organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(3-Pyridylmethyl­ene)-N′-[5-(3-pyridylmethyl­sulfan­yl)-1,3,4-thia­diazol-2-yl]hydrazine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM, Selangor, Malaysia, and bChemical Crystallography, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA, England
*Correspondence e-mail: teng-jin@rocketmail.com

(Received 30 August 2005; accepted 20 September 2005; online 28 September 2005)

In the crystal structure of the title compound, C14H12N6S2, the mol­ecules are linked into centrosymmetric dimers through N—H⋯N hydrogen inter­actions, forming two-dimensional layers parallel to (010).

Comment

1,3,4-Thia­diazole derivatives have been synthesized for their potential bioactivity. They have been used as herbicides and insecticides, and some of them are known to possess antimycobacterial, anesthetic and antidepressant activity (Demirbas et al., 2004[Demirbas, N., Karaoglu, S. A., Demirbas, A., Sancak, K. (2004). Eur. J. Med. Chem. 39, 793-804.]; Mamolo et al., 2001[Mamolo, M. G., Falagiana, V., Zampieri, D., Vio, L., Banfi, E. (2001). Il Farmaco, 56, 587-592.]; Orú et al., 2004[Orú, E. E., Rollas, S., Kandemirli, F., Shvets, N., Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760-6767.]). The structure can be varied to explore the structure–activity relationship by substituting the alkyl or aryl groups at either end of the molecule. In the course of our research, we have managed to grow crystals of the title compound, (I)[link], from ethanol.

[Scheme 1]

In the crystal structure, the molecule is L-shaped, with the pyridine ring containing N1 bent at C6 with an angle of 112.42 (16)° for C4—C6—S1, while the rest of the mol­ecule is nearly coplanar with the thia­diazole plane. The pyridine rings are trans to each other, as shown in Fig. 1[link]. The C7—S2—C8 bond angle of 85.84 (11)° is at the lower end of the range reported in the literature (Vinkovic et al., 1994[Vinkovic, M., Mutak, S., Nagl., A. & Kamenar, B. (1994). Acta Cryst. C50, 1099-1101.]), possibly due to the presence of two strong electron-donating atoms (S1 and N4) at either side of the ring. In the crystal structure, the mol­ecules are linked through N—H⋯N hydrogen inter­actions (Table 2[link]) into centrosymmetric dimers, forming two-dimensional layers parallel to (010).

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was synthesized according to the procedure described by Crouse et al. (2004[Crouse, K. A., Chew, K.-B., Tarafder, M. T. H., Ali A. M., Yamin, B. M, Kasbollah, A., Fun, H.-K. (2004). Polyhedron, 23, 161-168.]). Brown–orange block-shaped crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of an ethanol solution of the crude product at room temperature.

Crystal data
  • C14H12N6S2

  • Mr = 328.42

  • Triclinic, [P \overline 1]

  • a = 4.5955 (2) Å

  • b = 11.4301 (4) Å

  • c = 14.8292 (6) Å

  • α = 74.1696 (12)°

  • β = 83.0827 (14)°

  • γ = 80.8197 (13)°

  • V = 737.36 (5) Å3

  • Z = 2

  • Dx = 1.479 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2920 reflections

  • θ = 1–27°

  • μ = 0.37 mm−1

  • T = 150 K

  • Block, brown–orange

  • 0.01 × 0.01 × 0.01 mm

Data collection
  • Nonius KappaCCD diffractometer

  • ω scans

  • Absorption correction: multi-scanDENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.])Tmin = 1.00, Tmax = 1.00

  • 5604 measured reflections

  • 3327 independent reflections

  • 2154 reflections with I > 3σ(I)

  • Rint = 0.026

  • θmax = 27.6°

  • h = −5 → 5

  • k = −14 → 14

  • l = −18 → 19

Refinement
  • Refinement on F

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.049

  • S = 1.07

  • 2154 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Method, part 1, Chebychev polynomial (Watkin, 1994[Watkin, D. J. (1994). Acta Cryst. A50, 411-437.]; Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), [weight] = 1.0/[A0*T0(x) + A1*T1(x) ⋯ + An−1]*Tn−1(x)], where Ai are the Chebychev coefficients listed below and x = F/Fmax. Method = robust weighting (Prince, 1982[Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.]), W = [weight] * [1−(δF/6*σF)2]2, Ai are: 1.61, 0.745 and 1.30

  • (Δ/σ)max < 0.001

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

S1—C6 1.831 (3)
S1—C7 1.746 (3)
S2—C7 1.750 (3)
S2—C8 1.727 (2)
N1—C1 1.336 (5)
N1—C2 1.344 (4)
N2—N3 1.392 (3)
N2—C7 1.298 (3)
N3—C8 1.310 (3)
N4—N5 1.372 (3)
N4—C8 1.357 (3)
N5—C9 1.281 (3)
N6—C13 1.344 (4)
N6—C14 1.344 (4)
C6—S1—C7 100.67 (12)
C7—S2—C8 85.84 (11)
C1—N1—C2 116.9 (3)
N3—N2—C7 112.2 (2)
N2—N3—C8 111.8 (2)
N5—N4—C8 117.9 (2)
N4—N5—C9 115.5 (2)
C13—N6—C14 117.3 (3)
N1—C1—C3 123.3 (3)
N1—C2—C4 124.3 (3)
C4—C6—S1 112.42 (18)
S2—C7—S1 119.78 (14)
S2—C7—N2 114.84 (19)
S1—C7—N2 125.4 (2)
S2—C8—N4 122.56 (19)
S2—C8—N3 115.38 (18)
N4—C8—N3 122.1 (2)
N5—C9—C10 120.9 (2)
C12—C13—N6 123.2 (3)
C10—C14—N6 123.7 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H7⋯N3i 0.90 (4) 1.98 (4) 2.849 (3) 164 (3)
Symmetry code: (i) -x, -y+1, -z.

The N-bound H atom was located in a difference map and refined freely. All C-bound H atoms were located in a difference map and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C–H 0.93–98 Å) and isotropic atomic displacement parameters [Uiso(H) = 1.2 or 1.5Ueq(parent atom)], after which they were refined with riding constraints.

Data collection: COLLECT (Nonius, 2001[Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]); software used to prepare material for publication: CRYSTALS.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives have been synthesized for their potential bioactivity. They have been used as herbicides and insecticides, and some of them are known to possess antimycobacterial, anesthetic and antidepressant activity (Demirbas et al., 2004; Mamolo or Mamalo et al., 2001; Or\,u et al., 2004). The structure can be varied to explore the structure–activity relationship by substituting the alkyl or aryl groups at either end of the moiety. In the course of our research, we have managed to grow the title compound, (I), in ethanol.

The crystal structure forms an L-shaped molecule, with the pyridine ring containing N1 bent at C6 with an angle of 112.4 (3)°, while the rest of the molecule is nearly coplanar with the thiadiazole plane. The pyridine rings are trans to each other at both ends of the molecule, as shown in Fig. 1. The C7—S2—C8 bond angle of 85.9 (2)° is at the lower end of the range reported in the literature (reference?), possibly due to the presence of two strong electron-donating atoms (S1 and N4) at either side of the ring. In the crystal structure, the molecules are linked through N—H···N hydrogen interactions (Table 2) into centrosymmetric dimers, forming two-dimensional layers parallel to the b axis.

Experimental top

The title compound was synthesized according to the procedure described by Crouse et al. (2004). Brown–orange block-shaped crystals suitable for X-ray analysis were isolated after two weeks by slow evaporation of an ethanol solution of the crude product at room temperature.

Refinement top

The N-bound H atom was located in a difference map and refined freely. All C-bound H atoms were located in a difference map and initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C–H 0.93–98 Å) and isotropic atomic displacement parameters [Uiso(H) = 1.2 or 1.5Ueq(parent atom)], after which they were refined with riding constraints.

Computing details top

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-Pyridin-3-ylmethylene-N-[5-(pyridine-3-ylmethyl sulfanyl)-[1,3,4]thiadiazol-2-yl]-hydrazine' top
Crystal data top
C14H12N6S2Z = 2
Mr = 328.42F(000) = 340
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Melting point: 150 K
a = 4.5955 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4301 (4) ÅCell parameters from 2920 reflections
c = 14.8292 (6) Åθ = 1–27°
α = 74.1696 (12)°µ = 0.37 mm1
β = 83.0827 (14)°T = 150 K
γ = 80.8197 (13)°Block, brown–orange
V = 737.36 (5) Å30.01 × 0.01 × 0.01 mm
Data collection top
Nonius Kappa CCD
diffractometer
2154 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.6°, θmin = 3.0°
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
h = 55
Tmin = 1.00, Tmax = 1.00k = 1414
5604 measured reflectionsl = 1819
3327 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.049 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(δF/6*σF)2]2 Ai are: 1.61 0.745 1.30
S = 1.07(Δ/σ)max = 0.000202
2154 reflectionsΔρmax = 0.39 e Å3
203 parametersΔρmin = 0.32 e Å3
0 restraints
Crystal data top
C14H12N6S2γ = 80.8197 (13)°
Mr = 328.42V = 737.36 (5) Å3
Triclinic, P1Z = 2
a = 4.5955 (2) ÅMo Kα radiation
b = 11.4301 (4) ŵ = 0.37 mm1
c = 14.8292 (6) ÅT = 150 K
α = 74.1696 (12)°0.01 × 0.01 × 0.01 mm
β = 83.0827 (14)°
Data collection top
Nonius Kappa CCD
diffractometer
3327 independent reflections
Absorption correction: multi-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
2154 reflections with I > 3σ(I)
Tmin = 1.00, Tmax = 1.00Rint = 0.026
5604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.39 e Å3
2154 reflectionsΔρmin = 0.32 e Å3
203 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H10.52520.60250.29930.0689*
H20.03760.61820.50040.0730*
H30.15110.82560.46220.0640*
H40.43780.92880.34480.0680*
H50.85800.89620.24360.0629*
H60.78730.77700.20570.0630*
H70.257 (8)0.543 (3)0.056 (2)0.040 (8)*
H80.60660.55590.16660.0340*
H91.01960.56130.29460.0650*
H101.32620.67340.40670.0640*
H111.34130.87670.41480.0719*
H120.70910.87100.20880.0669*
S10.48631 (14)0.92252 (5)0.12260 (5)0.0289
S20.00314 (14)0.82978 (5)0.00637 (5)0.0271
N10.2752 (7)0.5872 (2)0.40325 (18)0.0483
N20.3359 (5)0.68790 (18)0.10971 (16)0.0282
N30.1392 (5)0.61232 (18)0.06430 (15)0.0279
N40.2561 (5)0.6195 (2)0.05079 (16)0.0285
N50.4411 (5)0.69178 (19)0.11336 (15)0.0275
N61.0191 (6)0.8947 (3)0.3149 (2)0.0465
C10.1688 (7)0.6541 (3)0.4497 (2)0.0451
C20.4437 (7)0.6487 (3)0.3328 (2)0.0409
C30.2263 (7)0.7802 (3)0.4293 (2)0.0418
C40.5131 (6)0.7752 (2)0.30629 (18)0.0309
C50.4004 (7)0.8419 (3)0.3564 (2)0.0373
C60.7004 (6)0.8379 (2)0.22499 (19)0.0322
C70.2880 (5)0.8016 (2)0.08095 (17)0.0260
C80.0471 (5)0.6741 (2)0.00293 (17)0.0242
C90.6176 (6)0.6381 (2)0.16785 (19)0.0292
C100.8247 (5)0.7047 (2)0.23758 (18)0.0292
C111.0169 (6)0.6457 (3)0.2966 (2)0.0349
C121.2071 (7)0.7114 (3)0.3634 (2)0.0423
C131.2005 (7)0.8349 (3)0.3706 (2)0.0445
C140.8345 (6)0.8298 (3)0.2502 (2)0.0355
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0334 (3)0.0211 (3)0.0310 (3)0.0010 (2)0.0009 (3)0.0080 (2)
S20.0270 (3)0.0201 (3)0.0343 (4)0.0028 (2)0.0002 (2)0.0083 (2)
N10.0661 (18)0.0356 (13)0.0370 (14)0.0067 (12)0.0094 (13)0.0042 (11)
N20.0291 (11)0.0212 (10)0.0335 (11)0.0002 (8)0.0021 (9)0.0080 (8)
N30.0284 (11)0.0221 (10)0.0327 (11)0.0009 (8)0.0026 (9)0.0097 (8)
N40.0285 (10)0.0211 (10)0.0364 (12)0.0037 (8)0.0020 (8)0.0098 (8)
N50.0228 (10)0.0259 (10)0.0342 (11)0.0016 (8)0.0018 (8)0.0095 (8)
N60.0522 (16)0.0396 (14)0.0468 (15)0.0141 (12)0.0065 (12)0.0096 (11)
C10.0476 (17)0.0492 (17)0.0327 (15)0.0081 (14)0.0076 (13)0.0074 (13)
C20.0511 (18)0.0330 (14)0.0363 (14)0.0028 (12)0.0012 (13)0.0076 (12)
C30.0427 (16)0.0501 (17)0.0335 (15)0.0046 (13)0.0028 (12)0.0135 (13)
C40.0262 (12)0.0354 (13)0.0287 (12)0.0006 (10)0.0016 (10)0.0082 (10)
C50.0414 (15)0.0333 (14)0.0366 (14)0.0036 (11)0.0028 (12)0.0092 (11)
C60.0282 (13)0.0320 (13)0.0351 (14)0.0019 (10)0.0011 (10)0.0080 (11)
C70.0243 (11)0.0247 (11)0.0280 (12)0.0019 (9)0.0039 (9)0.0051 (9)
C80.0233 (11)0.0202 (10)0.0297 (12)0.0014 (9)0.0053 (9)0.0069 (9)
C90.0292 (13)0.0236 (11)0.0354 (13)0.0039 (9)0.0021 (10)0.0087 (10)
C100.0236 (12)0.0342 (13)0.0311 (13)0.0028 (10)0.0052 (10)0.0100 (10)
C110.0309 (13)0.0361 (14)0.0398 (14)0.0018 (11)0.0018 (11)0.0151 (12)
C120.0325 (14)0.0594 (19)0.0382 (15)0.0037 (13)0.0006 (12)0.0207 (14)
C130.0404 (16)0.0528 (19)0.0403 (16)0.0153 (14)0.0021 (13)0.0089 (14)
C140.0352 (14)0.0321 (13)0.0404 (15)0.0064 (11)0.0011 (11)0.0120 (11)
Geometric parameters (Å, º) top
H1—C20.958N2—N31.392 (3)
H2—C10.980N2—C71.298 (3)
H3—C30.929N3—C81.310 (3)
H4—C50.952N4—N51.372 (3)
H5—C60.971N4—C81.357 (3)
H6—C60.976N5—C91.281 (3)
H7—N40.90 (4)N6—C131.344 (4)
H8—C90.944N6—C141.344 (4)
H9—C110.956C1—C31.377 (5)
H10—C120.945C2—C41.385 (4)
H11—C130.950C3—C51.385 (4)
H12—C140.958C4—C51.389 (4)
S1—C61.831 (3)C4—C61.513 (4)
S1—C71.746 (3)C9—C101.456 (4)
S2—C71.750 (3)C10—C111.395 (4)
S2—C81.727 (2)C10—C141.398 (4)
N1—C11.336 (5)C11—C121.380 (4)
N1—C21.344 (4)C12—C131.382 (5)
C6—S1—C7100.67 (12)C4—C6—H5110.1
C7—S2—C885.84 (11)S1—C6—H5107.4
C1—N1—C2116.9 (3)H6—C6—H5109.0
N3—N2—C7112.2 (2)S2—C7—S1119.78 (14)
N2—N3—C8111.8 (2)S2—C7—N2114.84 (19)
H7—N4—N5118 (2)S1—C7—N2125.4 (2)
H7—N4—C8123 (2)S2—C8—N4122.56 (19)
N5—N4—C8117.9 (2)S2—C8—N3115.38 (18)
N4—N5—C9115.5 (2)N4—C8—N3122.1 (2)
C13—N6—C14117.3 (3)H8—C9—N5120.6
H2—C1—N1123.1H8—C9—C10118.4
H2—C1—C3113.5N5—C9—C10120.9 (2)
N1—C1—C3123.3 (3)C9—C10—C11120.6 (2)
H1—C2—N1118.3C9—C10—C14122.0 (2)
H1—C2—C4117.4C11—C10—C14117.3 (3)
N1—C2—C4124.3 (3)H9—C11—C10122.9
H3—C3—C1122.5H9—C11—C12117.5
H3—C3—C5118.6C10—C11—C12119.6 (3)
C1—C3—C5118.9 (3)H10—C12—C11119.7
C2—C4—C5117.3 (3)H10—C12—C13121.2
C2—C4—C6121.2 (3)C11—C12—C13118.9 (3)
C5—C4—C6121.5 (2)H11—C13—C12117.0
H4—C5—C4124.1H11—C13—N6119.7
H4—C5—C3116.6C12—C13—N6123.2 (3)
C4—C5—C3119.2 (3)H12—C14—C10118.4
C4—C6—S1112.42 (18)H12—C14—N6117.9
C4—C6—H6109.8C10—C14—N6123.7 (3)
S1—C6—H6108.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H7···N3i0.90 (4)1.98 (4)2.849 (3)164 (3)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12N6S2
Mr328.42
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)4.5955 (2), 11.4301 (4), 14.8292 (6)
α, β, γ (°)74.1696 (12), 83.0827 (14), 80.8197 (13)
V3)737.36 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.01 × 0.01 × 0.01
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionMulti-scan
DENZO/SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax1.00, 1.00
No. of measured, independent and
observed [I > 3σ(I)] reflections
5604, 3327, 2154
Rint0.026
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.049, 1.07
No. of reflections2154
No. of parameters203
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.32

Computer programs: COLLECT (Nonius, 2001), DENZO/SCALEPACK (Otwinowski & Minor, 1997), DENZO/SCALEPACK, SIR92 (Altomare et al., 1993), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996), CRYSTALS.

Selected geometric parameters (Å, º) top
S1—C61.831 (3)N2—C71.298 (3)
S1—C71.746 (3)N3—C81.310 (3)
S2—C71.750 (3)N4—N51.372 (3)
S2—C81.727 (2)N4—C81.357 (3)
N1—C11.336 (5)N5—C91.281 (3)
N1—C21.344 (4)N6—C131.344 (4)
N2—N31.392 (3)N6—C141.344 (4)
C6—S1—C7100.67 (12)C4—C6—S1112.42 (18)
C7—S2—C885.84 (11)S2—C7—S1119.78 (14)
C1—N1—C2116.9 (3)S2—C7—N2114.84 (19)
N3—N2—C7112.2 (2)S1—C7—N2125.4 (2)
N2—N3—C8111.8 (2)S2—C8—N4122.56 (19)
N5—N4—C8117.9 (2)S2—C8—N3115.38 (18)
N4—N5—C9115.5 (2)N4—C8—N3122.1 (2)
C13—N6—C14117.3 (3)N5—C9—C10120.9 (2)
N1—C1—C3123.3 (3)C12—C13—N6123.2 (3)
N1—C2—C4124.3 (3)C10—C14—N6123.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H7···N3i0.90 (4)1.98 (4)2.849 (3)164 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

Khoo Teng Jin gratefully acknowledges MOSTI, Malaysia, for an attachment grant under an NSF scholarship, and the Chemical Crystallography Laboratory, Oxford University, for instrumental facilities.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K., Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationCrouse, K. A., Chew, K.-B., Tarafder, M. T. H., Ali A. M., Yamin, B. M, Kasbollah, A., Fun, H.-K. (2004). Polyhedron, 23, 161–168.  Google Scholar
First citationDemirbas, N., Karaoglu, S. A., Demirbas, A., Sancak, K. (2004). Eur. J. Med. Chem. 39, 793–804.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMamolo, M. G., Falagiana, V., Zampieri, D., Vio, L., Banfi, E. (2001). Il Farmaco, 56, 587–592.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOrú, E. E., Rollas, S., Kandemirli, F., Shvets, N., Dimoglo, A. S. (2004). J. Med. Chem. 47, 6760–6767.  Web of Science CrossRef PubMed Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPrince, E. (1982). Mathematical Techniques in Crystallography and Materials Science. New York: Springer-Verlag.  Google Scholar
First citationVinkovic, M., Mutak, S., Nagl., A. & Kamenar, B. (1994). Acta Cryst. C50, 1099–1101.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J. (1994). Acta Cryst. A50, 411–437.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds