metal-organic compounds
Bis[2-(dimethylamino)ethanol-κ2N,O](pentane-2,4-dionato-κ2O,O′)nickel(II) chloride
aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bDepartment of Chemistry, University of Bath, Bath BA2 7AY, England
*Correspondence e-mail: mazhar42pk@yahoo.com
The Ni atom in the title complex, [Ni(C5H7O2)(C4H11NO)2]Cl, is in a distorted octahedral coordination environment. Cations are linked into centrosymmetric dimers via O—H⋯Cl hydrogen bonds involving the OH groups of the 2-(dimethylamino)ethanol ligands and the Cl− anions.
Comment
The title compound, (I), is a synthetic precursor for the possible deposition of nickel oxide thin films through aerosol-assisted chemical vapour deposition (AACVD). The molecular structure of complex (I) is shown in Fig. 1, and selected bond lengths and angles are given in Table 1.
The complex has a distorted octahedral geometry around the NiII atom and contains two bidentate chelating dimethylaminoethanol groups and a bidentate acetylacetonate group. The N atoms are in mutually trans positions, with an N2—Ni1—N1 angle of 171.43 (10)°. The Ni1—N2 bond length of 2.139 (3) Å is significantly shorter than that of 2.166 (3) Å for Ni1—N1. The Ni—O1, Ni—O2 and Ni—O3 bonds are very similar to the analogous bonds in the related compound [Ni(acac)2(dmaeH)] (acac is acetylacetonate and dmaeH is dimethylaminoethanol; Williams et al., 2001). Not surprisingly, the Ni—O bonds of the coordinated dmaeH groups are longer [2.080 (2) and 2.106 (2) Å] than the Ni—O(acac) bonds [2.014 (2) and 2.015 (2) Å]. The cis O—Ni—O and O—Ni—N bond angles in (I) are close to the ideal octahedral value of 90°, lying in the range 89.07 (9)–93.84 (9)°, with the exception of the bite angles of the chelating dmaeH groups [80.30 (10) and 81.10 (9)°], and 97.08 (10)° for N2—Ni1—O4. Distortions of the trans O—Ni—O angles from the ideal 180° are also evident [169.95 (9)–172.31 (10)°].
In the via O—H⋯Cl hydrogen bonds to form centrosymmetric dimers involving the O—H groups of the dmaeH ligands and the Cl− anions [H1—Cl 2.15 (4) and H2—Cl1i 2.18 (4) Å, and O1—H1⋯Cl1 172 (4) and O2—H2⋯Cl1i 161 (6)°; symmetry code: (i) 2 − x, 1 − y, 1 − z].
molecules are linkedExperimental
Bis(2,4-pentanedionato)nickel(II), [Ni(acac)2] (0.5 g, 1.95 mmol), was reacted with dimethylaminoethanol (dmaeH; 0.391 ml, 3.9 mmol) in the presence of methoxytin(II) chloride (0.7 g, 3.9 mmol), [ClSnOCH3] in toluene under argon. The resulting product was recrystallized from tetrahydrofuran at 263 K to give crystals of [Ni(acac)(dmaeH)2]Cl, (I).
Crystal data
|
Refinement
|
|
H atoms on O atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.98–0.99 Å and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms. The highest peak is located 0.96 Å from atom C2 and 1.61 Å from atom N1.
Data collection: COLLECT (Nonius, 1997); cell HKL SCALEPACK (Otwinski & Minor, 1997); data reduction: DENZO (Otwinski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536805028424/lh6466sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536805028424/lh6466Isup2.hkl
Bis(2,4-pentanedionato)nickel(II), [Ni(acac)2] (0.5 g, 1.95 mmol), was reacted with dimethylaminoethanol (dmaeH; 0.391 ml, 3.9 mmol) in the presence of methoxytin(II) chloride, [ClSnOCH3] in toluene under argon. The resulting product was recrystallized from tetrahydrofuran at 263 K to give crystals of [Ni(acac)(dmaeH)2]Cl, (I).
H atoms on O atoms were located in a difference map and refined isotropically. C-bound H atoms were positioned geometrically and refined as riding, with C—H = 0.98–0.99 Å and with Uiso(H) = 1.2Ueq(C), or 1.5Ueq(C) for methyl H atoms. [Please check added text and correct as necessary.]
Data collection: COLLECT (Nonius, 1997); cell
HKL SCALEPACK (Otwinski & Minor, 1997); data reduction: DENZO (Otwinski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).[Ni(C5H7O2)(C4H11NO)2]Cl | F(000) = 792 |
Mr = 371.54 | Dx = 1.375 Mg m−3 |
Monoclinic, P21/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yab | Cell parameters from 25977 reflections |
a = 13.6400 (3) Å | θ = 2.9–27.5° |
b = 8.7900 (3) Å | µ = 1.25 mm−1 |
c = 15.2310 (5) Å | T = 150 K |
β = 100.697 (1)° | Plate, colourless |
V = 1794.40 (9) Å3 | 0.30 × 0.20 × 0.10 mm |
Z = 4 |
Bruker Nonius Kappa CCD area-detector diffractometer | 4059 independent reflections |
Radiation source: fine-focus sealed tube | 3191 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.093 |
188 2.0° images with ω scans | θmax = 27.5°, θmin = 3.6° |
Absorption correction: multi-scan (Blessing, 1995) | h = −17→17 |
Tmin = 0.706, Tmax = 0.886 | k = −11→11 |
27270 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0683P)2 + 1.8862P] where P = (Fo2 + 2Fc2)/3 |
4059 reflections | (Δ/σ)max = 0.001 |
204 parameters | Δρmax = 1.00 e Å−3 |
1 restraint | Δρmin = −0.86 e Å−3 |
[Ni(C5H7O2)(C4H11NO)2]Cl | V = 1794.40 (9) Å3 |
Mr = 371.54 | Z = 4 |
Monoclinic, P21/a | Mo Kα radiation |
a = 13.6400 (3) Å | µ = 1.25 mm−1 |
b = 8.7900 (3) Å | T = 150 K |
c = 15.2310 (5) Å | 0.30 × 0.20 × 0.10 mm |
β = 100.697 (1)° |
Bruker Nonius Kappa CCD area-detector diffractometer | 4059 independent reflections |
Absorption correction: multi-scan (Blessing, 1995) | 3191 reflections with I > 2σ(I) |
Tmin = 0.706, Tmax = 0.886 | Rint = 0.093 |
27270 measured reflections |
R[F2 > 2σ(F2)] = 0.050 | 1 restraint |
wR(F2) = 0.137 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.07 | Δρmax = 1.00 e Å−3 |
4059 reflections | Δρmin = −0.86 e Å−3 |
204 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.93608 (3) | 0.33643 (4) | 0.26988 (2) | 0.02843 (14) | |
Cl1 | 0.86046 (6) | 0.29196 (9) | 0.56412 (5) | 0.0374 (2) | |
O1 | 0.8803 (2) | 0.4046 (3) | 0.38181 (17) | 0.0420 (6) | |
H1 | 0.881 (3) | 0.371 (5) | 0.435 (3) | 0.048 (12)* | |
O2 | 1.07688 (16) | 0.4291 (3) | 0.32353 (15) | 0.0344 (5) | |
H2 | 1.080 (5) | 0.510 (4) | 0.356 (3) | 0.096 (19)* | |
O3 | 0.81020 (15) | 0.2204 (3) | 0.22212 (15) | 0.0355 (5) | |
O4 | 0.98193 (16) | 0.3064 (3) | 0.15270 (14) | 0.0340 (5) | |
N1 | 0.87266 (19) | 0.5542 (3) | 0.22294 (18) | 0.0341 (6) | |
N2 | 1.00493 (19) | 0.1378 (3) | 0.33520 (17) | 0.0319 (6) | |
C1 | 0.8531 (3) | 0.5613 (4) | 0.3789 (3) | 0.0506 (9) | |
H1A | 0.9128 | 0.6244 | 0.4008 | 0.061* | |
H1B | 0.8039 | 0.5795 | 0.4181 | 0.061* | |
C2 | 0.8100 (3) | 0.6035 (5) | 0.2869 (3) | 0.0577 (10) | |
H2A | 0.8018 | 0.7154 | 0.2832 | 0.069* | |
H2B | 0.7431 | 0.5568 | 0.2702 | 0.069* | |
C3 | 0.9500 (3) | 0.6658 (4) | 0.2141 (3) | 0.0519 (10) | |
H3A | 0.9185 | 0.7604 | 0.1890 | 0.078* | |
H3B | 0.9926 | 0.6254 | 0.1744 | 0.078* | |
H3C | 0.9905 | 0.6864 | 0.2731 | 0.078* | |
C4 | 0.8064 (3) | 0.5424 (5) | 0.1348 (3) | 0.0600 (12) | |
H4A | 0.7716 | 0.6393 | 0.1203 | 0.090* | |
H4B | 0.7573 | 0.4614 | 0.1365 | 0.090* | |
H4C | 0.8461 | 0.5185 | 0.0892 | 0.090* | |
C5 | 1.1457 (2) | 0.3168 (4) | 0.3682 (2) | 0.0366 (7) | |
H5A | 1.1936 | 0.3651 | 0.4170 | 0.044* | |
H5B | 1.1838 | 0.2712 | 0.3254 | 0.044* | |
C6 | 1.0870 (2) | 0.1952 (4) | 0.4056 (2) | 0.0365 (7) | |
H6A | 1.1318 | 0.1101 | 0.4290 | 0.044* | |
H6B | 1.0587 | 0.2376 | 0.4557 | 0.044* | |
C7 | 0.9365 (3) | 0.0434 (4) | 0.3773 (2) | 0.0389 (7) | |
H7A | 0.9737 | −0.0409 | 0.4099 | 0.058* | |
H7B | 0.8834 | 0.0026 | 0.3310 | 0.058* | |
H7C | 0.9069 | 0.1060 | 0.4189 | 0.058* | |
C8 | 1.0469 (3) | 0.0400 (4) | 0.2719 (2) | 0.0386 (7) | |
H8A | 1.0961 | 0.0980 | 0.2463 | 0.058* | |
H8B | 0.9931 | 0.0064 | 0.2240 | 0.058* | |
H8C | 1.0792 | −0.0489 | 0.3038 | 0.058* | |
C9 | 0.7069 (2) | 0.0304 (4) | 0.1439 (3) | 0.0467 (9) | |
H9A | 0.7143 | −0.0350 | 0.1969 | 0.070* | |
H9B | 0.7040 | −0.0328 | 0.0905 | 0.070* | |
H9C | 0.6452 | 0.0896 | 0.1387 | 0.070* | |
C10 | 0.7951 (2) | 0.1375 (4) | 0.1526 (2) | 0.0350 (7) | |
C11 | 0.8532 (2) | 0.1379 (4) | 0.0866 (2) | 0.0406 (8) | |
H11 | 0.8322 | 0.0742 | 0.0362 | 0.049* | |
C12 | 0.9396 (2) | 0.2238 (4) | 0.0880 (2) | 0.0367 (7) | |
C13 | 0.9908 (3) | 0.2209 (6) | 0.0080 (3) | 0.0557 (10) | |
H13A | 0.9975 | 0.3250 | −0.0131 | 0.084* | |
H13B | 0.9509 | 0.1607 | −0.0398 | 0.084* | |
H13C | 1.0571 | 0.1751 | 0.0252 | 0.084* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0323 (2) | 0.0229 (2) | 0.0296 (2) | −0.00079 (14) | 0.00439 (15) | −0.00080 (15) |
Cl1 | 0.0490 (4) | 0.0275 (4) | 0.0339 (4) | −0.0053 (3) | 0.0035 (3) | −0.0004 (3) |
O1 | 0.0648 (16) | 0.0258 (12) | 0.0400 (13) | 0.0061 (11) | 0.0213 (12) | 0.0017 (10) |
O2 | 0.0356 (11) | 0.0265 (12) | 0.0377 (12) | −0.0014 (9) | −0.0019 (9) | −0.0019 (9) |
O3 | 0.0350 (11) | 0.0313 (12) | 0.0405 (12) | −0.0028 (9) | 0.0082 (9) | −0.0045 (10) |
O4 | 0.0374 (11) | 0.0330 (12) | 0.0321 (11) | −0.0014 (9) | 0.0079 (9) | −0.0015 (9) |
N1 | 0.0378 (13) | 0.0272 (13) | 0.0355 (13) | 0.0008 (10) | 0.0020 (11) | 0.0013 (11) |
N2 | 0.0386 (13) | 0.0235 (13) | 0.0330 (13) | 0.0004 (10) | 0.0048 (11) | −0.0003 (10) |
C1 | 0.073 (3) | 0.037 (2) | 0.045 (2) | 0.0192 (18) | 0.0180 (18) | −0.0015 (15) |
C2 | 0.068 (3) | 0.046 (2) | 0.063 (3) | 0.0188 (19) | 0.022 (2) | 0.0087 (19) |
C3 | 0.049 (2) | 0.037 (2) | 0.068 (3) | −0.0023 (15) | 0.0058 (19) | 0.0187 (18) |
C4 | 0.066 (2) | 0.036 (2) | 0.064 (3) | 0.0086 (18) | −0.025 (2) | 0.0002 (18) |
C5 | 0.0344 (15) | 0.0334 (18) | 0.0391 (17) | 0.0037 (12) | −0.0006 (13) | −0.0009 (13) |
C6 | 0.0388 (16) | 0.0342 (17) | 0.0335 (16) | 0.0039 (13) | −0.0014 (13) | 0.0019 (13) |
C7 | 0.0487 (18) | 0.0263 (16) | 0.0426 (18) | 0.0000 (13) | 0.0113 (14) | 0.0062 (13) |
C8 | 0.0483 (18) | 0.0277 (16) | 0.0391 (17) | 0.0061 (13) | 0.0066 (14) | −0.0008 (13) |
C9 | 0.0351 (16) | 0.0384 (19) | 0.065 (2) | −0.0054 (14) | 0.0042 (16) | −0.0076 (17) |
C10 | 0.0301 (14) | 0.0293 (16) | 0.0429 (17) | −0.0003 (12) | −0.0001 (13) | −0.0038 (13) |
C11 | 0.0398 (17) | 0.039 (2) | 0.0390 (17) | 0.0001 (14) | −0.0025 (14) | −0.0102 (14) |
C12 | 0.0420 (17) | 0.0345 (17) | 0.0326 (15) | 0.0035 (13) | 0.0042 (13) | −0.0022 (13) |
C13 | 0.069 (3) | 0.062 (3) | 0.0397 (19) | −0.008 (2) | 0.0213 (18) | −0.0101 (18) |
Ni1—O1 | 2.080 (2) | C4—H4A | 0.9800 |
Ni1—O2 | 2.106 (2) | C4—H4B | 0.9800 |
Ni1—O3 | 2.014 (2) | C4—H4C | 0.9800 |
Ni1—O4 | 2.015 (2) | C5—C6 | 1.510 (5) |
Ni1—N1 | 2.166 (3) | C5—H5A | 0.9900 |
Ni1—N2 | 2.139 (3) | C5—H5B | 0.9900 |
O1—C1 | 1.425 (4) | C6—H6A | 0.9900 |
O1—H1 | 0.86 (4) | C6—H6B | 0.9900 |
O2—C5 | 1.442 (4) | C7—H7A | 0.9800 |
O2—H2 | 0.86 (2) | C7—H7B | 0.9800 |
O3—C10 | 1.270 (4) | C7—H7C | 0.9800 |
O4—C12 | 1.273 (4) | C8—H8A | 0.9800 |
N1—C3 | 1.465 (4) | C8—H8B | 0.9800 |
N1—C2 | 1.475 (5) | C8—H8C | 0.9800 |
N1—C4 | 1.476 (4) | C9—C10 | 1.515 (4) |
N2—C7 | 1.481 (4) | C9—H9A | 0.9800 |
N2—C8 | 1.483 (4) | C9—H9B | 0.9800 |
N2—C6 | 1.487 (4) | C9—H9C | 0.9800 |
C1—C2 | 1.463 (6) | C10—C11 | 1.391 (5) |
C1—H1A | 0.9900 | C11—C12 | 1.397 (5) |
C1—H1B | 0.9900 | C11—H11 | 0.9500 |
C2—H2A | 0.9900 | C12—C13 | 1.512 (5) |
C2—H2B | 0.9900 | C13—H13A | 0.9800 |
C3—H3A | 0.9800 | C13—H13B | 0.9800 |
C3—H3B | 0.9800 | C13—H13C | 0.9800 |
C3—H3C | 0.9800 | ||
N1—Ni1—N2 | 171.43 (10) | H3B—C3—H3C | 109.5 |
O1—Ni1—O4 | 169.95 (9) | N1—C4—H4A | 109.5 |
O2—Ni1—O3 | 172.31 (9) | N1—C4—H4B | 109.5 |
N1—Ni1—O1 | 80.30 (10) | H4A—C4—H4B | 109.5 |
N1—Ni1—O2 | 93.78 (9) | N1—C4—H4C | 109.5 |
N1—Ni1—O3 | 93.84 (9) | H4A—C4—H4C | 109.5 |
N1—Ni1—O4 | 89.66 (10) | H4B—C4—H4C | 109.5 |
N2—Ni1—O1 | 92.86 (10) | O2—C5—C6 | 108.5 (3) |
N2—Ni1—O2 | 81.10 (9) | O2—C5—H5A | 110.0 |
N2—Ni1—O3 | 91.48 (10) | C6—C5—H5A | 110.0 |
N2—Ni1—O4 | 97.08 (10) | O2—C5—H5B | 110.0 |
O1—Ni1—O2 | 90.96 (10) | C6—C5—H5B | 110.0 |
O1—Ni1—O3 | 91.42 (10) | H5A—C5—H5B | 108.4 |
O2—Ni1—O4 | 89.07 (9) | N2—C6—C5 | 110.4 (3) |
O3—Ni1—O4 | 89.86 (9) | N2—C6—H6A | 109.6 |
C1—O1—Ni1 | 112.7 (2) | C5—C6—H6A | 109.6 |
C1—O1—H1 | 109 (3) | N2—C6—H6B | 109.6 |
Ni1—O1—H1 | 137 (3) | C5—C6—H6B | 109.6 |
C5—O2—Ni1 | 112.66 (18) | H6A—C6—H6B | 108.1 |
C5—O2—H2 | 109 (4) | N2—C7—H7A | 109.5 |
Ni1—O2—H2 | 119 (4) | N2—C7—H7B | 109.5 |
C10—O3—Ni1 | 126.0 (2) | H7A—C7—H7B | 109.5 |
C12—O4—Ni1 | 126.1 (2) | N2—C7—H7C | 109.5 |
C3—N1—C2 | 112.2 (3) | H7A—C7—H7C | 109.5 |
C3—N1—C4 | 107.1 (3) | H7B—C7—H7C | 109.5 |
C2—N1—C4 | 106.8 (3) | N2—C8—H8A | 109.5 |
C3—N1—Ni1 | 111.8 (2) | N2—C8—H8B | 109.5 |
C2—N1—Ni1 | 106.6 (2) | H8A—C8—H8B | 109.5 |
C4—N1—Ni1 | 112.2 (2) | N2—C8—H8C | 109.5 |
C7—N2—C8 | 107.9 (3) | H8A—C8—H8C | 109.5 |
C7—N2—C6 | 109.2 (3) | H8B—C8—H8C | 109.5 |
C8—N2—C6 | 109.6 (3) | C10—C9—H9A | 109.5 |
C7—N2—Ni1 | 113.64 (19) | C10—C9—H9B | 109.5 |
C8—N2—Ni1 | 111.10 (19) | H9A—C9—H9B | 109.5 |
C6—N2—Ni1 | 105.37 (18) | C10—C9—H9C | 109.5 |
O1—C1—C2 | 109.3 (3) | H9A—C9—H9C | 109.5 |
O1—C1—H1A | 109.8 | H9B—C9—H9C | 109.5 |
C2—C1—H1A | 109.8 | O3—C10—C11 | 125.1 (3) |
O1—C1—H1B | 109.8 | O3—C10—C9 | 115.6 (3) |
C2—C1—H1B | 109.8 | C11—C10—C9 | 119.2 (3) |
H1A—C1—H1B | 108.3 | C10—C11—C12 | 125.6 (3) |
C1—C2—N1 | 112.3 (3) | C10—C11—H11 | 117.2 |
C1—C2—H2A | 109.1 | C12—C11—H11 | 117.2 |
N1—C2—H2A | 109.1 | O4—C12—C11 | 125.5 (3) |
C1—C2—H2B | 109.1 | O4—C12—C13 | 115.0 (3) |
N1—C2—H2B | 109.1 | C11—C12—C13 | 119.6 (3) |
H2A—C2—H2B | 107.9 | C12—C13—H13A | 109.5 |
N1—C3—H3A | 109.5 | C12—C13—H13B | 109.5 |
N1—C3—H3B | 109.5 | H13A—C13—H13B | 109.5 |
H3A—C3—H3B | 109.5 | C12—C13—H13C | 109.5 |
N1—C3—H3C | 109.5 | H13A—C13—H13C | 109.5 |
H3A—C3—H3C | 109.5 | H13B—C13—H13C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [Ni(C5H7O2)(C4H11NO)2]Cl |
Mr | 371.54 |
Crystal system, space group | Monoclinic, P21/a |
Temperature (K) | 150 |
a, b, c (Å) | 13.6400 (3), 8.7900 (3), 15.2310 (5) |
β (°) | 100.697 (1) |
V (Å3) | 1794.40 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.25 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Bruker Nonius Kappa CCD area-detector diffractometer |
Absorption correction | Multi-scan (Blessing, 1995) |
Tmin, Tmax | 0.706, 0.886 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27270, 4059, 3191 |
Rint | 0.093 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.050, 0.137, 1.07 |
No. of reflections | 4059 |
No. of parameters | 204 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.00, −0.86 |
Computer programs: COLLECT (Nonius, 1997), HKL SCALEPACK (Otwinski & Minor, 1997), DENZO (Otwinski & Minor, 1997) and SCALEPACK, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 2001), WinGX (Farrugia, 1999).
Ni1—O1 | 2.080 (2) | Ni1—N1 | 2.166 (3) |
Ni1—O2 | 2.106 (2) | Ni1—N2 | 2.139 (3) |
Ni1—O3 | 2.014 (2) | O1—H1 | 0.86 (4) |
Ni1—O4 | 2.015 (2) | O2—H2 | 0.86 (2) |
N1—Ni1—N2 | 171.43 (10) | N2—Ni1—O2 | 81.10 (9) |
O1—Ni1—O4 | 169.95 (9) | N2—Ni1—O3 | 91.48 (10) |
O2—Ni1—O3 | 172.31 (9) | N2—Ni1—O4 | 97.08 (10) |
N1—Ni1—O1 | 80.30 (10) | O1—Ni1—O2 | 90.96 (10) |
N1—Ni1—O2 | 93.78 (9) | O1—Ni1—O3 | 91.42 (10) |
N1—Ni1—O3 | 93.84 (9) | O2—Ni1—O4 | 89.07 (9) |
N1—Ni1—O4 | 89.66 (10) | O3—Ni1—O4 | 89.86 (9) |
N2—Ni1—O1 | 92.86 (10) |
Acknowledgements
The authors thank the Pakistan Science Foundation, Islamabad 45320, Pakistan, for funding [contract/grant No. PSF/R&D/C-QU/Chem(218)].
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen Germany. Google Scholar
Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 Windows NT Version. Bruker AXS Inc., Madison, USA. Google Scholar
Williams, P. A., Jones C. A., Bickley, F. J., Steiner, A., Davies, O. H., Leedham. J. T., Impey. A. S., Garcia. J., Allen, S., Rougier A. & Blyr, A. (2001). J. Mater. Chem. 11, 2329–2935. Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
The title compound, (I), is a synthetic precursor for the possible deposition of nickel oxide thin films through aerosol-assisted chemical vapour deposition (AACVD). The molecular structure of complex (I) is shown in Fig. 1, and selected bond lengths and angles are given in Table 1.
The complex has a distorted octahedral geometry around the NiII atom and contains two bidentate chelating dimethylaminoethanol groups and a bidentate acetylacetonate group. The N atoms are in mutually trans positions, with an N2—Ni1—N1 angle of 171.43 (10)°. The Ni1—N2 bond length of 2.139 (3) Å is significantly shorter than that of 2.166 (3) Å for Ni1—N1. The Ni—O1, Ni—O2 and Ni—O3 bonds are very similar to the analogous bonds in the related compound [Ni(acac)2(dmaeH)] (acac is acetylacetonate and dmaeH is dimethylaminoethanol; Williams et al., 2001). Not surprisingly, the Ni—O bonds of the coordinated dmaeH groups are longer [2.080 (2) and 2.106 (2) Å] than the Ni—O(acac) bonds [2.014 (2) and 2.015 (2) Å]. The cis O—Ni—O and O—Ni—N bond angles in (I) are close to the ideal octahedral value of 90°, lying in the range 89.07 (9)–93.84 (9)°, with the exception of the bite angles of the chelating dmaeH groups [80.30 (10) and 81.10 (9)°], and 97.08 (10)° for N2—Ni1—O4. Distortions of the trans O—Ni—O angles from the ideal 180° are also evident [169.95 (9)–172.31 (10)°].
In the crystal structure, molecules are linked via O—H···Cl hydrogen bonds to form centrosymmetric dimers invoving the O—H groups of the dmaeH ligands and the Cl− anions [H1—Cl 2.15 (4) and H2—Cl1i 2.18 (4) Å, and O1—H1···Cl1 172 (4) and O2—H2···Cl1i 161 (6)°; symmetry code: (i) 2 − x, 1 − y, 1 − z].