metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Racemic cis-bis­­(2,2′-bipyrid­yl)di­fluoro­vanadium(III) tetra­fluoro­borate

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 6 September 2005; accepted 7 September 2005; online 14 September 2005)

The title compound is a salt, [V(C10H8N2)2F2]BF4, in which pairs of cations, one each of Λ and Δ configuration, are linked by a centrosymmetric ππ stacking inter­action.

Comment

The title compound, [V(bipy)2F2]+·[BF4] (bipy is 2,2′-bipyrid­yl), (I)[link], was obtained as an adventitious by-product from the attempted preparation of [bis­(2,2′-bipyrid­yl)(2,4-penta­nedionato-O,O′)vanadium(III)] tetra­fluoro­borate, [V(bipy)2(CH3COCHCOCH3)]+·[BF4], from tris­(2,4-pentane­dionato-O,O′)vanadium(III), [V(CH3COCHCOCH3)3]. The formation of (I)[link] can be described as the complete displacement of the ligands in tris­(2,4-penta­nedionato-O,O′)vanadium(III) and coordination instead of neutral 2,2′-bipyridyl and of fluoride ions resulting from the adventitious hydrolysis of part of the tetra­fluoro­borate component.

[Scheme 1]

The cations in (I)[link] are chiral with approximate, but not exact, local C2 symmetry. However, the centrosymmetric space group P[\overline{1}] accommodates equal numbers of Λ and Δ enantiomers; the selected reference cation (Fig. 1[link]) has the Λ configuration. The individual bond angles (Table 1[link]) around the octa­hedrally coordinated metal centre show some considerable deviations from the ideal values of 90 and 180°, ascribable both to the rather small bite angles, ca 75°, of the bipyridyl ligands, and to the mutual repulsion of the two F ligands. The V—N bonds trans to the F ligands are significantly longer than the V—N bonds trans to a bipyridyl N atom.

In the two independent bipyridyl ligands, the dihedral angles between the two ring planes are 3.0 (2) and 8.5 (2)° for the ligands containing atoms N11 and N31, respectively. The chelate ring containing atoms N11 and N21 is effectively planar, but that containing atoms N31 and N41 is distinctly puckered, adopting an envelope conformation with the ring folded across the N31⋯N41 vector.

The cations are linked into centrosymmetric pairs by means of a single aromatic ππ stacking inter­action. The bipyridyl rings N11/C12–C16 at (x, y, z) and N21/C22–C26 at (1 − x, 1 − y, −z) are almost parallel, with a dihedral angle between them of only 3.0 (2)°. The ring–centroid separation is 3.56 (2) Å, and the inter­planar spacing is ca 3.40 Å. This inter­action thus links a racemic pair of cations across the centre of inversion at ([{1\over 2}], [{1\over 2}], 0) (Fig. 2[link]).

There are short C—H⋯F contacts, both between cations and between cations and anions (Table 2[link]). Although inter­actions of this type are exceptionally weak (Howard et al., 1996[Howard, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613-12622.]), the concerted effect of cation⋯anion inter­actions involving three of the four F atoms in the anion may contribute to the restricted librational motion of the anion, which in simple salts often shows significant evidence for motion and/or disorder.

[Figure 1]
Figure 1
The ionic components of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
A stereoview of part of the crystal structure of compound (I)[link], showing a pair of enantiomeric cations linked by a ππ stacking inter­action. For the sake of clarity, H atoms have been omitted.

Experimental

A solution of tris­(2,4-penta­nedionato-O,O′)vanadium(III) (0.3 g) and 2-(2′-pyrid­yl)pyridinium tetra­fluoborate (0.42 g) in methanol (30 ml) was heated under reflux for 3 h in a dinitro­gen atmosphere. After cooling of the reaction mixture, the solvent was removed under reduced pressure to yield the title compound, (I)[link]. Red crystals of (I)[link] suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution in acetone (m.p. 488 K, with charring).

Crystal data
  • [V(C10H8N2)2F2]BF4

  • Mr = 488.12

  • Triclinic, [P \overline 1]

  • a = 8.0518 (2) Å

  • b = 9.3238 (2) Å

  • c = 13.5469 (3) Å

  • α = 96.3421 (12)°

  • β = 100.2723 (14)°

  • γ = 94.9660 (13)°

  • V = 988.70 (4) Å3

  • Z = 2

  • Dx = 1.640 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 4541 reflections

  • θ = 3.6–27.5°

  • μ = 0.57 mm−1

  • T = 120 (2) K

  • Plate, red

  • 0.24 × 0.22 × 0.04 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.875, Tmax = 0.977

  • 20038 measured reflections

  • 4541 independent reflections

  • 3970 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 27.5°

  • h = −10 → 10

  • k = −12 → 12

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.133

  • S = 1.17

  • 4541 reflections

  • 289 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0576P)2 + 0.8934P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.68 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

V1—N11 2.1823 (19)
V1—N21 2.114 (2)
V1—F5 1.7232 (15)
V1—N31 2.2247 (19)
V1—N41 2.1082 (19)
V1—F6 1.7389 (15)
F5—V1—N11 88.08 (7)
F5—V1—N21 99.97 (7)
F5—V1—N31 160.97 (8)
F5—V1—N41 92.76 (7)
F6—V1—N11 160.98 (8)
F6—V1—N21 90.18 (7)
F6—V1—N31 88.60 (7)
F6—V1—N41 92.94 (7)
N11—V1—N21 75.01 (7)
N11—V1—N31 80.02 (7)
N11—V1—N41 98.59 (7)
N21—V1—N31 91.30 (7)
N21—V1—N41 165.44 (8)
N31—V1—N41 74.59 (7)
F5—V1—F6 106.51 (7)

Table 2
Geometry of short inter-ion contacts (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯F5i 0.95 2.50 3.265 (3) 137
C14—H14⋯F5ii 0.95 2.42 3.145 (3) 133
C16—H16⋯F3iii 0.95 2.50 3.402 (3) 158
C24—H24⋯F2iv 0.95 2.47 3.279 (4) 143
C33—H33⋯F6v 0.95 2.42 3.209 (3) 140
C34—H34⋯F1 0.95 2.55 3.227 (3) 129
C43—H43⋯F6v 0.95 2.46 3.180 (3) 132
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x, y, z-1; (v) -x+2, -y+1, -z+1.

All H atoms were located in difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 Å and with Uiso(H) = 1.2 Ueq(C).

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

The title compound, [V(bipy)2F2]+·[BF4] (bipy is 2,2'-bipyridyl), (I), was obtained as an adventitious by-product from the attempted preparation of [bis(2,2'-bipyridyl)(2,4-pentanedionato-O,O')vanadium(III)] tetrafluoroborate, [V(bipy)2(CH3COCHCOCH3)]+·[BF4], from tris(2,4-pentanedionato-O,O')vanadium(III), [V(CH3COCHCOCH3)3]. The formation of (I) can be described as the complete displacement of the ligands in tris(2,4-pentanedionato-O,O')vanadium(III) and coordination instead of neutral 2,2'-bipyridyl and of fluoride ions resulting from the adventitious hydrolysis of part of the tetrafluoroborate component.

The cations in (I) are chiral with approximate, but not exact, local C2 symmetry. However, the centrosymmetric space group P1 accommodates equal numbers of Λ and Δ enantiomers; the selected reference cation (Fig. 1) has the Λ configuration. The individual bond angles (Table 1) around the octahedrally coordinated metal centre show some considerable deviations from the ideal values of 90 and 180°, ascribable both to the rather small bite angles, ca 75°, of the bipyridyl ligands, and to the mutual repulsion of the two F ligands. The V—N bonds trans to the F ligands are significantly longer than the V—N bonds trans to a bipyridyl N atom.

In the two independent bipyridyl ligands, the dihedral angles between the two ring planes are 3.0 (2) and 8.5 (2)° for the ligands containing atoms N11 and N31, respectively. The chelate ring containing atoms N11 and N21 is effectively planar, but that containing atoms N31 and N41 is distinctly puckered, adopting an envelope conformation with the ring folded across the N31···N41 vector.

The cations are linked into centrosymmetric pairs by means of a single aromatic ππ stacking interaction. The bipyridyl rings N11/C12–C16 at (x, y, z) and N21/C22–C26 at (1 − x, 1 − y, −z) are almost parallel, with a dihedral angle between them of only 3.0 (2)°. The ring–centroid separation is 3.558 (23) Å, and the interplanar spacing is ca 3.40 Å. This interaction thus links a racemic pair of cations across the centre of inversion at (1/2, 1/2, 0) (Fig. 2).

There are short C—H···F contacts, both between cations and between cations and anions (Table 2). Although interactions of this type are exceptionally weak (Howard et al., 1996), the concerted effect of cation···anion interactions involving three of the four F atoms in the anion may contribute to the restricted librational motion of the anion, which in simple salts often shows significant evidence for motion and/or disorder.

Experimental top

A solution of tris(2,4-pentanedionato-O,O')vanadium(III) (0.3 g) and 2-(2'-pyridyl)pyridinium tetrafluoborate (0.42 g) in methanol (30 ml) was heated under reflux for 3 h in a dinitrogen atmosphere. After cooling of the reaction mixture, the solvent was removed under reduced pressure to yield the title compound, (I). Red crystals of (I) suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution in acetone (m.p. 488 K, with charring).

Refinement top

All H atoms were located in difference maps and subsequently treated as riding atoms, with C—H distances of 0.95 Å and with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The ionic components of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A stereoview of part of the crystal structure of compound (I), showing a pair of enantiomeric cations linked by a ππ stacking interaction. For the sake of clarity, H atoms have been omitted.
cis-bis(2,2'-bipyridyl)difluorovanadium(III) tetrafluoroborate top
Crystal data top
[V(C10H8N2)2F2]BF4Z = 2
Mr = 488.12F(000) = 492
Triclinic, P1Dx = 1.640 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0518 (2) ÅCell parameters from 4541 reflections
b = 9.3238 (2) Åθ = 3.6–27.5°
c = 13.5469 (3) ŵ = 0.57 mm1
α = 96.3421 (12)°T = 120 K
β = 100.2723 (14)°Plate, red
γ = 94.9660 (13)°0.24 × 0.22 × 0.04 mm
V = 988.70 (4) Å3
Data collection top
Nonius KappaCCD area-detector
diffractometer
4541 independent reflections
Radiation source: Bruker Nonius FR91 rotating anode3970 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.6°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1212
Tmin = 0.875, Tmax = 0.977l = 1717
20038 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0576P)2 + 0.8934P]
where P = (Fo2 + 2Fc2)/3
4541 reflections(Δ/σ)max < 0.001
289 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.68 e Å3
Crystal data top
[V(C10H8N2)2F2]BF4γ = 94.9660 (13)°
Mr = 488.12V = 988.70 (4) Å3
Triclinic, P1Z = 2
a = 8.0518 (2) ÅMo Kα radiation
b = 9.3238 (2) ŵ = 0.57 mm1
c = 13.5469 (3) ÅT = 120 K
α = 96.3421 (12)°0.24 × 0.22 × 0.04 mm
β = 100.2723 (14)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
4541 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3970 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.977Rint = 0.033
20038 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.17Δρmax = 0.53 e Å3
4541 reflectionsΔρmin = 0.68 e Å3
289 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.79578 (5)0.46813 (5)0.23463 (3)0.02652 (14)
F10.8248 (2)0.9922 (2)0.71574 (16)0.0565 (5)
F20.7214 (3)1.0582 (3)0.85451 (16)0.0689 (7)
F30.5404 (2)0.9771 (2)0.7049 (2)0.0695 (7)
F40.6933 (2)1.19586 (19)0.72924 (15)0.0520 (5)
F50.81008 (19)0.34016 (17)0.13539 (11)0.0319 (3)
F61.00199 (18)0.54451 (17)0.28618 (11)0.0328 (3)
N110.5221 (2)0.4474 (2)0.17888 (14)0.0213 (4)
N210.7537 (2)0.6496 (2)0.15632 (14)0.0212 (4)
N310.7122 (2)0.5766 (2)0.36922 (14)0.0217 (4)
N410.8016 (2)0.3136 (2)0.33735 (14)0.0199 (4)
C120.4627 (3)0.5507 (2)0.12442 (16)0.0204 (4)
C130.2907 (3)0.5490 (3)0.08569 (18)0.0262 (5)
C140.1787 (3)0.4382 (3)0.10404 (19)0.0300 (5)
C150.2397 (3)0.3318 (3)0.15904 (19)0.0288 (5)
C160.4126 (3)0.3389 (3)0.19464 (18)0.0260 (5)
C220.5938 (3)0.6637 (2)0.10969 (16)0.0206 (4)
C230.5590 (3)0.7772 (3)0.05395 (19)0.0276 (5)
C240.6906 (4)0.8796 (3)0.0470 (2)0.0332 (6)
C250.8533 (3)0.8668 (3)0.0966 (2)0.0311 (5)
C260.8816 (3)0.7506 (3)0.15031 (18)0.0253 (5)
C320.7428 (3)0.5080 (2)0.45255 (17)0.0196 (4)
C330.7266 (3)0.5734 (3)0.54698 (18)0.0276 (5)
C340.6704 (3)0.7102 (3)0.55481 (19)0.0298 (5)
C350.6290 (3)0.7758 (3)0.46860 (19)0.0284 (5)
C360.6540 (3)0.7069 (3)0.37773 (19)0.0265 (5)
C420.7883 (3)0.3579 (2)0.43366 (17)0.0207 (4)
C430.8095 (3)0.2667 (3)0.50816 (18)0.0254 (5)
C440.8433 (3)0.1257 (3)0.4819 (2)0.0304 (5)
C450.8580 (3)0.0807 (3)0.3835 (2)0.0298 (5)
C460.8377 (3)0.1774 (3)0.31348 (19)0.0253 (5)
B10.6933 (4)1.0550 (3)0.7510 (2)0.0295 (6)
H130.25060.62250.04730.031*
H140.06040.43560.07880.036*
H150.16450.25510.17230.035*
H160.45540.26460.23140.031*
H230.44630.78480.02090.033*
H240.66920.95760.00860.040*
H250.94460.93700.09390.037*
H260.99360.74140.18380.030*
H330.75360.52550.60520.033*
H340.66050.75800.61880.036*
H350.58420.86680.47170.034*
H360.62900.75370.31880.032*
H430.80100.30010.57570.031*
H440.85630.06050.53120.036*
H450.88170.01550.36440.036*
H460.84970.14680.24610.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.0245 (2)0.0341 (3)0.0276 (2)0.01180 (17)0.01147 (17)0.01558 (17)
F10.0390 (10)0.0626 (12)0.0621 (12)0.0103 (9)0.0115 (9)0.0243 (10)
F20.0759 (15)0.1036 (18)0.0448 (11)0.0383 (13)0.0306 (11)0.0327 (12)
F30.0325 (10)0.0416 (11)0.125 (2)0.0053 (8)0.0017 (11)0.0019 (12)
F40.0554 (11)0.0354 (10)0.0634 (12)0.0003 (8)0.0020 (9)0.0166 (9)
F50.0307 (8)0.0374 (8)0.0278 (8)0.0049 (6)0.0068 (6)0.0027 (6)
F60.0255 (7)0.0368 (8)0.0338 (8)0.0008 (6)0.0012 (6)0.0042 (6)
N110.0186 (9)0.0267 (10)0.0182 (9)0.0019 (7)0.0029 (7)0.0026 (7)
N210.0217 (9)0.0255 (10)0.0156 (9)0.0016 (7)0.0021 (7)0.0026 (7)
N310.0248 (9)0.0211 (9)0.0194 (9)0.0036 (7)0.0043 (7)0.0027 (7)
N410.0177 (9)0.0219 (9)0.0195 (9)0.0018 (7)0.0015 (7)0.0034 (7)
C120.0206 (10)0.0267 (11)0.0144 (10)0.0054 (8)0.0045 (8)0.0002 (8)
C130.0207 (11)0.0379 (14)0.0203 (11)0.0075 (9)0.0027 (9)0.0034 (10)
C140.0178 (11)0.0489 (16)0.0227 (12)0.0033 (10)0.0039 (9)0.0017 (11)
C150.0223 (11)0.0371 (14)0.0261 (12)0.0036 (10)0.0061 (9)0.0026 (10)
C160.0252 (12)0.0309 (13)0.0230 (12)0.0008 (9)0.0063 (9)0.0070 (9)
C220.0230 (11)0.0251 (11)0.0147 (10)0.0065 (9)0.0050 (8)0.0013 (8)
C230.0302 (12)0.0282 (12)0.0258 (12)0.0097 (10)0.0049 (10)0.0058 (10)
C240.0437 (15)0.0270 (13)0.0332 (14)0.0099 (11)0.0120 (12)0.0098 (10)
C250.0363 (14)0.0270 (13)0.0303 (13)0.0027 (10)0.0103 (11)0.0035 (10)
C260.0241 (11)0.0287 (12)0.0215 (11)0.0016 (9)0.0030 (9)0.0014 (9)
C320.0172 (10)0.0223 (11)0.0181 (10)0.0009 (8)0.0008 (8)0.0021 (8)
C330.0318 (13)0.0317 (13)0.0183 (11)0.0055 (10)0.0014 (9)0.0028 (9)
C340.0369 (14)0.0294 (13)0.0213 (12)0.0033 (10)0.0056 (10)0.0043 (9)
C350.0324 (13)0.0230 (12)0.0307 (13)0.0057 (10)0.0090 (10)0.0003 (10)
C360.0315 (12)0.0248 (12)0.0252 (12)0.0078 (10)0.0061 (10)0.0065 (9)
C420.0170 (10)0.0247 (11)0.0196 (11)0.0008 (8)0.0011 (8)0.0036 (8)
C430.0257 (11)0.0294 (12)0.0204 (11)0.0027 (9)0.0004 (9)0.0065 (9)
C440.0293 (12)0.0298 (13)0.0327 (13)0.0044 (10)0.0013 (10)0.0133 (10)
C450.0300 (13)0.0220 (12)0.0370 (14)0.0058 (9)0.0027 (10)0.0057 (10)
C460.0253 (11)0.0231 (11)0.0275 (12)0.0036 (9)0.0055 (9)0.0013 (9)
B10.0278 (14)0.0258 (14)0.0353 (15)0.0022 (11)0.0082 (12)0.0021 (11)
Geometric parameters (Å, º) top
V1—N112.1823 (19)C26—H260.95
V1—N212.114 (2)N31—C361.339 (3)
V1—F51.7232 (15)N31—C321.354 (3)
V1—N312.2247 (19)C32—C331.388 (3)
V1—N412.1082 (19)C32—C421.484 (3)
V1—F61.7389 (15)C33—C341.389 (4)
N11—C161.344 (3)C33—H330.95
N11—C121.346 (3)C34—C351.380 (4)
C12—C131.389 (3)C34—H340.95
C12—C221.481 (3)C35—C361.380 (3)
C13—C141.385 (4)C35—H350.95
C13—H130.95C36—H360.95
C14—C151.378 (4)N41—C461.346 (3)
C14—H140.95N41—C421.350 (3)
C15—C161.383 (3)C42—C431.387 (3)
C15—H150.95C43—C441.386 (4)
C16—H160.95C43—H430.95
N21—C221.353 (3)C44—C451.381 (4)
N21—C261.354 (3)C44—H440.95
C22—C231.386 (3)C45—C461.378 (4)
C23—C241.387 (4)C45—H450.95
C23—H230.95C46—H460.95
C24—C251.384 (4)B1—F21.377 (4)
C24—H240.95B1—F41.377 (3)
C25—C261.383 (4)B1—F31.380 (3)
C25—H250.95B1—F11.384 (3)
F5—V1—N1188.08 (7)C24—C25—H25120.4
F5—V1—N2199.97 (7)N21—C26—C25121.7 (2)
F5—V1—N31160.97 (8)N21—C26—H26119.2
F5—V1—N4192.76 (7)C25—C26—H26119.2
F6—V1—N11160.98 (8)C36—N31—C32118.6 (2)
F6—V1—N2190.18 (7)C36—N31—V1126.54 (16)
F6—V1—N3188.60 (7)C32—N31—V1114.40 (14)
F6—V1—N4192.94 (7)N31—C32—C33121.7 (2)
N11—V1—N2175.01 (7)N31—C32—C42114.76 (19)
N11—V1—N3180.02 (7)C33—C32—C42123.6 (2)
N11—V1—N4198.59 (7)C32—C33—C34118.8 (2)
N21—V1—N3191.30 (7)C32—C33—H33120.6
N21—V1—N41165.44 (8)C34—C33—H33120.6
N31—V1—N4174.59 (7)C35—C34—C33119.3 (2)
F5—V1—F6106.51 (7)C35—C34—H34120.4
C16—N11—C12119.1 (2)C33—C34—H34120.4
C16—N11—V1124.34 (16)C34—C35—C36118.8 (2)
C12—N11—V1116.51 (15)C34—C35—H35120.6
N11—C12—C13121.5 (2)C36—C35—H35120.6
N11—C12—C22114.97 (19)N31—C36—C35122.7 (2)
C13—C12—C22123.5 (2)N31—C36—H36118.7
C14—C13—C12118.8 (2)C35—C36—H36118.7
C14—C13—H13120.6C46—N41—C42118.8 (2)
C12—C13—H13120.6C46—N41—V1122.16 (16)
C15—C14—C13119.6 (2)C42—N41—V1118.56 (15)
C15—C14—H14120.2N41—C42—C43121.9 (2)
C13—C14—H14120.2N41—C42—C32115.22 (19)
C14—C15—C16118.7 (2)C43—C42—C32122.8 (2)
C14—C15—H15120.6C44—C43—C42118.6 (2)
C16—C15—H15120.6C44—C43—H43120.7
N11—C16—C15122.1 (2)C42—C43—H43120.7
N11—C16—H16118.9C45—C44—C43119.5 (2)
C15—C16—H16118.9C45—C44—H44120.2
C22—N21—C26119.2 (2)C43—C44—H44120.2
C22—N21—V1118.69 (15)C46—C45—C44119.0 (2)
C26—N21—V1122.16 (16)C46—C45—H45120.5
N21—C22—C23121.4 (2)C44—C45—H45120.5
N21—C22—C12114.7 (2)N41—C46—C45122.2 (2)
C23—C22—C12123.8 (2)N41—C46—H46118.9
C22—C23—C24119.3 (2)C45—C46—H46118.9
C22—C23—H23120.4F2—B1—F4108.1 (2)
C24—C23—H23120.4F2—B1—F3111.9 (3)
C25—C24—C23119.2 (2)F4—B1—F3109.3 (2)
C25—C24—H24120.4F2—B1—F1108.1 (2)
C23—C24—H24120.4F4—B1—F1109.7 (2)
C26—C25—C24119.3 (2)F3—B1—F1109.6 (2)
C26—C25—H25120.4
F5—V1—N11—C1679.28 (19)F5—V1—N31—C36124.0 (3)
F6—V1—N11—C16139.9 (2)F6—V1—N31—C3692.8 (2)
N41—V1—N11—C1613.23 (19)N41—V1—N31—C36173.8 (2)
N21—V1—N11—C16179.9 (2)N21—V1—N31—C362.6 (2)
N31—V1—N11—C1685.80 (19)N11—V1—N31—C3671.9 (2)
F5—V1—N11—C12100.00 (16)F5—V1—N31—C3263.7 (3)
F6—V1—N11—C1240.8 (3)F6—V1—N31—C3279.49 (16)
N41—V1—N11—C12167.50 (16)N41—V1—N31—C3213.94 (15)
N21—V1—N11—C120.86 (15)N21—V1—N31—C32169.64 (16)
N31—V1—N11—C1294.92 (16)N11—V1—N31—C32115.82 (16)
C16—N11—C12—C131.1 (3)C36—N31—C32—C334.5 (3)
V1—N11—C12—C13179.59 (17)V1—N31—C32—C33168.41 (18)
C16—N11—C12—C22178.86 (19)C36—N31—C32—C42173.5 (2)
V1—N11—C12—C220.5 (2)V1—N31—C32—C4213.6 (2)
N11—C12—C13—C140.1 (3)N31—C32—C33—C342.9 (4)
C22—C12—C13—C14179.9 (2)C42—C32—C33—C34175.0 (2)
C12—C13—C14—C150.7 (4)C32—C33—C34—C351.3 (4)
C13—C14—C15—C160.0 (4)C33—C34—C35—C363.6 (4)
C12—N11—C16—C151.8 (3)C32—N31—C36—C352.0 (4)
V1—N11—C16—C15178.94 (18)V1—N31—C36—C35169.93 (18)
C14—C15—C16—N111.3 (4)C34—C35—C36—N312.0 (4)
F5—V1—N21—C2283.05 (17)F5—V1—N41—C469.85 (18)
F6—V1—N21—C22170.15 (16)F6—V1—N41—C4696.85 (18)
N41—V1—N21—C2267.7 (3)N21—V1—N41—C46161.0 (3)
N11—V1—N21—C222.23 (16)N11—V1—N41—C4698.32 (18)
N31—V1—N21—C2281.54 (16)N31—V1—N41—C46175.41 (19)
F5—V1—N21—C2696.08 (18)F5—V1—N41—C42178.07 (16)
F6—V1—N21—C2610.72 (18)F6—V1—N41—C4275.23 (16)
N41—V1—N21—C26113.2 (3)N21—V1—N41—C4226.9 (4)
N11—V1—N21—C26178.64 (19)N11—V1—N41—C4289.60 (16)
N31—V1—N21—C2699.33 (18)N31—V1—N41—C4212.50 (15)
C26—N21—C22—C231.6 (3)C46—N41—C42—C430.5 (3)
V1—N21—C22—C23177.53 (17)V1—N41—C42—C43172.87 (17)
C26—N21—C22—C12177.67 (19)C46—N41—C42—C32178.12 (19)
V1—N21—C22—C123.2 (2)V1—N41—C42—C329.5 (2)
N11—C12—C22—N212.3 (3)N31—C32—C42—N413.3 (3)
C13—C12—C22—N21177.7 (2)C33—C32—C42—N41178.7 (2)
N11—C12—C22—C23178.4 (2)N31—C32—C42—C43174.2 (2)
C13—C12—C22—C231.5 (3)C33—C32—C42—C433.7 (3)
N21—C22—C23—C240.9 (4)N41—C42—C43—C440.8 (3)
C12—C22—C23—C24178.3 (2)C32—C42—C43—C44176.7 (2)
C22—C23—C24—C250.6 (4)C42—C43—C44—C451.2 (4)
C23—C24—C25—C261.3 (4)C43—C44—C45—C460.3 (4)
C22—N21—C26—C250.9 (3)C42—N41—C46—C451.4 (3)
V1—N21—C26—C25178.27 (18)V1—N41—C46—C45173.48 (18)
C24—C25—C26—N210.6 (4)C44—C45—C46—N411.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···F5i0.952.503.265 (3)137
C14—H14···F5ii0.952.423.145 (3)133
C16—H16···F3iii0.952.503.402 (3)158
C24—H24···F2iv0.952.473.279 (4)143
C33—H33···F6v0.952.423.209 (3)140
C34—H34···F10.952.553.227 (3)129
C43—H43···F6v0.952.463.180 (3)132
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z1; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[V(C10H8N2)2F2]BF4
Mr488.12
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)8.0518 (2), 9.3238 (2), 13.5469 (3)
α, β, γ (°)96.3421 (12), 100.2723 (14), 94.9660 (13)
V3)988.70 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.57
Crystal size (mm)0.24 × 0.22 × 0.04
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.875, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
20038, 4541, 3970
Rint0.033
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.133, 1.17
No. of reflections4541
No. of parameters289
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.68

Computer programs: COLLECT (Nonius, 1998), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
V1—N112.1823 (19)V1—N312.2247 (19)
V1—N212.114 (2)V1—N412.1082 (19)
V1—F51.7232 (15)V1—F61.7389 (15)
F5—V1—N1188.08 (7)N11—V1—N2175.01 (7)
F5—V1—N2199.97 (7)N11—V1—N3180.02 (7)
F5—V1—N31160.97 (8)N11—V1—N4198.59 (7)
F5—V1—N4192.76 (7)N21—V1—N3191.30 (7)
F6—V1—N11160.98 (8)N21—V1—N41165.44 (8)
F6—V1—N2190.18 (7)N31—V1—N4174.59 (7)
F6—V1—N3188.60 (7)F5—V1—F6106.51 (7)
F6—V1—N4192.94 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···F5i0.952.503.265 (3)137
C14—H14···F5ii0.952.423.145 (3)133
C16—H16···F3iii0.952.503.402 (3)158
C24—H24···F2iv0.952.473.279 (4)143
C33—H33···F6v0.952.423.209 (3)140
C34—H34···F10.952.553.227 (3)129
C43—H43···F6v0.952.463.180 (3)132
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x, y, z1; (v) x+2, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, UK; the authors thank the staff for all their help and advice.

References

First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationHoward, J. A. K., Hoy, V. J., O'Hagan, D. & Smith, G. T. (1996). Tetrahedron, 52, 12613–12622.  CrossRef CAS Web of Science Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds