organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1S*,2S*,4S*)-3,3-Di­fluoro-2,4-dihydr­­oxy-5,5-di­methyl­cyclo­oct-5(Z)-en-1-yl N,N-di­ethyl­carbamate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Leicester, Leicester LE1 7RH, England, bGlaxoSmithKline Pharmaceuticals, New Frontiers Science Park, Third Avenue, Harlow CM19 5AW, England, and cChroma Therapeutics Ltd, 93 Milton Park, Abingdon, Oxon OX14 4RY, England
*Correspondence e-mail: jmp29@leicester.ac.uk

(Received 11 July 2005; accepted 3 August 2005; online 21 September 2005)

The structure of the title compound, C15H25F2NO4, is reported and reveals a pseudorotational relationship between the ring conformation of this compound and that of an isomeric by-product reported in the following paper.

Comment

Conformational equilibria in eight-membered carbocycles occur via two main processes, pseudorotation and ring inversion. The latter exchanges substituent groups between equatorial and axial environments in a pseudo-enantiomeric relationship. Ring inversion is usually the more energetically demanding process; barriers to inversion exchange of 7.3–8.5 kcal mol−1 have been reported, with smaller barriers (ca 5 kcal mol−1) (Servis & Noe, 1973[Servis, K. L. & Noe, E. A. (1973). J. Am. Chem. Soc. 95, 171-174.]) for the pseudorotation. [For early attempts to apply variable-temperature NMR to these phenomena, see Anderson et al. (1969[Anderson, J. E., Glazer, E. S., Griffith, D. L., Knorr, R. & Roberts, J. D. (1969). J. Am. Chem. Soc. 91, 1386-1395.]) and St Jacques et al. (1966[St Jacques, M., Brown, M. A. & Anet, F. A. L. (1966). Tetrahedron Lett. pp. 5947-5951.]).] Recent work from our group has attempted to define these processes for a trio of difluorinated cyclo­octenyl systems (Fawcett, Griffith et al., 2005[Fawcett, J., Griffith, G. A., Percy, J. M., Pintat, S., Smith, C. A. & Uneyama, E. (2005). Org. Biomol. Chem. 3, 2701-2712.]). We were inter­ested in observing a pseudorotational relationship between the ring conformations in the pair of reduction products (1) and (2), obtained upon treatment of a precursor ketone with sodium borohydride.

[Scheme 1]

Product (1) (the major product) arises from the opposite sense of hydride attack, with the N,N-diethyl­carbamoyl group retaining its original location (Fig. 1[link]). Product (2), reported in the following paper (Fawcett, Percy et al., 2005[Fawcett, J., Percy, J. M., Pintat, S., Smith, C. A. & Uneyama, E. (2005). Acta Cryst. E61, o3322-o3323.]), arises from reagent attack on the ring face which bears the hydroxyl group, followed by migration of the N,N-diethyl­carbamoyl group on to the newly formed hydroxyl group (Balnaves et al., 1999[Balnaves, A. S., Gelbrich, T., Hursthouse, M. B., Light, M. E., Palmer, M. J. & Percy, J. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2525-2535.]). A comparison of the two mol­ecules is shown in Fig. 2[link]. O—H⋯O hydrogen bonding links mol­ecules of (1) into chains along the b axis (Table 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (1), showing the atom-numbering scheme and 50% displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2]
Figure 2
An overlay showing the relationship between the structures of compounds (1) and (2).

Experimental

The precursor ketone was prepared as described in the literature (Fawcett, Griffith et al., 2005[Fawcett, J., Griffith, G. A., Percy, J. M., Pintat, S., Smith, C. A. & Uneyama, E. (2005). Org. Biomol. Chem. 3, 2701-2712.]). Sodium borohydride (1.8 mmol, 70 mg) was added in five portions to a cold (273 K) solution of the ketone (1.8 mmol, 0.59 g) in ethanol (10 ml). After completion of the addition, the reaction mixture was allowed to warm to room temperature, stirred for 2 h at this temperature and poured over a mixture of ice and water (25 ml). HCl (10 ml of a 1 N solution) was added cautiously and the mixture was extracted with diethyl ether (3 × 25 ml). The combined organic extracts were dried (MgSO4), filtered and concentrated under reduced pressure to leave a white solid (0.51 g). Purification by column chromatography (40% ethyl acetate in light petroleum) afforded the desired diol (1) as a white solid (0.43 g, 72%). RF (40% ethyl acetate in light petroleum) 0.29; m.p. 388–389 K (found: C 56.17, H 7.71, N 4.29%; C15H25F2NO4 requires: C 56.06, H 7.84, N, 4.36%); νmax(KBr)/cm−1 3460 (s br, O—H), 3356 (s br, O—H), 2977 (m, =C—H), 2877 (m, C—H), 1671 (s, C=O); 1H NMR (250 MHz, CDCl3): δ 5.83 (1H, dd, J = 18.5, 9.0 Hz, H-5), 5.53 (1H, t, J = 9.0, 9.0 Hz, H-4), 4.84 (1H, ddd, 3JHF = 21.3, 8.0, 4.1 Hz, H-3), 4.48 (1H, d, J = 5.7 Hz, H-8), 4.18–4.04 (1H, m, H-1), 3.42–3.10 [5H, m, —OH and —N(CH2CH3)2], 2.45 (1H, dd, Jgem = 13.8, J = 8.5 Hz, H-6a), 2.17 (1H, br s, —OH), 1.77 (1H, dd, Jgem = 13.8 Hz, J = 8.3 Hz, H-6b), 1.18–0.93 [12H, m, —N(CH2CH3)2 and 2 × —CH3]; 13C NMR (63 MHz, CDCl3): δ 157.4, 131.4, 131.3 (d, 3JCF = 6.6 Hz), 122.8 (dd, 1JCF = 253.1, 246.9 Hz), 87.4 (d, 3JCF = 9.2 Hz), 70.8 (dd, 2JCF = 23.9, 19.8 Hz), 68.4 (dd, 2JCF = 23.9, 20.9 Hz), 42.8, 42.0, 39.8, 34.9, 30.4, 24.3, 14.5, 13.4; 19F NMR (235 MHz, CDCl3): δ −118.5 (1F, dddd, Jgem = 241.5, 3JHF = 21.2, 10.6, 4JFH = 6.6 Hz), −122.1 (1F, dd, Jgem = 241.5, 3JFH = 16.6 Hz); [HRMS (FAB, [M+H]+) Found: 322.18293, calculated for C15H26F2NO4: 322.18299]; m/z (FAB): 322 (100%, [M+H]+). An analytical sample was recrystallized by vapour diffusion (ethyl acetate/light petroleum) to afford colourless needles.

Crystal data
  • C15H25F2NO4

  • Mr = 321.36

  • Monoclinic, P n

  • a = 7.9651 (14) Å

  • b = 6.4632 (12) Å

  • c = 15.445 (3) Å

  • β = 90.136 (3)°

  • V = 795.1 (2) Å3

  • Z = 2

  • Dx = 1.342 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2104 reflections

  • θ = 2.6–24.7°

  • μ = 0.11 mm−1

  • T = 150 (2) K

  • Block cut from needle, colourless

  • 0.24 × 0.18 × 0.12 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: none

  • 5283 measured reflections

  • 1403 independent reflections

  • 1332 reflections with I > 2σ(I)

  • Rint = 0.041

  • θmax = 25.0°

  • h = −9 → 9

  • k = −7 → 7

  • l = −18 → 18

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.082

  • wR(F2) = 0.230

  • S = 1.13

  • 1403 reflections

  • 203 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.1065P)2 + 3.2641P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.003

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 2.18 2.816 (10) 133
Symmetry code: (i) x, y+1, z.

H atoms were positioned geometrically, with C—H = 0.95–1.00 Å and O—H = 0.84 Å, and treated as riding, with Uiso(H) = 1.2 or 1.5 (methyl and OH) times Ueq of the parent atom.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Sheldrick, 2000[Sheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Conformational equilibria in eight-membered carbocycles occur via two main processes, pseudorotation and ring inversion. The latter exchanges substituent groups between equatorial and axial environments in a pseudo-enantiomeric relationship. Ring inversion is usually the more energetically demanding process; barriers to inversion exchange of 7.3–8.5 kcal mol−1 have been reported, with smaller barriers (ca 5 kcal mol−1) (Servis & Noe, 1973) for the pseudorotation. [For early attempts to apply variable-temperature NMR to these phenomena, see Anderson et al. (1969) and St Jacques et al. (1966).] Recent work from our group has attempted to define these processes for a trio of difluorinated cyclooctenyl systems (Griffith et al., 2005). We were interested to observe a pseudorotational relationship between the ring conformations in the pair of reduction products (1) and (2), obtained upon treatment of a precursor ketone with sodium borohydride.

Product (1) (the major product) arises from the opposite sense of hydride attack, with the N,N-diethylcarbamoyl group retaining its original location (Fig. 1). Product (2), reported in the following paper (Fawcett, Percy et al., 2005), arises from reagent attack on the ring face which bears the hydroxyl group, followed by migration of the N,N-diethylcarbamoyl group on to the newly formed hydroxyl group (Balnaves et al., 1999). A comparison of the two molecules is shown in Fig. 2. O—H···O hydrogen bonding links molecules of (1) into chains along the b axis (Table 1).

Experimental top

The precursor ketone was prepared as described in the literature (Fawcett, Griffith et al., 2005). Sodium borohydride (1.8 mmol, 70 mg) was added in five portions to a cold (273 K) solution of the ketone (1.8 mmol, 0.59 g) in ethanol (10 ml). After completion of the addition, the reaction mixture was allowed to warm to room temperature, stirred for 2 h at this temperature and poured over a mixture of ice and water (25 ml). HCl (10 ml of a 1 N solution) was added cautiously and the mixture was extracted with diethyl ether (3 × 25 ml). The combined organic extracts were dried (MgSO4), filtered and concentrated under reduced pressure to leave a white solid (0.51 g). Purification by column chromatography (40% ethyl acetate in light petroleum) afforded the desired diol (1) as a white solid (0.43 g, 72%). RF (40% ethyl acetate in light petroleum) 0.29; m.p. 388–389 K (found: C 56.17, H 7.71, N 4.29%; C15H25F2NO4 requires: C 56.06, H 7.84, N, 4.36%); νmax(KBr)/cm−1 3460 (s br, O—H), 3356 (s br, O—H), 2977 (m, C—H), 2877 (m, C—H), 1671 (s, CO); 1H NMR (250 MHz, CDCl3): δ 5.83 (1H, dd, J = 18.5, 9.0 Hz, H-5), 5.53 (1H, t, J = 9.0, 9.0 Hz, H-4), 4.84 (1H, ddd, 3JHF = 21.3, 8.0, 4.1 Hz, H-3), 4.48 (1H, d, J = 5.7 Hz, H-8), 4.18–4.04 (1H, m, H-1), 3.42–3.10 [5H, m, –OH and –N(CH2CH3)2], 2.45 (1H, dd, Jgem = 13.8, J = 8.5 Hz, H-6a), 2.17 (1H, br s, –OH), 1.77 (1H, dd, Jgem = 13.8 Hz, J = 8.3 Hz, H-6 b), 1.18–0.93 [12H, m, –N(CH2CH3)2 and 2 × –CH3]; 13C NMR (63 MHz, CDCl3): δ 157.4, 131.4, 131.3 (d, 3JCF = 6.6 Hz), 122.8 (dd, 1JCF = 253.1, 246.9 Hz), 87.4 (d, 3JCF = 9.2 Hz), 70.8 (dd, 2JCF = 23.9, 19.8 Hz), 68.4 (dd, 2JCF = 23.9, 20.9 Hz), 42.8, 42.0, 39.8, 34.9, 30.4, 24.3, 14.5, 13.4; 15F NMR (235 MHz, CDCl3): δ −118.5 (1 F, dddd, Jgem = 241.5, 3JHF = 21.2, 10.6, 4JFH = 6.6 Hz), −122.1 (1 F, dd, Jgem = 241.5, 3JFH = 16.6 Hz); [HRMS (FAB, [M+H]+) Found: 322.18293, calculated for C15H26F2NO4: 322.18299]; m/z (FAB): 322 (100%, [M+H]+). An analytical sample was recrystallized by vapour diffusion (ethyl acetate/light petroleum) to afford colourless needles.

Refinement top

H atoms were positioned geometrically, with C—H = 0.95–1.00 Å and O—H = 0.84 Å, and treated as riding, with Uiso(H) = 1.2 or 1.5 (methyl and OH) times Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), showing the atom-numbering scheme and 50% displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. An overlay showing the relationship between the structures of compounds (1) and (2).
(1S*,2S*,4S*)-3,3-Difluoro-2,4-dihydroxy-5,5-dimethylcyclooct-5(Z)-en-1-yl N,N-diethylcarbamate top
Crystal data top
C15H25F2NO4F(000) = 344
Mr = 321.36Dx = 1.342 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yacCell parameters from 2104 reflections
a = 7.9651 (14) Åθ = 2.6–24.7°
b = 6.4632 (12) ŵ = 0.11 mm1
c = 15.445 (3) ÅT = 150 K
β = 90.136 (3)°Block, colourless
V = 795.1 (2) Å30.24 × 0.18 × 0.12 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
1332 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ϕ and ω scansh = 99
5283 measured reflectionsk = 77
1403 independent reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.082Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1065P)2 + 3.2641P]
where P = (Fo2 + 2Fc2)/3
1403 reflections(Δ/σ)max = 0.003
203 parametersΔρmax = 0.37 e Å3
2 restraintsΔρmin = 0.45 e Å3
Crystal data top
C15H25F2NO4V = 795.1 (2) Å3
Mr = 321.36Z = 2
Monoclinic, PnMo Kα radiation
a = 7.9651 (14) ŵ = 0.11 mm1
b = 6.4632 (12) ÅT = 150 K
c = 15.445 (3) Å0.24 × 0.18 × 0.12 mm
β = 90.136 (3)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
1332 reflections with I > 2σ(I)
5283 measured reflectionsRint = 0.041
1403 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0822 restraints
wR(F2) = 0.230H-atom parameters constrained
S = 1.13Δρmax = 0.37 e Å3
1403 reflectionsΔρmin = 0.45 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.6752 (7)0.0571 (9)0.2519 (4)0.0344 (14)
F20.6142 (6)0.1799 (8)0.1254 (4)0.0293 (12)
O10.7967 (8)0.4476 (10)0.2290 (4)0.0285 (15)
H10.71440.48970.19980.043*
O20.6712 (8)0.2340 (10)0.1225 (4)0.0291 (15)
H20.70500.34740.10240.044*
O30.8718 (8)0.0997 (9)0.0008 (4)0.0249 (14)
O40.6287 (8)0.0565 (9)0.0385 (4)0.0253 (14)
N10.6973 (9)0.2608 (11)0.0879 (5)0.0228 (16)
C10.8721 (11)0.2781 (14)0.1864 (6)0.0243 (19)
H1A0.91260.32480.12840.029*
C20.7432 (12)0.1048 (15)0.1735 (6)0.026 (2)
C30.8118 (11)0.0981 (14)0.1351 (6)0.025 (2)
H30.88490.16260.18050.030*
C40.9179 (11)0.0828 (13)0.0516 (6)0.0227 (19)
H40.88650.20540.01550.027*
C51.1090 (11)0.0844 (14)0.0577 (6)0.0218 (19)
C5'1.1659 (12)0.2867 (15)0.1012 (7)0.033 (2)
H5'11.15010.27590.16400.050*
H5'21.28480.31090.08870.050*
H5'31.09900.40220.07880.050*
C5"1.1791 (12)0.0842 (16)0.0346 (7)0.032 (2)
H5"11.13150.20070.06700.047*
H5"21.30160.09750.03240.047*
H5"31.14900.04580.06340.047*
C61.1867 (11)0.1057 (15)0.1063 (7)0.029 (2)
H6A1.30970.10340.09730.034*
H6B1.14330.23340.07880.034*
C71.1546 (12)0.1196 (14)0.2009 (6)0.026 (2)
H71.23710.06280.23860.032*
C81.0180 (12)0.2062 (14)0.2379 (6)0.029 (2)
H81.01550.22140.29910.035*
C90.7223 (11)0.0905 (15)0.0430 (5)0.0227 (19)
C100.5307 (11)0.2911 (17)0.1285 (6)0.028 (2)
H10C0.47770.15480.13910.034*
H10D0.54440.36120.18500.034*
C10'0.8155 (11)0.4301 (14)0.0983 (6)0.024 (2)
H10A0.88890.43630.04650.029*
H10B0.75230.56170.10140.029*
C110.4178 (12)0.4201 (16)0.0708 (6)0.030 (2)
H11D0.40130.34860.01560.045*
H11E0.30900.44020.09940.045*
H11F0.47030.55500.06030.045*
C11'0.9211 (13)0.411 (2)0.1756 (8)0.041 (3)
H11A0.99140.28760.17080.061*
H11B0.99270.53410.18070.061*
H11C0.84950.40020.22710.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.044 (3)0.033 (3)0.027 (3)0.008 (3)0.013 (2)0.000 (2)
F20.018 (2)0.031 (3)0.039 (3)0.006 (2)0.001 (2)0.002 (3)
O10.033 (4)0.024 (3)0.029 (3)0.010 (3)0.002 (3)0.006 (3)
O20.026 (3)0.021 (3)0.040 (4)0.010 (3)0.008 (3)0.007 (3)
O30.022 (3)0.017 (3)0.036 (3)0.002 (3)0.007 (3)0.001 (3)
O40.026 (3)0.021 (3)0.030 (3)0.002 (3)0.003 (3)0.001 (3)
N10.030 (4)0.015 (4)0.024 (4)0.006 (3)0.005 (3)0.003 (3)
C10.033 (5)0.022 (4)0.018 (4)0.004 (4)0.006 (4)0.006 (4)
C20.028 (5)0.019 (5)0.030 (5)0.005 (4)0.001 (4)0.005 (4)
C30.025 (5)0.022 (5)0.029 (5)0.000 (4)0.007 (4)0.001 (4)
C40.024 (4)0.015 (4)0.029 (5)0.000 (3)0.004 (4)0.003 (4)
C50.021 (4)0.021 (4)0.023 (4)0.002 (4)0.001 (4)0.006 (4)
C5'0.032 (5)0.026 (5)0.042 (6)0.006 (4)0.007 (4)0.013 (4)
C5"0.025 (5)0.033 (5)0.036 (5)0.000 (4)0.005 (4)0.001 (4)
C60.014 (4)0.029 (5)0.044 (6)0.002 (4)0.005 (4)0.002 (4)
C70.037 (5)0.021 (4)0.021 (5)0.001 (4)0.009 (4)0.003 (4)
C80.037 (5)0.021 (5)0.028 (5)0.007 (4)0.006 (4)0.002 (4)
C90.025 (4)0.032 (5)0.011 (4)0.004 (4)0.007 (3)0.004 (4)
C100.021 (4)0.040 (6)0.024 (4)0.002 (4)0.001 (4)0.006 (4)
C10'0.024 (5)0.023 (5)0.027 (5)0.008 (4)0.005 (4)0.002 (4)
C110.025 (5)0.033 (5)0.032 (5)0.006 (4)0.008 (4)0.009 (4)
C11'0.023 (5)0.051 (7)0.047 (6)0.007 (5)0.010 (5)0.009 (5)
Geometric parameters (Å, º) top
F1—C21.363 (11)C5'—H5'20.980
F2—C21.356 (11)C5'—H5'30.980
O1—C11.412 (10)C5"—H5"10.980
O1—H10.840C5"—H5"20.980
O2—C31.437 (11)C5"—H5"30.980
O2—H20.840C6—C71.487 (13)
O3—C91.369 (11)C6—H6A0.990
O3—C41.463 (10)C6—H6B0.990
O4—C91.210 (11)C7—C81.351 (14)
N1—C91.315 (12)C7—H70.950
N1—C10'1.453 (12)C8—H80.950
N1—C101.480 (11)C10—C111.517 (13)
C1—C81.482 (13)C10—H10C0.990
C1—C21.533 (13)C10—H10D0.990
C1—H1A1.000C10'—C11'1.468 (14)
C2—C31.540 (12)C10'—H10A0.990
C3—C41.548 (13)C10'—H10B0.990
C3—H31.000C11—H11D0.980
C4—C51.524 (12)C11—H11E0.980
C4—H41.000C11—H11F0.980
C5—C5"1.532 (13)C11'—H11A0.980
C5—C5'1.538 (12)C11'—H11B0.980
C5—C61.567 (13)C11'—H11C0.980
C5'—H5'10.980
C1—O1—H1109.5H5"1—C5"—H5"2109.5
C3—O2—H2109.5C5—C5"—H5"3109.5
C9—O3—C4116.6 (7)H5"1—C5"—H5"3109.5
C9—N1—C10'126.2 (7)H5"2—C5"—H5"3109.5
C9—N1—C10117.9 (8)C7—C6—C5116.7 (8)
C10'—N1—C10115.7 (7)C7—C6—H6A108.1
O1—C1—C8109.1 (7)C5—C6—H6A108.1
O1—C1—C2110.0 (7)C7—C6—H6B108.1
C8—C1—C2111.4 (8)C5—C6—H6B108.1
O1—C1—H1A108.8H6A—C6—H6B107.3
C8—C1—H1A108.8C8—C7—C6125.5 (8)
C2—C1—H1A108.8C8—C7—H7117.2
F2—C2—F1105.4 (7)C6—C7—H7117.2
F2—C2—C1108.4 (7)C7—C8—C1122.3 (8)
F1—C2—C1108.5 (7)C7—C8—H8118.9
F2—C2—C3111.3 (7)C1—C8—H8118.9
F1—C2—C3106.9 (7)O4—C9—N1126.5 (8)
C1—C2—C3115.7 (7)O4—C9—O3122.7 (8)
O2—C3—C2107.2 (7)N1—C9—O3110.7 (8)
O2—C3—C4110.6 (7)N1—C10—C11110.8 (8)
C2—C3—C4117.5 (8)N1—C10—H10C109.5
O2—C3—H3107.0C11—C10—H10C109.5
C2—C3—H3107.0N1—C10—H10D109.5
C4—C3—H3107.0C11—C10—H10D109.5
O3—C4—C5106.7 (7)H10C—C10—H10D108.1
O3—C4—C3111.2 (7)N1—C10'—C11'113.6 (8)
C5—C4—C3119.7 (7)N1—C10'—H10A108.8
O3—C4—H4106.1C11'—C10'—H10A108.8
C5—C4—H4106.1N1—C10'—H10B108.8
C3—C4—H4106.1C11'—C10'—H10B108.8
C4—C5—C5"107.9 (7)H10A—C10'—H10B107.7
C4—C5—C5'109.0 (7)C10—C11—H11D109.5
C5"—C5—C5'107.4 (8)C10—C11—H11E109.5
C4—C5—C6114.7 (7)H11D—C11—H11E109.5
C5"—C5—C6107.5 (7)C10—C11—H11F109.5
C5'—C5—C6110.0 (8)H11D—C11—H11F109.5
C5—C5'—H5'1109.5H11E—C11—H11F109.5
C5—C5'—H5'2109.5C10'—C11'—H11A109.5
H5'1—C5'—H5'2109.5C10'—C11'—H11B109.5
C5—C5'—H5'3109.5H11A—C11'—H11B109.5
H5'1—C5'—H5'3109.5C10'—C11'—H11C109.5
H5'2—C5'—H5'3109.5H11A—C11'—H11C109.5
C5—C5"—H5"1109.5H11B—C11'—H11C109.5
C5—C5"—H5"2109.5
O1—C1—C2—F259.4 (9)C3—C4—C5—C5'59.3 (11)
C8—C1—C2—F2179.4 (7)O3—C4—C5—C662.8 (9)
O1—C1—C2—F154.5 (9)C3—C4—C5—C664.5 (11)
C8—C1—C2—F166.6 (9)C4—C5—C6—C768.2 (10)
O1—C1—C2—C3174.7 (7)C5"—C5—C6—C7171.7 (8)
C8—C1—C2—C353.6 (10)C5'—C5—C6—C755.0 (10)
F2—C2—C3—O251.6 (9)C5—C6—C7—C886.0 (12)
F1—C2—C3—O263.0 (9)C6—C7—C8—C17.2 (15)
C1—C2—C3—O2176.0 (7)O1—C1—C8—C7149.3 (9)
F2—C2—C3—C473.6 (10)C2—C1—C8—C789.1 (10)
F1—C2—C3—C4171.7 (7)C10'—N1—C9—O4175.1 (9)
C1—C2—C3—C450.8 (11)C10—N1—C9—O48.3 (13)
C9—O3—C4—C5153.8 (7)C10'—N1—C9—O35.7 (12)
C9—O3—C4—C374.1 (9)C10—N1—C9—O3170.9 (7)
O2—C3—C4—O396.4 (8)C4—O3—C9—O42.5 (12)
C2—C3—C4—O327.1 (11)C4—O3—C9—N1178.3 (7)
O2—C3—C4—C5138.4 (8)C9—N1—C10—C1195.1 (10)
C2—C3—C4—C598.1 (10)C10'—N1—C10—C1181.9 (10)
O3—C4—C5—C5"57.0 (9)C9—N1—C10'—C11'92.9 (11)
C3—C4—C5—C5"175.8 (8)C10—N1—C10'—C11'90.4 (10)
O3—C4—C5—C5'173.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.842.182.816 (10)133
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H25F2NO4
Mr321.36
Crystal system, space groupMonoclinic, Pn
Temperature (K)150
a, b, c (Å)7.9651 (14), 6.4632 (12), 15.445 (3)
β (°) 90.136 (3)
V3)795.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.24 × 0.18 × 0.12
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5283, 1403, 1332
Rint0.041
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.082, 0.230, 1.13
No. of reflections1403
No. of parameters203
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.45

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.842.182.816 (10)133
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Universities of Birmingham and Leicester, the EPSRC (project grant GR/K84882 for SP), GlaxoSmithKline (CASE studentship for SP) and Universities UK (ORS Award for EU).

References

First citationAnderson, J. E., Glazer, E. S., Griffith, D. L., Knorr, R. & Roberts, J. D. (1969). J. Am. Chem. Soc. 91, 1386–1395.  CrossRef CAS Web of Science Google Scholar
First citationBalnaves, A. S., Gelbrich, T., Hursthouse, M. B., Light, M. E., Palmer, M. J. & Percy, J. M. (1999). J. Chem. Soc. Perkin Trans. 1, pp. 2525–2535.  Web of Science CSD CrossRef Google Scholar
First citationBruker (1997). SMART. Version 5.622. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFawcett, J., Griffith, G. A., Percy, J. M., Pintat, S., Smith, C. A. & Uneyama, E. (2005). Org. Biomol. Chem. 3, 2701–2712.  Web of Science CSD CrossRef PubMed Google Scholar
First citationFawcett, J., Percy, J. M., Pintat, S., Smith, C. A. & Uneyama, E. (2005). Acta Cryst. E61, o3322–o3323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationServis, K. L. & Noe, E. A. (1973). J. Am. Chem. Soc. 95, 171–174.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2000). SHELXTL. Version 6.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSt Jacques, M., Brown, M. A. & Anet, F. A. L. (1966). Tetrahedron Lett. pp. 5947–5951.  CrossRef Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds