organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Nitro­phenyl 2-iodo­benzoate: sheets built from C—H⋯O hydrogen bonds and two-centre iodo–nitro inter­actions

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 14 September 2005; accepted 15 September 2005; online 21 September 2005)

Mol­ecules of the title compound, C13H8INO4, are linked into complex sheets by two C—H⋯O hydrogen bonds and one two-centre iodo–nitro inter­action.

Comment

We have recently reported the mol­ecular and supramolecular structures of a wide range of iodoar­yl–nitroaryl compounds, including sulfonamides (Kelly et al., 2002[Kelly, C. J., Skakle, J. M. S. Wardell, J L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94-108.]), benzyl­ideneanilines (Glidewell, Howie et al., 2002[Glidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, J. L. & Wardell, S M. S. V. (2002). Acta Cryst. B58, 864-876.]; Wardell et al., 2002[Wardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428-o430.]), benzyl­anilines (Glidewell, Low et al., 2002[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487-o490.]; Glidewell, Low, Skakle, Wardell & Wardell, 2004[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472-480.]; Ferguson et al., 2005[Ferguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445-o449.]), phenyl­hydrazones (Glidewell, Low, Skakle & Wardell, 2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o19-o23.]; Glidewell et al., 2003[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o98-o101.]), 1,4-diaryl-2,3-diaza-1,3-butadienes (Glidewell, Low, Skakle & Wardell, 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312-o316.]), N-(iodo­phenyl)nitro­phthalimides (Glidewell, Low, Skakle, Wardell & Wardell, 2005[Glidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227-237.]) and benzoyl­hydrazones (Glidewell, Low & Wardell, 2005[Glidewell, C., Low, J. N. &. Wardell, J. L. (2005). Acta Cryst. E61, o2438-o2440.]). We have now extended this investigation to include the title ester, 4-nitro­phenyl 2-iodo­benzoate, (I)[link].

[Scheme 1]

Within the mol­ecule of (I)[link] (Fig. 1[link]), the central ester fragment between atoms C11 and C21 is effectively planar, but the iodinated and nitrated aryl rings make dihedral angles with this plane of 39.9 (2) and 42.7 (2)°, respectively, probably in order to minimize the repulsive intra­molecular contacts involving the polarized atom O17. The nitro group makes a dihedral angle of 7.4 (2)° with the adjacent aryl ring. The bond distances and inter-bond angles show no unusual values.

The mol­ecules are linked into complex sheets, the formation of which is readily analysed in terms of two one-dimensional substructures. In the simpler of the two substructures, atom C14 in the iodinated ring of the mol­ecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O17 in the mol­ecule at ([{1\over 2}] + x, [{3\over 2}]y, −[{1\over 2}] + z), thereby forming a C(7) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain running parallel to the [10[\overline{1}]] direction and generated by the n-glide plane at y = 0.75 (Fig. 2[link]).

The second substructure is built from a combination of a C—H⋯O hydrogen bond and an iodo–nitro inter­action. Atom C26 in the nitrated ring of the mol­ecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O42 in the mol­ecule at ([{1\over 2}]x, [{1\over 2}] + y, [{3\over 2}]z), so forming a C(6) chain running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 4}], y, [{3\over 4}]) (Fig. 3[link]). In addition, atom I12 in the mol­ecule at (x, y, z) forms a short contact with atom O41 in the mol­ecule at (x, 1 + y, z), with I⋯Oi = 3.240 (2) Å and C—I⋯Oi = 169.8 (2)° [symmetry code: (i) x, 1 + y, z], thus generating by translation a C(11) (Starbuck et al., 1999[Starbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969-972.]) chain, also running parallel to the [010] direction. The combination of these two inter­actions then generates a [010] chain of edge-fused R33(17) rings (Fig. 3[link]).

The combination of the [010] and [10[\overline{1}]] chains generates a (101) sheet in the form of a (4,4)-net. If just the C—H⋯O hydrogen bonds are considered, this sheet is built from two types of R44(38) ring (Fig. 4[link]).

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of a C(7) chain along [10[\overline{1}]]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions ([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) and (−[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z), respectively.
[Figure 3]
Figure 3
Part of the crystal structure of (I)[link], showing the formation of a chain of edge-fused R33(17) rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions ([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z), (x, 1 + y, z) and ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), respectively.
[Figure 4]
Figure 4
Stereoview of part of the crystal structure of compound (I)[link], showing the formation of a hydrogen-bonded (101) sheet of R44(38) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.

Experimental

A solution containing equimolar quantities (2 mmol of each) of 4-nitro­phenol and 2-iodo­benzoyl chloride in chloro­form (50 ml) was heated under reflux for 1 h; the solvent was removed under reduced pressure and the resulting solid residue was recrystallized from ethanol to yield crystals suitable for single-crystal X-ray diffraction.

Crystal data
  • C13H8INO4

  • Mr = 369.10

  • Monoclinic, P 21 /n

  • a = 9.7231 (4) Å

  • b = 11.7890 (3) Å

  • c = 11.1187 (4) Å

  • β = 97.363 (2)°

  • V = 1263.98 (8) Å3

  • Z = 4

  • Dx = 1.940 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2905 reflections

  • θ = 3.0–27.5°

  • μ = 2.54 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.10 × 0.08 × 0.01 mm

Data collection
  • Bruker Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.814, Tmax = 0.975

  • 12630 measured reflections

  • 2905 independent reflections

  • 2570 reflections with I > 2σ(I)

  • Rint = 0.036

  • θmax = 27.5°

  • h = −12 → 11

  • k = −13 → 15

  • l = −14 → 14

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.058

  • S = 1.10

  • 2905 reflections

  • 172 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0125P)2 + 1.8703P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.001

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.91 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O17i 0.95 2.50 3.334 (3) 147
C26—H26⋯O42ii 0.95 2.54 3.395 (3) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELX97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELX97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

We have recently reported the molecular and supramolecular structures of a wide range of iodoaryl–nitroaryl compounds, including sulfonamides (Kelly et al., 2002), benzylideneanilines (Glidewell, Howie et al., 2002; Wardell et al., 2002), benzylanilines (Glidewell, Low et al., 2002; Glidewell, Low, Skakle, Wardell & Wardell, 2004; Ferguson et al., 2005), phenylhydrazones (Glidewell, Low, Skakle & Wardell, 2004; Glidewell et al., 2003), 1,4-diaryl-2,3-diaza-1,3-butadienes (Glidewell, Low, Skakle & Wardell, 2005), N-(iodophenyl)nitrophthalimides (Glidewell, Low, Skakle, Wardell & Wardell, 2005) and benzoylhydrazones (Glidewell, Low & Wardell, 2005). We have now extended this investigation to include the title ester 4-nitrophenyl 2-iodobenzoate, (I).

Within the molecule of (I) (Fig. 1), the central ester fragment between atoms C11 and C21 is effectively planar, but the iodinated and nitrated aryl rings make dihedral angles with this plane of 39.9 (2) and 42.7 (2)°, respectively, probably in order to minimize the repulsive intramolecular contacts involving the polarized atom O17: the nitro group makes a dihedral angle of 7.4 (2)° with the adjacent aryl ring. The bond distances and inter-bond angles show no unusual values.

The molecules are linked into complex sheets, whose formation is readily analysed in terms of two one-dimensional substructures. In the simpler of the two substructures, atom C14 in the iodinated ring of the molecule at (x, y, z) acts as hydrogen-bond donor to carbonyl atom O17 in the molecule at (1/2 + x, 1.5 − y, −1/2 + z), thereby forming a C(7) (Bernstein et al., 1995) chain running parallel to the [101] direction and generated by the n-glide plane at y = 0.75 (Fig. 2).

The second substructure is built from a combination of a C—H···O hydrogen bond and an iodo–nitro interaction. Atom C26 in the nitrated ring of the molecule at (x, y, z) acts as hydrogen-bond donor to nitro atom O42 in the molecule at (1/2 − x, 1/2 + y, 1.5 − z), so forming a C(6) chain running parallel to the [010] direction and generated by the 21 screw axis along (1/4, y, 3/4) (Fig. 3). In addition, atom I12 in the molecule at (x, y, z) forms a short contact with atom O41 in the molecule at (x, 1 + y, z), with I···Oi = 3.240 (2) Å and C—I···Oi = 169.8 (2)° [symmetry code: (i) x, 1 + y, z)], thus generating by translation a C(11) (Starbuck et al., 1999) chain, also running parallel to the [010] direction. The combination of these two interactions then generates a [010] chain of edge-fused R33(17) rings (Fig. 3)

The combination of the [010] and [101] chains generates a (101) sheet in the form of a (4,4)-net: if just the C—H···O hydrogen bonds are considered, this sheet is built from two types of R44(38) ring (Fig. 4).

Experimental top

A solution containing equimolar quantities (2 mmol of each) of 4-nitrophenol and 2-iodobenzoyl chloride in chloroform (50 ml) was heated under reflux for 1 h; the solvent was removed under reduced pressure and the resulting solid residue was recrystallized from ethanol to yield crystals suitable for single-crystal X-ray diffraction.

Refinement top

All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a C(7) chain along [101]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (1/2 + x, 1.5 − y, −1/2 + z) and (−1/2 + x, 1.5 − y, 1/2 + z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of a chain of edge-fused R33(17) rings along [010]. For the sake of clarity, H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1/2 − x, 1/2 + y, 1.5 − z), (x, 1 + y, z) and (1/2 − x, −1/2 + y, 1.5 − z), respectively.
[Figure 4] Fig. 4. Stereoview of part of the crystal structure of compound (I), showing the formation of a hydrogen-bonded (101) sheet of R44(38) rings. For the sake of clarity, H atoms not involved in the motifs shown have been omitted.
4-Nitrophenyl 2-iodobenzoate top
Crystal data top
C13H8INO4F(000) = 712
Mr = 369.10Dx = 1.940 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2905 reflections
a = 9.7231 (4) Åθ = 3.0–27.5°
b = 11.7890 (3) ŵ = 2.54 mm1
c = 11.1187 (4) ÅT = 120 K
β = 97.363 (2)°Plate, colourless
V = 1263.98 (8) Å30.10 × 0.08 × 0.01 mm
Z = 4
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
2905 independent reflections
Radiation source: Bruker-Nonius FR91 rotating anode2570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1315
Tmin = 0.814, Tmax = 0.975l = 1414
12630 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0125P)2 + 1.8703P]
where P = (Fo2 + 2Fc2)/3
2905 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = 0.91 e Å3
Crystal data top
C13H8INO4V = 1263.98 (8) Å3
Mr = 369.10Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.7231 (4) ŵ = 2.54 mm1
b = 11.7890 (3) ÅT = 120 K
c = 11.1187 (4) Å0.10 × 0.08 × 0.01 mm
β = 97.363 (2)°
Data collection top
Bruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
2905 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2570 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.975Rint = 0.036
12630 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.058H-atom parameters constrained
S = 1.10Δρmax = 0.80 e Å3
2905 reflectionsΔρmin = 0.91 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I120.580705 (19)0.888948 (14)0.650830 (16)0.02111 (7)
O10.62987 (19)0.51101 (15)0.59123 (16)0.0181 (4)
O170.6392 (2)0.63226 (16)0.75041 (17)0.0223 (4)
O410.3784 (2)0.06357 (16)0.7691 (2)0.0298 (5)
O420.2579 (2)0.18618 (17)0.8565 (2)0.0301 (5)
N240.3467 (2)0.1619 (2)0.7914 (2)0.0217 (5)
C110.7462 (3)0.6829 (2)0.5758 (2)0.0160 (5)
C120.7347 (3)0.8009 (2)0.5729 (2)0.0177 (5)
C130.8224 (3)0.8659 (2)0.5107 (3)0.0238 (6)
C140.9227 (3)0.8134 (3)0.4527 (3)0.0279 (7)
C150.9341 (3)0.6962 (3)0.4530 (3)0.0272 (7)
C160.8463 (3)0.6312 (2)0.5131 (2)0.0204 (6)
C170.6661 (3)0.6105 (2)0.6508 (2)0.0166 (5)
C210.5571 (3)0.4276 (2)0.6460 (2)0.0164 (5)
C220.5994 (3)0.3177 (2)0.6297 (2)0.0170 (5)
C230.5297 (3)0.2288 (2)0.6755 (2)0.0175 (5)
C240.4191 (3)0.2544 (2)0.7381 (2)0.0171 (5)
C250.3732 (3)0.3646 (2)0.7521 (2)0.0190 (5)
C260.4434 (3)0.4527 (2)0.7041 (2)0.0184 (5)
H130.81320.94610.50820.029*
H140.98420.85790.41240.033*
H151.00220.66050.41180.033*
H160.85360.55090.51210.024*
H220.67620.30320.58710.020*
H230.55670.15240.66450.021*
H250.29550.37930.79360.023*
H260.41390.52900.71100.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I120.02273 (11)0.01574 (11)0.02471 (11)0.00248 (7)0.00243 (8)0.00048 (7)
O10.0217 (10)0.0145 (9)0.0183 (9)0.0039 (7)0.0034 (8)0.0002 (7)
O170.0277 (11)0.0198 (9)0.0207 (10)0.0062 (8)0.0080 (8)0.0028 (8)
O410.0316 (12)0.0136 (9)0.0453 (13)0.0025 (9)0.0091 (10)0.0033 (9)
O420.0277 (12)0.0280 (11)0.0372 (12)0.0072 (9)0.0150 (10)0.0014 (9)
N240.0205 (12)0.0184 (11)0.0254 (12)0.0037 (10)0.0003 (10)0.0022 (10)
C110.0170 (13)0.0167 (12)0.0141 (12)0.0013 (10)0.0012 (10)0.0036 (10)
C120.0173 (13)0.0195 (13)0.0161 (12)0.0001 (10)0.0011 (10)0.0009 (10)
C130.0271 (16)0.0237 (14)0.0197 (13)0.0088 (12)0.0004 (12)0.0048 (11)
C140.0211 (15)0.0426 (18)0.0200 (14)0.0115 (13)0.0031 (12)0.0047 (13)
C150.0207 (15)0.0418 (18)0.0200 (14)0.0022 (13)0.0058 (11)0.0070 (13)
C160.0180 (14)0.0257 (14)0.0176 (13)0.0040 (11)0.0028 (11)0.0022 (11)
C170.0172 (13)0.0122 (12)0.0199 (13)0.0008 (10)0.0002 (11)0.0015 (10)
C210.0182 (13)0.0133 (12)0.0164 (12)0.0048 (10)0.0021 (10)0.0017 (10)
C220.0178 (13)0.0142 (12)0.0180 (12)0.0016 (10)0.0014 (10)0.0017 (10)
C230.0178 (13)0.0141 (12)0.0197 (13)0.0017 (10)0.0009 (11)0.0008 (10)
C240.0165 (13)0.0147 (12)0.0193 (13)0.0047 (10)0.0008 (10)0.0033 (10)
C250.0165 (13)0.0191 (13)0.0217 (13)0.0013 (11)0.0031 (11)0.0022 (10)
C260.0164 (13)0.0149 (12)0.0234 (13)0.0023 (10)0.0012 (11)0.0000 (10)
Geometric parameters (Å, º) top
C11—C121.396 (4)C17—O171.198 (3)
C11—C161.406 (4)C21—C221.378 (4)
C11—C171.482 (4)C21—C261.382 (4)
C12—C131.394 (4)C22—C231.381 (4)
C12—I122.098 (3)C22—H220.95
C13—C141.383 (4)C23—C241.387 (4)
C13—H130.95C23—H230.95
C14—C151.386 (4)C24—C251.389 (4)
C14—H140.95C24—N241.463 (3)
C15—C161.381 (4)N24—O421.229 (3)
C15—H150.95N24—O411.233 (3)
C16—H160.95C25—C261.388 (4)
O1—C171.371 (3)C25—H250.95
O1—C211.396 (3)C26—H260.95
C12—C11—C16118.6 (2)C22—C21—C26122.2 (2)
C12—C11—C17122.7 (2)C22—C21—O1115.4 (2)
C16—C11—C17118.5 (2)C26—C21—O1122.2 (2)
C13—C12—C11120.5 (3)C21—C22—C23119.8 (3)
C13—C12—I12116.6 (2)C21—C22—H22120.1
C11—C12—I12122.87 (19)C23—C22—H22120.1
C14—C13—C12119.8 (3)C22—C23—C24117.9 (2)
C14—C13—H13120.1C22—C23—H23121.0
C12—C13—H13120.1C24—C23—H23121.0
C13—C14—C15120.4 (3)C23—C24—C25122.7 (2)
C13—C14—H14119.8C23—C24—N24119.0 (2)
C15—C14—H14119.8C25—C24—N24118.3 (2)
C16—C15—C14119.9 (3)O42—N24—O41123.4 (2)
C16—C15—H15120.0O42—N24—C24118.4 (2)
C14—C15—H15120.0O41—N24—C24118.3 (2)
C15—C16—C11120.6 (3)C26—C25—C24118.4 (3)
C15—C16—H16119.7C26—C25—H25120.8
C11—C16—H16119.7C24—C25—H25120.8
C17—O1—C21120.4 (2)C21—C26—C25118.8 (2)
O17—C17—O1123.8 (2)C21—C26—H26120.6
O17—C17—C11126.2 (2)C25—C26—H26120.6
O1—C17—C11110.0 (2)
C16—C11—C12—C131.1 (4)C17—O1—C21—C22139.1 (2)
C17—C11—C12—C13173.4 (2)C17—O1—C21—C2645.9 (3)
C16—C11—C12—I12175.25 (19)C26—C21—C22—C232.0 (4)
C17—C11—C12—I1210.2 (4)O1—C21—C22—C23177.0 (2)
C11—C12—C13—C140.8 (4)C21—C22—C23—C240.7 (4)
I12—C12—C13—C14177.3 (2)C22—C23—C24—C252.5 (4)
C12—C13—C14—C151.9 (4)C22—C23—C24—N24177.8 (2)
C13—C14—C15—C161.0 (4)C23—C24—N24—O42173.0 (2)
C14—C15—C16—C110.9 (4)C25—C24—N24—O427.3 (4)
C12—C11—C16—C151.9 (4)C23—C24—N24—O416.6 (4)
C17—C11—C16—C15172.8 (3)C25—C24—N24—O41173.0 (2)
C21—O1—C17—O170.1 (4)C23—C24—C25—C261.7 (4)
C21—O1—C17—C11178.1 (2)N24—C24—C25—C26178.6 (2)
C12—C11—C17—O1737.8 (4)C22—C21—C26—C252.8 (4)
C16—C11—C17—O17136.7 (3)O1—C21—C26—C25177.5 (2)
C12—C11—C17—O1144.3 (2)C24—C25—C26—C210.9 (4)
C16—C11—C17—O141.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O17i0.952.503.334 (3)147
C26—H26···O42ii0.952.543.395 (3)149
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H8INO4
Mr369.10
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)9.7231 (4), 11.7890 (3), 11.1187 (4)
β (°) 97.363 (2)
V3)1263.98 (8)
Z4
Radiation typeMo Kα
µ (mm1)2.54
Crystal size (mm)0.10 × 0.08 × 0.01
Data collection
DiffractometerBruker–Nonius 95mm CCD camera on κ goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.814, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
12630, 2905, 2570
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.058, 1.10
No. of reflections2905
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.91

Computer programs: COLLECT (Hooft, 1999), DENZO (Otwinowski & Minor, 1997) and COLLECT, DENZO and COLLECT, OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O17i0.952.503.334 (3)147
C26—H26···O42ii0.952.543.395 (3)149
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y+1/2, z+3/2.
 

Acknowledgements

X-ray data were collected at the EPSRC X-Ray Crystallographic Service, University of Southampton, England; the authors thank the staff of the Service for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationFerguson, G., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o445–o449.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Howie, R. A., Low, J. N., Skakle, J. M. S., Wardell, J. L. & Wardell, S M. S. V. (2002). Acta Cryst. B58, 864–876.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o98–o101.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o19–o23.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. C61, o312–o316.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2002). Acta Cryst. C58, o487–o490.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2004). Acta Cryst. B60, 472–480.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S., Wardell, S. M. S. V. & Wardell, J. L. (2005). Acta Cryst. B61, 227–237.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N. &. Wardell, J. L. (2005). Acta Cryst. E61, o2438–o2440.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKelly, C. J., Skakle, J. M. S. Wardell, J L., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2002). Acta Cryst. B58, 94–108.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELX97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarbuck, J., Norman, N. C. & Orpen, A. G. (1999). New J. Chem. 23, 969–972.  Web of Science CrossRef Google Scholar
First citationWardell, J. L., Wardell, S. M. S. V., Skakle, J. M. S., Low, J. N. & Glidewell, C. (2002). Acta Cryst. C58, o428–o430.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds