metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(tert-butyl­amine)di­chloro­palladium(II)

CROSSMARK_Color_square_no_text.svg

aChemistry and Nanotechnology, Institute for Materials Research, Cockcroft Building, University of Salford, Salford, M5 4WT, England
*Correspondence e-mail: N.M.Boag@salford.ac.uk

(Received 23 August 2005; accepted 20 September 2005; online 30 September 2005)

The asymmetric unit of the title complex, trans-[PdCl2(NH2tBu)2], consists of two independent square-planar mol­ecules, linked together in a hydrogen-bonding network, with the resultant alignment of the tert-butyl groups defining a two-dimensional layered structure approximately parallel to (001).

Comment

We have noted that the chemistry of tert-butyl­amine derivatives of palladium frequently differs from other primary amine complexes due to the steric bulk of the tert-butyl group. The availability of crystals of the title complex, (I)[link], allowed comparison with other bis­(primary amine)dichloro complexes of palladium to determine the structural consequences of steric bulk.

[Scheme 1]

Complex (I)[link] exists as two independent square-planar mol­ecules in the asymmetric unit. The orientation of the tert-butyl­amine groups is such that both mol­ecules are pseudo-centrosymmetric. Analysis of the 14 previously reported bis­(primary amine)dichloropalladium(II) structures (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746-749.]) gives averages of 2.300 (8) Å and 2.047 (9) Å for the Pd—Cl and the Pd—N bonds, respectively, with a mean deviation of the N—Pd—Cl angles of ca 1.4° from the ideal 90°. The Pd—Cl and Pd—N bond lengths in (I)[link] range from 2.3015 (11) to 2.3072 (12) and 2.046 (4) to 2.058 (4) Å, respectively; this indicates that, in this complex, the bulky tert-butyl group has no obvious structural consequence, although the average N—Pd—Cl angle in complex (I)[link] does show a significantly smaller deviation from the 90° required by ideal square-planar geometry [0.46° (mol­ecule 1), 0.37° (mol­ecule 2). The mol­ecules are linked together in a hydrogen-bonding network, resulting in the formation of a two-dimensional layered structure, externally defined by the tert-butyl groups and approximately parallel to (001).

[Figure 1]
Figure 1
A view of the two independent mol­ecules in (I)[link]. Displacement ellipsoids are drawn at the 50% probability level. tert-Butyl H atoms have been omitted. The dashed line indicates a hydrogen bond.

Experimental

Complex (I)[link] crystallized from a dichloro­methane/hexane solution of trans-[Pd(η1-C5H5)(NH2tBu)2Cl] and [Pd(η5-C5H5)(NH2tBu)Cl] and was spectroscopically identical to the material synthesized according to the literature method (Nakayama et al., 1984[Nakayama, K., Komorita, T. & Shimura, Y. (1984). Bull. Chem. Soc. Jpn, 57, 1336-1347.]).

Crystal data
  • [PdCl2(C4H11N)2]

  • Mr = 323.58

  • Triclinic, [P \overline 1]

  • a = 6.2357 (10) Å

  • b = 10.6500 (11) Å

  • c = 20.472 (2) Å

  • α = 94.641 (8)°

  • β = 90.978 (13)°

  • γ = 93.824 (11)°

  • V = 1351.7 (3) Å3

  • Z = 4

  • Dx = 1.590 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 34 reflections

  • θ = 5.1–12.5°

  • μ = 1.73 mm−1

  • T = 223 (2) K

  • Block, orange

  • 0.6 × 0.3 × 0.3 mm

Data collection
  • Siemens P4 diffractometer

  • Profile fitting of ω/2θ scans

  • Absorption correction: ψ scan(XSCANS; Siemens, 1996[Siemens (1996), XSCANS. Version 2.20, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]).Tmin = 0.537, Tmax = 0.594

  • 7873 measured reflections

  • 6177 independent reflections

  • 5913 reflections with I > 2σ(I)

  • Rint = 0.019

  • θmax = 27.5°

  • h = −8 → 1

  • k = −13 → 13

  • l = −26 → 26

  • 3 standard reflections every 97 reflections intensity decay: 4%

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.23

  • 6177 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0118P)2 + 6.285P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 1.01 e Å−3

  • Δρmin = −1.24 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

Pd1—N12 2.046 (4)
Pd1—N11 2.050 (4)
Pd1—Cl11 2.3015 (11)
Pd1—Cl12 2.3030 (11)
Pd2—N21 2.057 (4)
Pd2—N22 2.058 (4)
Pd2—Cl22 2.3051 (12)
Pd2—Cl21 2.3072 (12)
N12—Pd1—N11 179.27 (16)
N12—Pd1—Cl11 90.17 (12)
N11—Pd1—Cl11 89.35 (12)
N12—Pd1—Cl12 89.74 (12)
N11—Pd1—Cl12 90.74 (12)
Cl11—Pd1—Cl12 179.34 (5)
N21—Pd2—N22 179.06 (16)
N21—Pd2—Cl22 89.93 (12)
N22—Pd2—Cl22 90.71 (12)
N21—Pd2—Cl21 90.04 (12)
N22—Pd2—Cl21 89.32 (12)
Cl22—Pd2—Cl21 179.26 (6)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H112⋯Cl11i 0.81 (6) 2.62 (6) 3.408 (4) 163 (5)
N12—H121⋯Cl21ii 0.82 (6) 2.75 (6) 3.416 (4) 140 (5)
N12—H122⋯Cl12iii 0.84 (6) 2.60 (6) 3.423 (4) 165 (5)
N21—H211⋯Cl11 0.79 (6) 2.59 (6) 3.327 (4) 157 (5)
N21—H212⋯Cl22iii 0.84 (6) 2.76 (6) 3.502 (4) 148 (5)
N22—H221⋯Cl21i 0.80 (6) 2.71 (6) 3.481 (4) 164 (5)
N22—H222⋯Cl12iv 0.92 (6) 2.52 (6) 3.347 (4) 149 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z; (iii) x-1, y, z; (iv) x, y+1, z.

Methyl-H atoms were placed in calculated positions and subsequently constrained to an ideal geometry, with C—H distances of 0.97 Å and Uiso(H) = 1.5Ueq(C), with each group allowed to rotate freely about its C—C bond. The positions of the amine H atoms were identified from a difference Fourier map and allowed to refine freely with fixed isotropic displacement parameters; N—H = 0.79 (6)–0.92 (6) Å. The highest peak is located 1.21 Å from atom Cl21 and the deepest hole 1.47 Å from atom Cl12.

Data collection: XSCANS (Siemens, 1996[Siemens (1996), XSCANS. Version 2.20, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Siemens, 1995[Siemens (1995). SHELXTL-Plus. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]).

Supporting information


Comment top

We have noted that the chemistry of tert-butylamine derivatives of palladium frequently differs due to the steric bulk of the tert-butyl group. The availability of crystals of the title complex, (I), allowed comparison with other bis(primary amine)dichloride complexes of palladium to determine structural consequences of steric bulk.

Complex (I) exists as two independent square-planar molecules in the unit cell. The orientation of the tert-butylamine groups is such that both molecules are pseudo-centrosymmetric. Analysis of the 14 previous bis(primary amine)dichloride palladium structures (Fletcher et al., 1996) gives averages of 2.300 (8) Å and 2.047 (9) Å for the Pd—Cl and the Pd—N bonds, respectively, with a mean deviation of the N—Pd—Cl angles of ca 1.4° from the ideal 90°. The Pd—Cl and Pd—N bond lengths in (I) range from 2.3015 (11) to 2.3072 (12) and 2.046 (4) to 2.058 (4) Å, respectively; this indicates that, in this complex, the bulky tert-butyl group has no obvious structural consequence, although complex (I) does show a significantly smaller deviation from the 90° required by ideal square-planar geometry, [0.455° (molecule 1) 0.375° (molecule 2)]. The molecules are linked together in a hydrogen-bonding network, resulting in the formation of a two-dimensional layered structure, externally defined by the tert-butyl groups and approximately parallel to the c face.

Experimental top

Complex (I) crystallized from a dichloromethane/hexane reaction mixture of trans-[Pd(η1-C5H5)(NH2But)2Cl] and [Pd(η5-C5H5)(NH2But)Cl] (amounts? ratio?) and was spectroscopically identical to the material synthesized according to the literature method (Nakayama et al., 1984).

Refinement top

The methyl-H atoms were placed in calculated positions and subsequently constrained to an ideal geometry, with C—H distances of 0.97 Å and Uiso(H) = 1.5Ueq(C), with each group allowed to rotate freely about its C—C bond. The positions of the amine-H atoms were identified from a difference Fourier map and allowed to refine freely with isotropic displacement parameters, N—H = 0.79 (6)–0.92 (6) Å.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL-Plus (Siemens, 1995); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the two independent molecules in (I). Displacement ellipsoids are drawn at the 50% probability level. Tert-butyl H atoms are excluded.
trans–Bis(tert–butylamine)dichloropalladium(II) top
Crystal data top
[Pd(C4H11N)2Cl2]Z = 4
Mr = 323.58F(000) = 656
Triclinic, P1Dx = 1.590 Mg m3
a = 6.2357 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6500 (11) ÅCell parameters from 34 reflections
c = 20.472 (2) Åθ = 5.1–12.5°
α = 94.641 (8)°µ = 1.73 mm1
β = 90.978 (13)°T = 223 K
γ = 93.824 (11)°Block, orange
V = 1351.7 (3) Å30.6 × 0.3 × 0.3 mm
Data collection top
Siemens P4
diffractometer
5913 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
profile fitting of θ/2θ scansh = 81
Absorption correction: ψ scan
(XSCANS; Siemens, 1996).
k = 1313
Tmin = 0.537, Tmax = 0.594l = 2626
7873 measured reflections3 standard reflections every 97 reflections
6177 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.23 w = 1/[σ2(Fo2) + (0.0118P)2 + 6.285P]
where P = (Fo2 + 2Fc2)/3
6177 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.24 e Å3
Crystal data top
[Pd(C4H11N)2Cl2]γ = 93.824 (11)°
Mr = 323.58V = 1351.7 (3) Å3
Triclinic, P1Z = 4
a = 6.2357 (10) ÅMo Kα radiation
b = 10.6500 (11) ŵ = 1.73 mm1
c = 20.472 (2) ÅT = 223 K
α = 94.641 (8)°0.6 × 0.3 × 0.3 mm
β = 90.978 (13)°
Data collection top
Siemens P4
diffractometer
5913 reflections with I > 2σ(I)
Absorption correction: ψ scan
(XSCANS; Siemens, 1996).
Rint = 0.019
Tmin = 0.537, Tmax = 0.5943 standard reflections every 97 reflections
7873 measured reflections intensity decay: 4%
6177 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.23Δρmax = 1.01 e Å3
6177 reflectionsΔρmin = 1.24 e Å3
271 parameters
Special details top

Experimental. 13 reflections having 2θ between 8.98 and 45.57 degrees giving 231 ψ scans for parameter estimation,

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 1.7720 (0.0053) x − 8.6655 (0.0040) y + 11.1351 (0.0205) z = 0.5317 (0.0088)

* −0.0014 (0.0012) Pd1 * 0.0119 (0.0012) Cl11 * 0.0118 (0.0012) Cl12 * −0.0111 (0.0017) N11 * −0.0112 (0.0017) N12

Rms deviation of fitted atoms = 0.0103

2.0951 (0.0059) x + 6.3911 (0.0067) y + 13.2261 (0.0209) z = 8.6109 (0.0031)

Angle to previous plane (with approximate e.s.d.) = 73.56 (0.07)

* 0.0010 (0.0012) Pd2 * −0.0139 (0.0013) Cl21 * −0.0138 (0.0013) Cl22 * 0.0133 (0.0018) N21 * 0.0133 (0.0018) N22

Rms deviation of fitted atoms = 0.0121

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.65182 (5)0.13377 (3)0.255462 (16)0.02147 (8)
Cl110.39061 (17)0.24895 (11)0.30472 (6)0.0327 (2)
Cl120.91142 (17)0.01643 (11)0.20664 (6)0.0339 (2)
N110.8572 (6)0.1923 (4)0.33284 (19)0.0255 (7)
C110.8717 (8)0.1205 (5)0.3928 (3)0.0360 (11)
C1110.9665 (12)0.0050 (6)0.3730 (3)0.0598 (17)
H11A0.86880.05540.34240.090*
H11B0.98740.05020.41170.090*
H11C1.10360.01060.35240.090*
C1120.6494 (10)0.0987 (7)0.4208 (3)0.0522 (15)
H11D0.59300.17940.43400.078*
H11E0.65890.04980.45860.078*
H11F0.55430.05300.38770.078*
C1131.0205 (10)0.1981 (7)0.4430 (3)0.0507 (15)
H11G1.16320.20870.42510.076*
H11H1.02800.15460.48270.076*
H11I0.96510.28020.45290.076*
N120.4460 (6)0.0777 (4)0.1782 (2)0.0261 (7)
C120.4354 (8)0.1510 (5)0.1187 (2)0.0336 (10)
C1210.2900 (9)0.0729 (6)0.0676 (3)0.0480 (14)
H12G0.34880.00820.05720.072*
H12H0.28180.11730.02820.072*
H12I0.14720.05990.08500.072*
C1220.6580 (9)0.1721 (7)0.0916 (3)0.0510 (15)
H12D0.74860.22430.12350.077*
H12E0.64870.21410.05140.077*
H12F0.71940.09140.08250.077*
C1230.3396 (12)0.2755 (6)0.1380 (3)0.0532 (15)
H12A0.19900.25940.15640.080*
H12B0.32540.32230.09960.080*
H12C0.43290.32450.17040.080*
Pd20.64561 (5)0.63092 (3)0.243993 (17)0.02377 (9)
Cl210.39915 (19)0.76984 (12)0.21478 (7)0.0401 (3)
Cl220.88984 (19)0.49019 (12)0.27219 (7)0.0390 (3)
N210.4354 (6)0.5628 (4)0.3111 (2)0.0272 (8)
C210.4302 (8)0.6210 (5)0.3804 (2)0.0355 (10)
C2110.2889 (10)0.5330 (6)0.4198 (3)0.0493 (14)
H21D0.14600.52120.39980.074*
H21E0.27970.57010.46440.074*
H21F0.35120.45200.42010.074*
C2120.3290 (14)0.7483 (6)0.3792 (4)0.067 (2)
H21G0.42220.80580.35630.101*
H21H0.31080.78360.42380.101*
H21I0.19000.73580.35680.101*
C2130.6562 (11)0.6364 (8)0.4096 (3)0.068 (2)
H21A0.71710.55480.40800.101*
H21B0.65190.67110.45480.101*
H21C0.74420.69310.38470.101*
N220.8550 (6)0.7021 (4)0.1774 (2)0.0273 (8)
C220.8660 (8)0.6480 (5)0.1078 (2)0.0357 (10)
C2211.0054 (10)0.7391 (6)0.0706 (3)0.0456 (13)
H22A0.93510.81720.06840.068*
H22B1.02650.70180.02660.068*
H22C1.14370.75650.09310.068*
C2220.6405 (11)0.6331 (9)0.0775 (3)0.069 (2)
H22G0.55360.57170.09980.103*
H22H0.64790.60440.03140.103*
H22I0.57620.71370.08180.103*
C2230.9687 (14)0.5218 (6)0.1074 (4)0.068 (2)
H22D1.10790.53410.12970.102*
H22E0.98670.48830.06250.102*
H22F0.87670.46280.12980.102*
H1110.818 (9)0.261 (5)0.340 (3)0.030*
H1120.977 (9)0.197 (5)0.318 (3)0.030*
H1210.479 (9)0.005 (5)0.170 (3)0.030*
H1220.323 (9)0.060 (5)0.193 (3)0.030*
H2110.463 (9)0.492 (5)0.312 (3)0.030*
H2120.317 (9)0.572 (5)0.292 (3)0.030*
H2210.976 (9)0.705 (5)0.191 (3)0.030*
H2220.825 (9)0.785 (5)0.174 (3)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01610 (15)0.01825 (15)0.03003 (17)0.00218 (11)0.00305 (11)0.00047 (11)
Cl110.0222 (5)0.0288 (5)0.0466 (6)0.0052 (4)0.0071 (4)0.0046 (5)
Cl120.0218 (5)0.0307 (5)0.0480 (7)0.0060 (4)0.0049 (4)0.0085 (5)
N110.0186 (17)0.0244 (18)0.033 (2)0.0002 (14)0.0026 (14)0.0024 (15)
C110.033 (3)0.039 (3)0.037 (3)0.001 (2)0.001 (2)0.010 (2)
C1110.076 (5)0.045 (3)0.063 (4)0.018 (3)0.001 (3)0.023 (3)
C1120.038 (3)0.071 (4)0.048 (3)0.008 (3)0.007 (2)0.019 (3)
C1130.041 (3)0.073 (4)0.037 (3)0.005 (3)0.002 (2)0.006 (3)
N120.0205 (18)0.0236 (18)0.034 (2)0.0014 (14)0.0037 (15)0.0019 (15)
C120.030 (2)0.038 (3)0.033 (2)0.002 (2)0.0006 (19)0.006 (2)
C1210.040 (3)0.065 (4)0.038 (3)0.003 (3)0.004 (2)0.005 (3)
C1220.037 (3)0.070 (4)0.048 (3)0.006 (3)0.007 (2)0.020 (3)
C1230.069 (4)0.042 (3)0.052 (3)0.021 (3)0.001 (3)0.016 (3)
Pd20.01797 (15)0.02036 (15)0.03378 (18)0.00259 (11)0.00199 (12)0.00589 (12)
Cl210.0238 (5)0.0368 (6)0.0638 (8)0.0094 (4)0.0054 (5)0.0220 (6)
Cl220.0270 (5)0.0363 (6)0.0575 (8)0.0113 (5)0.0064 (5)0.0196 (5)
N210.0239 (19)0.0220 (18)0.037 (2)0.0051 (15)0.0051 (15)0.0057 (15)
C210.036 (3)0.034 (3)0.036 (3)0.002 (2)0.004 (2)0.000 (2)
C2110.052 (3)0.056 (4)0.041 (3)0.000 (3)0.014 (3)0.004 (3)
C2120.105 (6)0.037 (3)0.060 (4)0.022 (4)0.019 (4)0.005 (3)
C2130.045 (4)0.105 (6)0.048 (4)0.012 (4)0.004 (3)0.011 (4)
N220.0202 (18)0.0263 (19)0.036 (2)0.0006 (15)0.0027 (15)0.0068 (15)
C220.036 (3)0.036 (3)0.034 (2)0.001 (2)0.005 (2)0.001 (2)
C2210.044 (3)0.052 (3)0.042 (3)0.002 (3)0.009 (2)0.013 (2)
C2220.044 (4)0.109 (6)0.048 (4)0.024 (4)0.004 (3)0.005 (4)
C2230.108 (6)0.040 (3)0.057 (4)0.018 (4)0.027 (4)0.002 (3)
Geometric parameters (Å, º) top
Pd1—N122.046 (4)Pd2—N212.057 (4)
Pd1—N112.050 (4)Pd2—N222.058 (4)
Pd1—Cl112.3015 (11)Pd2—Cl222.3051 (12)
Pd1—Cl122.3030 (11)Pd2—Cl212.3072 (12)
N11—C111.501 (6)N21—C211.502 (6)
N11—H1110.79 (6)N21—H2110.79 (6)
N11—H1120.81 (6)N21—H2120.84 (6)
C11—C1121.520 (7)C21—C2131.515 (8)
C11—C1131.525 (8)C21—C2111.530 (7)
C11—C1111.526 (8)C21—C2121.535 (8)
C111—H11A0.9700C211—H21D0.9700
C111—H11B0.9700C211—H21E0.9700
C111—H11C0.9700C211—H21F0.9700
C112—H11D0.9700C212—H21G0.9700
C112—H11E0.9700C212—H21H0.9700
C112—H11F0.9700C212—H21I0.9700
C113—H11G0.9700C213—H21A0.9700
C113—H11H0.9700C213—H21B0.9700
C113—H11I0.9700C213—H21C0.9700
N12—C121.502 (6)N22—C221.497 (6)
N12—H1210.82 (6)N22—H2210.80 (6)
N12—H1220.84 (6)N22—H2220.92 (6)
C12—C1221.514 (7)C22—C2211.519 (7)
C12—C1231.516 (7)C22—C2221.521 (8)
C12—C1211.528 (7)C22—C2231.526 (8)
C121—H12G0.9700C221—H22A0.9700
C121—H12H0.9700C221—H22B0.9700
C121—H12I0.9700C221—H22C0.9700
C122—H12D0.9700C222—H22G0.9700
C122—H12E0.9700C222—H22H0.9700
C122—H12F0.9700C222—H22I0.9700
C123—H12A0.9700C223—H22D0.9700
C123—H12B0.9700C223—H22E0.9700
C123—H12C0.9700C223—H22F0.9700
N12—Pd1—N11179.27 (16)N21—Pd2—N22179.06 (16)
N12—Pd1—Cl1190.17 (12)N21—Pd2—Cl2289.93 (12)
N11—Pd1—Cl1189.35 (12)N22—Pd2—Cl2290.71 (12)
N12—Pd1—Cl1289.74 (12)N21—Pd2—Cl2190.04 (12)
N11—Pd1—Cl1290.74 (12)N22—Pd2—Cl2189.32 (12)
Cl11—Pd1—Cl12179.34 (5)Cl22—Pd2—Cl21179.26 (6)
C11—N11—Pd1122.4 (3)C21—N21—Pd2122.1 (3)
C11—N11—H111114 (4)C21—N21—H211109 (4)
Pd1—N11—H11198 (4)Pd2—N21—H211103 (4)
C11—N11—H112106 (4)C21—N21—H212109 (4)
Pd1—N11—H112107 (4)Pd2—N21—H212101 (4)
H111—N11—H112109 (5)H211—N21—H212113 (5)
N11—C11—C112109.8 (4)N21—C21—C213109.6 (4)
N11—C11—C113108.2 (4)N21—C21—C211108.1 (4)
C112—C11—C113110.2 (5)C213—C21—C211110.0 (5)
N11—C11—C111108.2 (4)N21—C21—C212108.1 (5)
C112—C11—C111110.6 (5)C213—C21—C212111.7 (6)
C113—C11—C111109.8 (5)C211—C21—C212109.3 (5)
C11—C111—H11A109.5C21—C211—H21D109.5
C11—C111—H11B109.5C21—C211—H21E109.5
H11A—C111—H11B109.5H21D—C211—H21E109.5
C11—C111—H11C109.5C21—C211—H21F109.5
H11A—C111—H11C109.5H21D—C211—H21F109.5
H11B—C111—H11C109.5H21E—C211—H21F109.5
C11—C112—H11D109.5C21—C212—H21G109.5
C11—C112—H11E109.5C21—C212—H21H109.5
H11D—C112—H11E109.5H21G—C212—H21H109.5
C11—C112—H11F109.5C21—C212—H21I109.5
H11D—C112—H11F109.5H21G—C212—H21I109.5
H11E—C112—H11F109.5H21H—C212—H21I109.5
C11—C113—H11G109.5C21—C213—H21A109.5
C11—C113—H11H109.5C21—C213—H21B109.5
H11G—C113—H11H109.5H21A—C213—H21B109.5
C11—C113—H11I109.5C21—C213—H21C109.5
H11G—C113—H11I109.5H21A—C213—H21C109.5
H11H—C113—H11I109.5H21B—C213—H21C109.5
C12—N12—Pd1121.9 (3)C22—N22—Pd2123.5 (3)
C12—N12—H121114 (4)C22—N22—H221105 (4)
Pd1—N12—H121100 (4)Pd2—N22—H221111 (4)
C12—N12—H122112 (4)C22—N22—H222104 (3)
Pd1—N12—H122109 (4)Pd2—N22—H222107 (3)
H121—N12—H12297 (5)H221—N22—H222105 (5)
N12—C12—C122109.9 (4)N22—C22—C221108.3 (4)
N12—C12—C123108.6 (4)N22—C22—C222109.1 (5)
C122—C12—C123111.2 (5)C221—C22—C222109.5 (5)
N12—C12—C121107.5 (4)N22—C22—C223108.4 (5)
C122—C12—C121109.6 (5)C221—C22—C223109.6 (5)
C123—C12—C121110.0 (5)C222—C22—C223111.8 (6)
C12—C121—H12G109.5C22—C221—H22A109.5
C12—C121—H12H109.5C22—C221—H22B109.5
H12G—C121—H12H109.5H22A—C221—H22B109.5
C12—C121—H12I109.5C22—C221—H22C109.5
H12G—C121—H12I109.5H22A—C221—H22C109.5
H12H—C121—H12I109.5H22B—C221—H22C109.5
C12—C122—H12D109.5C22—C222—H22G109.5
C12—C122—H12E109.5C22—C222—H22H109.5
H12D—C122—H12E109.5H22G—C222—H22H109.5
C12—C122—H12F109.5C22—C222—H22I109.5
H12D—C122—H12F109.5H22G—C222—H22I109.5
H12E—C122—H12F109.5H22H—C222—H22I109.5
C12—C123—H12A109.5C22—C223—H22D109.5
C12—C123—H12B109.5C22—C223—H22E109.5
H12A—C123—H12B109.5H22D—C223—H22E109.5
C12—C123—H12C109.5C22—C223—H22F109.5
H12A—C123—H12C109.5H22D—C223—H22F109.5
H12B—C123—H12C109.5H22E—C223—H22F109.5
N12—Pd1—N11—C11139 (12)N22—Pd2—N21—C2141 (10)
Cl11—Pd1—N11—C1189.7 (4)Cl22—Pd2—N21—C2192.4 (4)
Cl12—Pd1—N11—C1189.6 (4)Cl21—Pd2—N21—C2188.4 (4)
Pd1—N11—C11—C11253.4 (6)Pd2—N21—C21—C21349.4 (6)
Pd1—N11—C11—C113173.8 (4)Pd2—N21—C21—C211169.2 (4)
Pd1—N11—C11—C11167.3 (5)Pd2—N21—C21—C21272.6 (5)
N11—Pd1—N12—C1242 (12)N21—Pd2—N22—C22139 (10)
Cl11—Pd1—N12—C1290.8 (3)Cl22—Pd2—N22—C2287.5 (4)
Cl12—Pd1—N12—C1289.9 (3)Cl21—Pd2—N22—C2291.8 (4)
Pd1—N12—C12—C12252.9 (5)Pd2—N22—C22—C221169.1 (3)
Pd1—N12—C12—C12368.9 (5)Pd2—N22—C22—C22250.0 (6)
Pd1—N12—C12—C121172.1 (3)Pd2—N22—C22—C22372.0 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H111···Cl220.79 (6)2.92 (6)3.494 (4)132 (5)
N11—H112···Cl11i0.81 (6)2.62 (6)3.408 (4)163 (5)
N12—H121···Cl21ii0.82 (6)2.75 (6)3.416 (4)140 (5)
N12—H122···Cl12iii0.84 (6)2.60 (6)3.423 (4)165 (5)
N21—H211···Cl110.79 (6)2.59 (6)3.327 (4)157 (5)
N21—H212···Cl22iii0.84 (6)2.76 (6)3.502 (4)148 (5)
N22—H221···Cl21i0.80 (6)2.71 (6)3.481 (4)164 (5)
N22—H222···Cl12iv0.92 (6)2.52 (6)3.347 (4)149 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Pd(C4H11N)2Cl2]
Mr323.58
Crystal system, space groupTriclinic, P1
Temperature (K)223
a, b, c (Å)6.2357 (10), 10.6500 (11), 20.472 (2)
α, β, γ (°)94.641 (8), 90.978 (13), 93.824 (11)
V3)1351.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.73
Crystal size (mm)0.6 × 0.3 × 0.3
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(XSCANS; Siemens, 1996).
Tmin, Tmax0.537, 0.594
No. of measured, independent and
observed [I > 2σ(I)] reflections
7873, 6177, 5913
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.23
No. of reflections6177
No. of parameters271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.01, 1.24

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL-Plus (Siemens, 1995), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus.

Selected geometric parameters (Å, º) top
Pd1—N122.046 (4)Pd2—N212.057 (4)
Pd1—N112.050 (4)Pd2—N222.058 (4)
Pd1—Cl112.3015 (11)Pd2—Cl222.3051 (12)
Pd1—Cl122.3030 (11)Pd2—Cl212.3072 (12)
N12—Pd1—N11179.27 (16)N21—Pd2—N22179.06 (16)
N12—Pd1—Cl1190.17 (12)N21—Pd2—Cl2289.93 (12)
N11—Pd1—Cl1189.35 (12)N22—Pd2—Cl2290.71 (12)
N12—Pd1—Cl1289.74 (12)N21—Pd2—Cl2190.04 (12)
N11—Pd1—Cl1290.74 (12)N22—Pd2—Cl2189.32 (12)
Cl11—Pd1—Cl12179.34 (5)Cl22—Pd2—Cl21179.26 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H112···Cl11i0.81 (6)2.62 (6)3.408 (4)163 (5)
N12—H121···Cl21ii0.82 (6)2.75 (6)3.416 (4)140 (5)
N12—H122···Cl12iii0.84 (6)2.60 (6)3.423 (4)165 (5)
N21—H211···Cl110.79 (6)2.59 (6)3.327 (4)157 (5)
N21—H212···Cl22iii0.84 (6)2.76 (6)3.502 (4)148 (5)
N22—H221···Cl21i0.80 (6)2.71 (6)3.481 (4)164 (5)
N22—H222···Cl12iv0.92 (6)2.52 (6)3.347 (4)149 (4)
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z; (iii) x1, y, z; (iv) x, y+1, z.
 

Acknowledgements

We thank the EPSRC for a studentship and the SCI for a Messel Scholarship (SC). We acknowledge the use of the EPSRC's Chemical Database Service at Daresbury.

References

First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationNakayama, K., Komorita, T. & Shimura, Y. (1984). Bull. Chem. Soc. Jpn, 57, 1336–1347.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSiemens (1995). SHELXTL-Plus. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSiemens (1996), XSCANS. Version 2.20, Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds