4)N4—Sr2i2.674 (3)
Sr3—C5ii3.024 (4)N4—Sr2xiii2.774 (4)
Sr3—Sr2ii3.5680 (5)C5—Sr3vii3.024 (4)
Sr3—Sr2i3.5680 (5)C5—Sr3viii3.024 (4)
Sr3—Sr4ii3.7341 (5)
N3i—Sr1—N3ii97.16 (13)N4—Sr3—Sr2i48.48 (6)
N3i—Sr1—N292.24 (10)N3ii—Sr3—Sr2i97.93 (8)
N3ii—Sr1—N292.24 (10)N3i—Sr3—Sr2i49.73 (9)
N3i—Sr1—C5108.62 (11)N1i—Sr3—Sr2i97.70 (7)
N3ii—Sr1—C5108.62 (11)N1ii—Sr3—Sr2i144.92 (8)
N2—Sr1—C525.46 (13)C5i—Sr3—Sr2i107.47 (6)
N3i—Sr1—N1iii144.73 (12)C5ii—Sr3—Sr2i168.16 (9)
N3ii—Sr1—N1iii78.77 (10)Sr1—Sr3—Sr2i66.676 (11)
N2—Sr1—N1iii122.75 (10)Sr2ii—Sr3—Sr2i64.846 (11)
C5—Sr1—N1iii105.80 (11)N4—Sr3—Sr4ii141.62 (5)
N3i—Sr1—N1iv78.77 (10)N3ii—Sr3—Sr4ii43.93 (9)
N3ii—Sr1—N1iv144.73 (12)N3i—Sr3—Sr4ii91.68 (8)
N2—Sr1—N1iv122.75 (10)N1i—Sr3—Sr4ii120.05 (8)
C5—Sr1—N1iv105.80 (11)N1ii—Sr3—Sr4ii81.19 (7)
N1iii—Sr1—N1iv84.80 (11)C5i—Sr3—Sr4ii98.30 (9)
N3i—Sr1—N1120.76 (9)C5ii—Sr3—Sr4ii59.74 (9)
N3ii—Sr1—N1120.76 (9)Sr1—Sr3—Sr4ii60.992 (11)
N2—Sr1—N147.24 (11)Sr2ii—Sr3—Sr4ii93.538 (10)
C5—Sr1—N121.78 (12)Sr2i—Sr3—Sr4ii127.667 (15)
N1iii—Sr1—N189.89 (11)N4—Sr3—Sr4i141.62 (5)
N1iv—Sr1—N189.89 (11)N3ii—Sr3—Sr4i91.68 (8)
N3i—Sr1—Sr348.61 (7)N3i—Sr3—Sr4i43.93 (9)
N3ii—Sr1—Sr348.61 (7)N1i—Sr3—Sr4i81.19 (7)
N2—Sr1—Sr391.52 (9)N1ii—Sr3—Sr4i120.05 (8)
C5—Sr1—Sr3116.98 (10)C5i—Sr3—Sr4i59.74 (9)
N1iii—Sr1—Sr3119.22 (8)C5ii—Sr3—Sr4i98.30 (9)
N1iv—Sr1—Sr3119.22 (8)Sr1—Sr3—Sr4i60.992 (11)
N1—Sr1—Sr3138.77 (7)Sr2ii—Sr3—Sr4i127.667 (15)
N3i—Sr1—Sr4i45.03 (9)Sr2i—Sr3—Sr4i93.538 (10)
N3ii—Sr1—Sr4i94.39 (8)Sr4ii—Sr3—Sr4i61.636 (9)
N2—Sr1—Sr4i137.25 (6)N4xi—Sr4—N4xii99.84 (13)
C5—Sr1—Sr4i148.147 (16)N4xi—Sr4—N3127.95 (7)
N1iii—Sr1—Sr4i99.96 (8)N4xii—Sr4—N3127.95 (7)
N1iv—Sr1—Sr4i57.90 (9)N4xi—Sr4—N298.62 (11)
N1—Sr1—Sr4i144.77 (3)N4xii—Sr4—N298.62 (11)
Sr3—Sr1—Sr4i63.069 (11)N3—Sr4—N293.79 (12)
N3i—Sr1—Sr4ii94.39 (8)N4xi—Sr4—N1xiii91.02 (10)
N3ii—Sr1—Sr4ii45.03 (9)N4xii—Sr4—N1xiii91.02 (10)
N2—Sr1—Sr4ii137.25 (6)N3—Sr4—N1xiii71.17 (12)
C5—Sr1—Sr4ii148.147 (16)N2—Sr4—N1xiii164.96 (12)
N1iii—Sr1—Sr4ii57.90 (9)N4xi—Sr4—Sr2xiii50.03 (7)
N1iv—Sr1—Sr4ii99.96 (8)N4xii—Sr4—Sr2xiii50.03 (7)
N1—Sr1—Sr4ii144.77 (3)N3—Sr4—Sr2xiii166.57 (9)
Sr3—Sr1—Sr4ii63.069 (11)N2—Sr4—Sr2xiii99.65 (9)
Sr4i—Sr1—Sr4ii62.969 (10)N1xiii—Sr4—Sr2xiii95.39 (8)
N3i—Sr1—Sr1v41.42 (7)N4xi—Sr4—Sr1vii138.85 (9)
N3ii—Sr1—Sr1v138.58 (7)N4xii—Sr4—Sr1vii87.35 (8)
N2—Sr1—Sr1v90N3—Sr4—Sr1vii44.14 (6)
C5—Sr1—Sr1v90N2—Sr4—Sr1vii120.47 (7)
N1iii—Sr1—Sr1v132.40 (6)N1xiii—Sr4—Sr1vii48.12 (5)
N1iv—Sr1—Sr1v47.60 (6)Sr2xiii—Sr4—Sr1vii126.227 (13)
N1—Sr1—Sr1v90N4xi—Sr4—Sr1viii87.35 (8)
Sr3—Sr1—Sr1v90N4xii—Sr4—Sr1viii138.85 (9)
Sr4i—Sr1—Sr1v58.515 (5)N3—Sr4—Sr1viii44.14 (6)
Sr4ii—Sr1—Sr1v121.485 (5)N2—Sr4—Sr1viii120.47 (7)
N3i—Sr1—Sr1vi138.58 (7)N1xiii—Sr4—Sr1viii48.12 (5)
N3ii—Sr1—Sr1vi41.42 (7)Sr2xiii—Sr4—Sr1viii126.227 (13)
N2—Sr1—Sr1vi90Sr1vii—Sr4—Sr1viii62.970 (10)
C5—Sr1—Sr1vi90N4xi—Sr4—Sr2i48.74 (9)
N1iii—Sr1—Sr1vi47.60 (6)N4xii—Sr4—Sr2i97.70 (8)
N1iv—Sr1—Sr1vi132.40 (6)N3—Sr4—Sr2i127.77 (7)
N1—Sr1—Sr1vi90N2—Sr4—Sr2i50.52 (7)
Sr3—Sr1—Sr1vi90N1xiii—Sr4—Sr2i139.68 (5)
Sr4i—Sr1—Sr1vi121.485 (5)Sr2xiii—Sr4—Sr2i62.802 (12)
Sr4ii—Sr1—Sr1vi58.515 (5)Sr1vii—Sr4—Sr2i170.134 (16)
Sr1v—Sr1—Sr1vi180.00 (2)Sr1viii—Sr4—Sr2i116.332 (6)
N4vii—Sr2—N4viii91.34 (12)N4xi—Sr4—Sr2ii97.70 (8)
N4vii—Sr2—N390.93 (10)N4xii—Sr4—Sr2ii48.74 (9)
N4viii—Sr2—N390.93 (10)N3—Sr4—Sr2ii127.77 (7)
N4vii—Sr2—N4ix93.45 (10)N2—Sr4—Sr2ii50.52 (7)
N4viii—Sr2—N4ix93.45 (10)N1xiii—Sr4—Sr2ii139.68 (5)
N3—Sr2—N4ix173.73 (11)Sr2xiii—Sr4—Sr2ii62.802 (12)
N4vii—Sr2—N2viii175.70 (9)Sr1vii—Sr4—Sr2ii116.332 (6)
N4viii—Sr2—N2viii92.45 (8)Sr1viii—Sr4—Sr2ii170.134 (16)
N3—Sr2—N2viii86.98 (10)Sr2i—Sr4—Sr2ii62.469 (10)
N4ix—Sr2—N2viii88.36 (10)N4xi—Sr4—Sr3vii157.24 (8)
N4vii—Sr2—N2vii92.45 (8)N4xii—Sr4—Sr3vii97.94 (7)
N4viii—Sr2—N2vii175.70 (9)N3—Sr4—Sr3vii44.44 (6)
N3—Sr2—N2vii86.98 (10)N2—Sr4—Sr3vii64.59 (7)
N4ix—Sr2—N2vii88.36 (10)N1xiii—Sr4—Sr3vii102.79 (7)
N2viii—Sr2—N2vii83.70 (11)Sr2xiii—Sr4—Sr3vii143.640 (9)
N4vii—Sr2—Sr4ix45.76 (6)Sr1vii—Sr4—Sr3vii55.940 (10)
N4viii—Sr2—Sr4ix45.76 (6)Sr1viii—Sr4—Sr3vii88.571 (12)
N3—Sr2—Sr4ix94.61 (8)Sr2i—Sr4—Sr3vii114.717 (14)
N4ix—Sr2—Sr4ix91.65 (8)Sr2ii—Sr4—Sr3vii83.502 (11)
N2viii—Sr2—Sr4ix138.15 (6)N4xi—Sr4—Sr3viii97.94 (7)
N2vii—Sr2—Sr4ix138.15 (6)N4xii—Sr4—Sr3viii157.24 (8)
N4vii—Sr2—Sr3viii92.88 (7)N3—Sr4—Sr3viii44.44 (6)
N4viii—Sr2—Sr3viii44.21 (8)N2—Sr4—Sr3viii64.59 (7)
N3—Sr2—Sr3viii46.75 (6)N1xiii—Sr4—Sr3viii102.79 (7)
N4ix—Sr2—Sr3viii137.30 (5)Sr2xiii—Sr4—Sr3viii143.640 (9)
N2viii—Sr2—Sr3viii88.43 (7)Sr1vii—Sr4—Sr3viii88.571 (12)
N2vii—Sr2—Sr3viii133.47 (8)Sr1viii—Sr4—Sr3viii55.940 (10)
Sr4ix—Sr2—Sr3viii64.129 (11)Sr2i—Sr4—Sr3viii83.502 (11)
N4vii—Sr2—Sr3vii44.21 (8)Sr2ii—Sr4—Sr3viii114.717 (14)
N4viii—Sr2—Sr3vii92.88 (7)Sr3vii—Sr4—Sr3viii61.636 (9)
N3—Sr2—Sr3vii46.75 (6)C5—N1—Sr1iii128.41 (19)
N4ix—Sr2—Sr3vii137.30 (5)C5—N1—Sr1iv128.41 (19)
N2viii—Sr2—Sr3vii133.47 (8)Sr1iii—N1—Sr1iv84.80 (11)
N2vii—Sr2—Sr3vii88.43 (7)C5—N1—Sr3vii79.3 (2)
Sr4ix—Sr2—Sr3vii64.129 (11)Sr1iii—N1—Sr3vii89.04 (5)
Sr3viii—Sr2—Sr3vii64.846 (11)Sr1iv—N1—Sr3vii147.56 (17)
N4vii—Sr2—Sr4vii88.67 (7)C5—N1—Sr3viii79.3 (2)
N4viii—Sr2—Sr4vii135.95 (8)Sr1iii—N1—Sr3viii147.56 (17)
N3—Sr2—Sr4vii133.12 (6)Sr1iv—N1—Sr3viii89.04 (5)
N4ix—Sr2—Sr4vii42.65 (5)Sr3vii—N1—Sr3viii79.31 (11)
N2viii—Sr2—Sr4vii90.02 (7)C5—N1—Sr4ix144.7 (4)
N2vii—Sr2—Sr4vii46.24 (8)Sr1iii—N1—Sr4ix73.99 (9)
Sr4ix—Sr2—Sr4vii117.198 (12)Sr1iv—N1—Sr4ix73.99 (9)
Sr3viii—Sr2—Sr4vii178.441 (13)Sr3vii—N1—Sr4ix73.70 (9)
Sr3vii—Sr2—Sr4vii116.332 (6)Sr3viii—N1—Sr4ix73.70 (9)
N4vii—Sr2—Sr4viii135.95 (8)C5—N1—Sr157.1 (3)
N4viii—Sr2—Sr4viii88.67 (7)Sr1iii—N1—Sr190.11 (11)
N3—Sr2—Sr4viii133.12 (6)Sr1iv—N1—Sr190.11 (11)
N4ix—Sr2—Sr4viii42.65 (5)Sr3vii—N1—Sr1121.78 (10)
N2viii—Sr2—Sr4viii46.24 (8)Sr3viii—N1—Sr1121.78 (10)
N2vii—Sr2—Sr4viii90.02 (7)Sr4ix—N1—Sr1158.21 (14)
Sr4ix—Sr2—Sr4viii117.198 (12)C5—N2—Sr4116.7 (3)
Sr3viii—Sr2—Sr4viii116.332 (6)C5—N2—Sr177.6 (3)
Sr3vii—Sr2—Sr4viii178.441 (13)Sr4—N2—Sr1165.68 (17)
Sr4vii—Sr2—Sr4viii62.469 (10)C5—N2—Sr2i135.23 (12)
N4vii—Sr2—Sr2x47.84 (8)Sr4—N2—Sr2i83.24 (10)
N4viii—Sr2—Sr2x93.52 (7)Sr1—N2—Sr2i86.11 (10)
N3—Sr2—Sr2x138.57 (5)C5—N2—Sr2ii135.23 (12)
N4ix—Sr2—Sr2x45.61 (6)Sr4—N2—Sr2ii83.24 (10)
N2viii—Sr2—Sr2x133.83 (8)Sr1—N2—Sr2ii86.11 (10)
N2vii—Sr2—Sr2x90.53 (7)Sr2i—N2—Sr2ii83.70 (11)
Sr4ix—Sr2—Sr2x61.445 (13)Sr1viii—N3—Sr1vii97.16 (13)
Sr3viii—Sr2—Sr2x125.567 (19)Sr1viii—N3—Sr490.83 (11)
Sr3vii—Sr2—Sr2x91.864 (12)Sr1vii—N3—Sr490.83 (11)
Sr4vii—Sr2—Sr2x55.753 (12)Sr1viii—N3—Sr3vii177.10 (16)
Sr4viii—Sr2—Sr2x88.184 (16)Sr1vii—N3—Sr3vii84.366 (11)
N4—Sr3—N3ii98.18 (10)Sr4—N3—Sr3vii91.62 (11)
N4—Sr3—N3i98.18 (10)Sr1viii—N3—Sr3viii84.366 (11)
N3ii—Sr3—N3i94.01 (13)Sr1vii—N3—Sr3viii177.10 (16)
N4—Sr3—N1i96.81 (11)Sr4—N3—Sr3viii91.62 (11)
N3ii—Sr3—N1i163.18 (11)Sr3vii—N3—Sr3viii94.01 (13)
N3i—Sr3—N1i91.36 (9)Sr1viii—N3—Sr293.90 (11)
N4—Sr3—N1ii96.81 (11)Sr1vii—N3—Sr293.90 (11)
N3ii—Sr3—N1ii91.36 (9)Sr4—N3—Sr2172.85 (17)
N3i—Sr3—N1ii163.18 (11)Sr3vii—N3—Sr283.52 (10)
N1i—Sr3—N1ii79.31 (11)Sr3viii—N3—Sr283.52 (10)
N4—Sr3—C5i119.71 (11)Sr3—N4—Sr4xi97.01 (11)
N3ii—Sr3—C5i142.10 (13)Sr3—N4—Sr4xii97.01 (11)
N3i—Sr3—C5i82.16 (10)Sr4xi—N4—Sr4xii99.84 (13)
N1i—Sr3—C5i23.76 (12)Sr3—N4—Sr2ii87.32 (10)
N1ii—Sr3—C5i83.82 (9)Sr4xi—N4—Sr2ii173.62 (16)
N4—Sr3—C5ii119.71 (11)Sr4xii—N4—Sr2ii84.211 (15)
N3ii—Sr3—C5ii82.16 (10)Sr3—N4—Sr2i87.32 (10)
N3i—Sr3—C5ii142.10 (13)Sr4xi—N4—Sr2i84.211 (15)
N1i—Sr3—C5ii83.82 (9)Sr4xii—N4—Sr2i173.62 (16)
N1ii—Sr3—C5ii23.76 (12)Sr2ii—N4—Sr2i91.34 (12)
C5i—Sr3—C5ii78.50 (12)Sr3—N4—Sr2xiii171.22 (17)
N4—Sr3—Sr1100.28 (9)Sr4xi—N4—Sr2xiii88.61 (10)
N3ii—Sr3—Sr147.03 (6)Sr4xii—N4—Sr2xiii88.61 (10)
N3i—Sr3—Sr147.03 (6)Sr2ii—N4—Sr2xiii86.55 (10)
N1i—Sr3—Sr1136.66 (6)Sr2i—N4—Sr2xiii86.55 (10)
N1ii—Sr3—Sr1136.66 (6)N2—C5—N1178.0 (5)
C5i—Sr3—Sr1119.81 (9)N2—C5—Sr176.9 (3)
C5ii—Sr3—Sr1119.81 (9)N1—C5—Sr1101.1 (3)
N4—Sr3—Sr2ii48.48 (6)N2—C5—Sr3vii104.6 (3)
N3ii—Sr3—Sr2ii49.73 (9)N1—C5—Sr3vii76.9 (2)
N3i—Sr3—Sr2ii97.93 (8)Sr1—C5—Sr3vii140.38 (6)
N1i—Sr3—Sr2ii144.92 (8)N2—C5—Sr3viii104.6 (3)
N1ii—Sr3—Sr2ii97.70 (7)N1—C5—Sr3viii76.9 (2)
C5i—Sr3—Sr2ii168.16 (9)Sr1—C5—Sr3viii140.38 (6)
C5ii—Sr3—Sr2ii107.47 (6)Sr3vii—C5—Sr3viii78.50 (12)
Sr1—Sr3—Sr2ii66.676 (11)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x, y+1, z; (vi) x, y1, z; (vii) x+1/2, y, z1/2; (viii) x+1/2, y+1, z1/2; (ix) x1/2, y, z+1/2; (x) x, y, z; (xi) x+1, y+1, z+1; (xii) x+1, y, z+1; (xiii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaSr4N2(CN2)
Mr418.53
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)150
a, b, c (Å)12.2928 (4), 3.8261 (1), 14.3291 (5)
V3)673.95 (4)
Z4
Radiation typeMo Kα
µ (mm1)31.39
Crystal size (mm)0.09 × 0.05 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionAnalytical
(Alcock, 1970)
Tmin, Tmax0.062, 0.301
No. of measured, independent and
observed [I > 2σ(I)] reflections
14693, 1156, 942
Rint0.076
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.050, 1.07
No. of reflections1156
No. of parameters56
Δρmax, Δρmin (e Å3)1.12, 0.99

Computer programs: COLLECT (Nonius, 2000), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELX97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ATOMS (Dowty, 2005), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Sr1—N3i2.551 (3)Sr3—N42.490 (4)
Sr1—N3ii2.551 (3)Sr3—N3ii2.616 (3)
Sr1—N22.799 (4)Sr3—N3i2.616 (3)
Sr1—N1iii2.837 (3)Sr3—N1i2.998 (3)
Sr1—N1iv2.837 (3)Sr3—N1ii2.998 (3)
Sr2—N4v2.674 (3)Sr4—N4viii2.500 (2)
Sr2—N4vi2.674 (3)Sr4—N4ix2.500 (2)
Sr2—N32.740 (4)Sr4—N32.592 (4)
Sr2—N4vii2.774 (4)Sr4—N22.683 (4)
Sr2—N2vi2.867 (3)N1—C51.240 (6)
Sr2—N2v2.867 (3)N2—C51.235 (6)
N2—C5—N1178.0 (5)
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y, z+1/2; (iii) x, y, z+1; (iv) x, y+1, z+1; (v) x+1/2, y, z1/2; (vi) x+1/2, y+1, z1/2; (vii) x1/2, y, z+1/2; (viii) x+1, y+1, z+1; (ix) x+1, y, z+1.
 

Footnotes

Current address: Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, England.

References

First citationAlcock, N. W. (1970). Crystallographic Computing, Proceedings of the International Summer School, edited by S. R. Hall, pp. 271–278. Copenhagen: Munksgaard.  Google Scholar
First citationDowty, E. (2005). ATOMS. Version 6-2. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHöhn, P., Niewa, R. & Kniep R. (2000). Z. Kristallogr. New Cryst. Struct. 215, 323–324.  Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationReckeweg, O. & DiSalvo, F. J. (2000). Angew. Chem. Int. Ed. 39, 412–414.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. Release 97-2. University of Göttingen, Germany.  Google Scholar
First citationYamane, H. & DiSalvo, F. J. (1996). J. Alloys Compd. 240, 33–36.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds