metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl­enediaminium tetra­chloro­zincate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland
*Correspondence e-mail: w.harrison@abdn.ac.uk

(Received 1 September 2005; accepted 6 September 2005; online 14 September 2005)

The title compound, (C2H10N2)[ZnCl4], contains a network of ethyl­enediaminium cations and tetra­hedral tetra­chloro­zincate anions. A three-dimensional network of N—H⋯Cl hydrogen bonds, some of which are bifurcated, helps to establish the crystal packing.

Comment

The title compound, (I)[link], (Fig. 1[link]), contains a network of ethyl­enediaminium cations and tetra­hedral tetra­chloro­zincate anions. The ZnCl42− anion has been seen in many crystal structures and possesses (Table 1[link]) typical Zn—Cl bond lengths (Deeth et al., 1984[Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310-1320.]), with a mean value of 2.268 (4) Å. The Cl—Zn—Cl bond angles in (I)[link] indicate relatively little distortion from a regular tetra­hedron [spread of values 104.78 (10)–115.57 (13)°].

[Scheme 1]

To ensure charge balance for (I)[link], the organic species must be doubly protonated. Each –NH3 group participates in N—H⋯Cl hydrogen bonds (Table 2[link]), three of which are bifurcated. These inter­actions help to establish a three-dimensional hydrogen-bond network (Fig. 2[link]) in (I)[link]. Such N—H⋯Cl and N—H⋯(Cl,Cl) inter­actions have been discussed in the context of crystal engineering (Brammer et al., 2002[Brammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956-4961.]).

Compound (I)[link] is clearly different from the phase described as (C2H10N2)2·ZnCl6 (Deeth et al., 1984[Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310-1320.]), which is probably better formulated as (C2H10N2)2·ZnCl4·Cl2, i.e. it contains tetra­chloro­zincate anions, as does (I)[link], as well as two `free' Cl ions, and not ZnCl64− moieties. Deeth et al. (1984[Deeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310-1320.]) reported some basic geometric information for (C2H10N2)2·ZnCl6 and noted that other workers would report its full single-crystal structure in due course, but we have not been able to locate this paper. Based on similarities in cell parameters and space group, (C2H10N2)2·HgCl6 (Spengler et al., 1998[Spengler, R., Zouari, R., Ben Salah, A., Zimmermann, H. & Burzlaff, H. (1998). Acta Cryst. C54, IUC98000034.]) probably has a close structural relationship to (C2H10N2)2·ZnCl6. However, the detailed coordination about the metal atom is likely to be different in the two phases. As noted above, the zinc compound probably contains relatively regular tetra­hedral complex ions, whereas in the mercury compound, the metal coordination could be described as grossly distorted tetra­hedral or possibly five-coordinate.

[Figure 1]
Figure 1
A view of (I)[link], showing 30% probability displacement ellipsoids and arbitrary spheres for the H atoms. The hydrogen bond is indicated by dashed lines.
[Figure 2]
Figure 2
The unit-cell packing in (I)[link], viewed down [100], with hydrogen bonds indicated a dashed bond.

Experimental

Acidified aqueous zinc chloride and ethyl­enediamine were mixed in a 1:1 ratio in a Petri dish, resulting in a clear solution. Rod and block-like crystals of (I)[link] grew as the water evaporated over a few days at 298 K.

Crystal data
  • (C2H10N2)[ZnCl4]

  • Mr = 269.29

  • Orthorhombic, P 21 21 21

  • a = 8.832 (4) Å

  • b = 9.811 (4) Å

  • c = 11.089 (5) Å

  • V = 960.9 (7) Å3

  • Z = 4

  • Dx = 1.862 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 25 reflections

  • θ = 10.0–15.0°

  • μ = 3.60 mm−1

  • T = 298 (2) K

  • Rod, colourless

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Siemens P4 diffractometer

  • ω/2θ scans

  • Absorption correction: ψ scan(XEMP; Siemens, 1990[Siemens (1990). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.])Tmin = 0.327, Tmax = 0.715

  • 1744 measured reflections

  • 1616 independent reflections

  • 1383 reflections with I > 2σ(I)

  • Rint = 0.114

  • θmax = 26.0°

  • h = 0 → 10

  • k = 0 → 12

  • l = −6 → 13

  • 3 standard reflections every 97 reflections intensity decay: none

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.084

  • wR(F2) = 0.209

  • S = 1.05

  • 1616 reflections

  • 84 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1645P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.71 e Å−3

  • Δρmin = −1.09 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 507 Friedel pairs

  • Flack parameter: −0.01 (5)

Table 1
Selected bond lengths (Å)[link]

Zn1—Cl3 2.240 (3)
Zn1—Cl2 2.262 (3)
Zn1—Cl4 2.275 (3)
Zn1—Cl1 2.296 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl2i 0.89 2.48 3.240 (10) 144
N1—H1A⋯Cl4i 0.89 2.94 3.472 (9) 120
N1—H1B⋯Cl4ii 0.89 2.40 3.185 (10) 147
N1—H1C⋯Cl1 0.89 2.29 3.173 (10) 169
N2—H2C⋯Cl2iii 0.89 2.47 3.239 (11) 146
N2—H2C⋯Cl4iv 0.89 2.83 3.381 (10) 121
N2—H2D⋯Cl1iv 0.89 2.46 3.242 (11) 148
N2—H2E⋯Cl1v 0.89 2.65 3.260 (9) 127
N2—H2E⋯Cl2v 0.89 2.85 3.618 (11) 146
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) x-1, y, z; (iv) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

The H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.97 Å, and refined as riding, with Uiso(H) = 1.2Ueq(carrier), allowing for free rotation of the rigid –NH3 groups about their C—N bonds.

Data collection: XSCANS (Siemens, 1990[Siemens (1990). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEP3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), (Fig. 1), contains a network of ethylenediammonium cations and tetrahedral tetrachlorozincate anions. The ZnCl42− moiety has been seen in many crystal structures and possesses (Table 1) typical Zn—Cl bond lengths (Deeth et al., 1984), with a mean value of 2.268 (4) Å. The Cl—Zn—Cl bond angles in (I) indicate relatively little distortion from a regular tetrahedron [spread of values 104.78 (10)–115.57 (13)°].

To ensure charge balance for (I), the organic species must be doubly protonated. Each –NH3 moiety participates in N-==H···Cl hydrogen bonds (Table 2), three of which are bifurcated. These interactions help to establish a three-dimensional hydrogen-bond network (Fig. 2) in (I). Such N—H···Cl and N—H···(Cl,Cl) interactions have been discussed in the context of crystal engineering (Brammer et al., 2002).

Compound (I) is clearly different from the phase described as (C2H10N2)2·ZnCl6 (Deeth et al., 1984), which is probably better formulated as (C2H10N2)2·ZnCl4·Cl2, i.e. it contains tetrachlorozincate anions, as does (I), as well as two `free' Cl ions, and not ZnCl64− moieties. Deeth et al. (1984) reported some basic geometric information for (C2H10N2)2·ZnCl6 and noted that other workers would report its full single-crystal structure in due course, but we have not been able to locate this paper. Based on similarities in cell parameters and space group, (C2H10N2)2·HgCl6 (Spengler et al., 1998) probably has a close structural relationship to (C2H10N2)2·ZnCl6. However, the detailed coordination about the metal atom is likely to be different in the two phases. As noted above, the zinc compound probably contains relatively regular tetrahedral complex ions, whereas in the mercury compound, the metal coordination could be described as grossly distorted tetrahedral or possibly five-coordinate.

Experimental top

Acidified aqueous zinc chloride and ethylenediamine were mixed in a 1:1 ratio in a Petri dish, resulting in a clear solution. Rod and block-like crystals of (I) grew as the water evaporated over a few days at 298 K.

Refinement top

The H atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.97 Å, and refined as riding, with Uiso(H) = 1.2Ueq(carrier), allowing for free rotation of the rigid –NH3 groups about their C—N bonds.

Computing details top

Data collection: XSCANS (Siemens, 1990); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), showing 30% prpbability displacement ellipsoids and arbitrary spheres for the H atoms. Hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. The unit-cell packing in (I), viewed down [100], with hydrogen bonds indicated by dashed lines.
Ethylenediaminium tetrachlorozincate top
Crystal data top
(C2H10N2)[ZnCl4]F(000) = 536
Mr = 269.29Dx = 1.862 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 8.832 (4) Åθ = 10.0–15.0°
b = 9.811 (4) ŵ = 3.60 mm1
c = 11.089 (5) ÅT = 298 K
V = 960.9 (7) Å3Rod, colourless
Z = 40.40 × 0.10 × 0.10 mm
Data collection top
Siemens P4
diffractometer
1383 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.114
Graphite monochromatorθmax = 26.0°, θmin = 2.8°
ω/2θ scansh = 010
Absorption correction: ψ scan
(XEMP; Siemens, 1990)
k = 012
Tmin = 0.327, Tmax = 0.715l = 613
1744 measured reflections3 standard reflections every 97 reflections
1616 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.209 w = 1/[σ2(Fo2) + (0.1645P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1616 reflectionsΔρmax = 0.71 e Å3
84 parametersΔρmin = 1.09 e Å3
0 restraintsAbsolute structure: Flack (1983), with 507 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (5)
Crystal data top
(C2H10N2)[ZnCl4]V = 960.9 (7) Å3
Mr = 269.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.832 (4) ŵ = 3.60 mm1
b = 9.811 (4) ÅT = 298 K
c = 11.089 (5) Å0.40 × 0.10 × 0.10 mm
Data collection top
Siemens P4
diffractometer
1383 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XEMP; Siemens, 1990)
Rint = 0.114
Tmin = 0.327, Tmax = 0.7153 standard reflections every 97 reflections
1744 measured reflections intensity decay: none
1616 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.209Δρmax = 0.71 e Å3
S = 1.05Δρmin = 1.09 e Å3
1616 reflectionsAbsolute structure: Flack (1983), with 507 Friedel pairs
84 parametersAbsolute structure parameter: 0.01 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.74608 (12)0.44688 (10)0.59176 (11)0.0401 (4)
Cl10.5065 (3)0.5365 (2)0.6046 (2)0.0414 (6)
Cl20.9010 (3)0.6303 (3)0.5849 (3)0.0470 (7)
Cl30.7716 (4)0.2983 (3)0.4398 (3)0.0622 (9)
Cl40.7838 (3)0.3397 (3)0.7712 (3)0.0475 (7)
N10.4356 (10)0.4257 (9)0.3418 (8)0.044 (2)
H1A0.51590.42210.29350.052*
H1B0.39050.34460.34350.052*
H1C0.46500.44830.41590.052*
C10.3275 (12)0.5296 (11)0.2959 (11)0.046 (3)
H1D0.29400.50450.21560.055*
H1E0.37740.61750.29100.055*
C20.1931 (11)0.5392 (11)0.3790 (11)0.045 (3)
H2A0.14020.45260.38110.054*
H2B0.22680.56040.46010.054*
N20.0903 (11)0.6472 (9)0.3351 (10)0.053 (3)
H2C0.00630.64750.37950.064*
H2D0.06660.63130.25840.064*
H2E0.13600.72770.34110.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0411 (6)0.0309 (6)0.0483 (8)0.0031 (5)0.0030 (6)0.0023 (5)
Cl10.0379 (11)0.0363 (12)0.0499 (14)0.0040 (9)0.0024 (11)0.0030 (11)
Cl20.0501 (12)0.0436 (14)0.0471 (14)0.0111 (11)0.0013 (13)0.0031 (12)
Cl30.082 (2)0.0500 (15)0.0543 (17)0.0218 (14)0.0053 (15)0.0167 (13)
Cl40.0486 (14)0.0435 (13)0.0504 (16)0.0083 (11)0.0019 (12)0.0055 (12)
N10.043 (5)0.042 (5)0.046 (5)0.007 (4)0.003 (4)0.004 (4)
C10.046 (6)0.045 (6)0.047 (6)0.013 (5)0.005 (5)0.001 (5)
C20.039 (5)0.041 (5)0.056 (7)0.012 (4)0.006 (5)0.004 (5)
N20.052 (5)0.042 (5)0.065 (7)0.016 (5)0.005 (5)0.008 (5)
Geometric parameters (Å, º) top
Zn1—Cl32.240 (3)C1—H1D0.9700
Zn1—Cl22.262 (3)C1—H1E0.9700
Zn1—Cl42.275 (3)C2—N21.478 (12)
Zn1—Cl12.296 (3)C2—H2A0.9700
N1—C11.486 (12)C2—H2B0.9700
N1—H1A0.8900N2—H2C0.8900
N1—H1B0.8900N2—H2D0.8900
N1—H1C0.8900N2—H2E0.8900
C1—C21.506 (15)
Cl3—Zn1—Cl2115.57 (13)N1—C1—H1E109.7
Cl3—Zn1—Cl4110.01 (12)C2—C1—H1E109.7
Cl2—Zn1—Cl4107.97 (11)H1D—C1—H1E108.2
Cl3—Zn1—Cl1112.89 (12)N2—C2—C1109.1 (9)
Cl2—Zn1—Cl1104.78 (10)N2—C2—H2A109.9
Cl4—Zn1—Cl1104.93 (11)C1—C2—H2A109.9
C1—N1—H1A109.5N2—C2—H2B109.9
C1—N1—H1B109.5C1—C2—H2B109.9
H1A—N1—H1B109.5H2A—C2—H2B108.3
C1—N1—H1C109.5C2—N2—H2C109.5
H1A—N1—H1C109.5C2—N2—H2D109.5
H1B—N1—H1C109.5H2C—N2—H2D109.5
N1—C1—C2109.8 (9)C2—N2—H2E109.5
N1—C1—H1D109.7H2C—N2—H2E109.5
C2—C1—H1D109.7H2D—N2—H2E109.5
N1—C1—C2—N2177.4 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.483.240 (10)144
N1—H1A···Cl4i0.892.943.472 (9)120
N1—H1B···Cl4ii0.892.403.185 (10)147
N1—H1C···Cl10.892.293.173 (10)169
N2—H2C···Cl2iii0.892.473.239 (11)146
N2—H2C···Cl4iv0.892.833.381 (10)121
N2—H2D···Cl1iv0.892.463.242 (11)148
N2—H2E···Cl1v0.892.653.260 (9)127
N2—H2E···Cl2v0.892.853.618 (11)146
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x1, y, z; (iv) x+1/2, y+1, z1/2; (v) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formula(C2H10N2)[ZnCl4]
Mr269.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)8.832 (4), 9.811 (4), 11.089 (5)
V3)960.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.60
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XEMP; Siemens, 1990)
Tmin, Tmax0.327, 0.715
No. of measured, independent and
observed [I > 2σ(I)] reflections
1744, 1616, 1383
Rint0.114
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.084, 0.209, 1.05
No. of reflections1616
No. of parameters84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 1.09
Absolute structureFlack (1983), with 507 Friedel pairs
Absolute structure parameter0.01 (5)

Computer programs: XSCANS (Siemens, 1990), XSCANS, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) top
Zn1—Cl32.240 (3)Zn1—Cl42.275 (3)
Zn1—Cl22.262 (3)Zn1—Cl12.296 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl2i0.892.483.240 (10)144
N1—H1A···Cl4i0.892.943.472 (9)120
N1—H1B···Cl4ii0.892.403.185 (10)147
N1—H1C···Cl10.892.293.173 (10)169
N2—H2C···Cl2iii0.892.473.239 (11)146
N2—H2C···Cl4iv0.892.833.381 (10)121
N2—H2D···Cl1iv0.892.463.242 (11)148
N2—H2E···Cl1v0.892.653.260 (9)127
N2—H2E···Cl2v0.892.853.618 (11)146
Symmetry codes: (i) x+3/2, y+1, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x1, y, z; (iv) x+1/2, y+1, z1/2; (v) x1/2, y+3/2, z+1.
 

References

First citationBrammer, L., Swearingen, J. K., Bruton, E. A. & Sherwood, P. (2002). Proc. Natl Acad. Sci. USA, 99, 4956–4961.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDeeth, R. J., Hitchman, M. A., Lehmann, G. & Sachs, H. (1984). Inorg. Chem. 23, 1310–1320.  CSD CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1990). XSCANS and XEMP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpengler, R., Zouari, R., Ben Salah, A., Zimmermann, H. & Burzlaff, H. (1998). Acta Cryst. C54, IUC98000034.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds