inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of CaB8O11(OH)4 at low temperature

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of Southampton, Southampton SO17 1BJ, England
*Correspondence e-mail: mtw@soton.ac.uk

(Received 31 August 2005; accepted 15 September 2005; online 27 October 2005)

The structure of CaB8O11(OH)4 (calcium octa­borate tetra­hydroxide) [Zayakina & Brovkin (1978[Zayakina, N. V. & Brovkin, A. A. (1978). Kristallografiya, 23, 1167-1170.]). Kristallografiya, 23, 1167–1170] has been redetermined at 120 (2) K with improved precision. The O—H⋯O hydrogen-bonding arrangement has been established, based on freely refined H-atom positions.

Comment

During the investigation of templated boroarsenate frameworks, single crystals of the known (Zayakina & Brovkin, 1978[Zayakina, N. V. & Brovkin, A. A. (1978). Kristallografiya, 23, 1167-1170.]) title compound, (I) (Fig. 1[link]), were obtained from a molten salt reaction of CaCl2, H3BO3 and NH4(H2AsO4). This redetermination at 120 (2) K offers a significantly better structural model and the H-atom positions and hydrogen-bonding scheme have been established. There is also an isostructural strontium material, strontioborite, reported by Brovkin et al. (1975[Brovkin, A. A., Zayakina, N. V. & Brovkina, V. S. (1975). Kristallografiya, 20, 911-916.]).

The structure of (I) can be described in terms of linked triple six-rings of stoichiometry B6O12H with a pendant H3B2O5 group, as shown in Fig. 2[link]. The three-coordinate O8 species (Table 1[link]) is a distinctive feature of these units. Each of these triple-six-ring units have six O atoms that do not contribute to the ring formation. One of these forms a hydroxide grouping, four link to further similar units to form a sheet in the bc plane and the last bridges to an H3B2O5 unit that is located outside the plane. The triple six-ring unit has two of the rings in the bc plane, while the third is below this plane. The out-of-plane ring has the hydroxide group attached, forming, along with the pendant H3B2O5 unit, an extensive hydrogen-bonding network between the borate sheets (Table 2[link]). There are six distinct hydrogen bonds per unit, with O⋯O distances ranging from 2.585 (3) to 2.917 (4) Å. This network connects four adjacent B8O11(OH)4 units to a central unit, as shown in Fig. 2[link].

The calcium ion sits in the centre of an 18-atom ring formed by four of the triple six-ring units (Fig. 3[link]). Nine O atoms coordinate to the calcium cation, with Ca—O distances ranging from 2.482 (2) to 2.634 (2) Å (Table 1[link]). Six of these Ca—O bonds arise from the 18-atom ring, and two H3B2O5 units that occur above and below the plane complete the Ca nine-coordination.

[Figure 1]
Figure 1
The asymmetric unit of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms. The mixture of trigonal (B1, B2, B4, B6 and B8) and tetra­hedral (B3, B5 and B7) B atoms and the three-coordinate O8 species are evident.
[Figure 2]
Figure 2
View of the borate unit in (I). Colour key: B blue, O red, and H white. Dotted lines signify hydrogen bonds.
[Figure 3]
Figure 3
Detail of (I), showing the Ca2+ ion within its 18-atom ring. The H3B2O5 units above and below the plane have been removed for clarity. Colour key: Ca green, other atom colours as in Fig. 2[link].

Experimental

Compound (I) was prepared using a molten salt technique. A typical reaction involved grinding H3BO3 (0.4637 g, 7.5 mmol), NH4(H2AsO4) (1.1923 g, 7.5 mmol) and CaCl2 (0.5549 g, 5 mmol) in a pestle and mortar before placing the powder in a 23 ml Parr Teflon-lined steel autoclave and heating to 513 K for 120 h. The product was washed with hot water to dissolve any remaining borate flux, leaving a white powder containing many colourless crystals of (I) in moderate yield (34% based on Ca). The material appears completely air- and water-stable.

Crystal data
  • CaB8O11(OH)4

  • Mr = 370.59

  • Monoclinic, P 21

  • a = 7.481 (6) Å

  • b = 8.2693 (12) Å

  • c = 9.859 (3) Å

  • β = 108.76 (6)°

  • V = 577.5 (5) Å3

  • Z = 2

  • Dx = 2.131 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2430 reflections

  • θ = 2.9–27.5°

  • μ = 0.64 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.06 × 0.06 × 0.01 mm

Data collection
  • Bruker–Nonius KappaCCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.732, Tmax = 0.994

  • 13192 measured reflections

  • 2611 independent reflections

  • 2430 reflections with I > 2σ(I)

  • Rint = 0.059

  • θmax = 27.5°

  • h = −9 → 9

  • k = −10 → 10

  • l = −12 → 12

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.075

  • S = 1.05

  • 2611 reflections

  • 233 parameters

  • All H-atom parameters refined

  • w = 1/[σ2(Fo2) + (0.0314P)2 + 0.2076P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1196 Friedel pairs

  • Flack parameter: 0.03 (3)

Table 1
Selected geometric parameters (Å, °)

Ca1—O1 2.619 (3)
Ca1—O13 2.5329 (18)
Ca1—O15 2.634 (2)
Ca1—O9i 2.4806 (18)
Ca1—O4ii 2.528 (3)
Ca1—O7iii 2.5610 (19)
Ca1—O10iv 2.621 (2)
Ca1—O2ii 2.626 (3)
Ca1—O6i 2.6320 (18)
B5—O8—B7 116.33 (19)
B5—O8—B3 122.88 (18)
B7—O8—B3 120.73 (18)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z; (iii) x, y, z-1; (iv) [-x+1, y-{\script{1\over 2}}, -z+1].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O5ii 0.98 (4) 1.93 (4) 2.900 (3) 173 (3)
O1—H1⋯O14v 0.86 (3) 1.95 (3) 2.817 (3) 177 (3)
O2—H2⋯O11v 0.87 (4) 1.72 (4) 2.585 (3) 172 (4)
O2—H2⋯O7v 0.87 (4) 2.50 (4) 2.917 (4) 110 (3)
O4—H4⋯O12vi 0.90 (4) 1.81 (4) 2.695 (3) 171 (4)
O4—H4⋯O13vi 0.90 (4) 2.27 (4) 2.751 (3) 113 (3)
Symmetry codes: (ii) x+1, y, z; (v) x-1, y, z-1; (vi) x-1, y, z.

The H atoms were found in a difference map and their positions and Uiso values were freely refined.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; method used to solve structure: coordinates taken from Zayakina & Brovkin (1978[Zayakina, N. V. & Brovkin, A. A. (1978). Kristallografiya, 23, 1167-1170.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Release 2.1a. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: Please specify; program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: Please specify.

calcium octaborate tetrahydroxide top
Crystal data top
CaB8O11(OH)4F(000) = 368
Mr = 370.59Dx = 2.131 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 2430 reflections
a = 7.481 (6) Åθ = 2.9–27.5°
b = 8.2693 (12) ŵ = 0.64 mm1
c = 9.859 (3) ÅT = 120 K
β = 108.76 (6)°Plate, colourless
V = 577.5 (5) Å30.06 × 0.06 × 0.01 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2611 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode2430 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.059
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1010
Tmin = 0.732, Tmax = 0.994l = 1212
13192 measured reflections
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0314P)2 + 0.2076P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max < 0.001
wR(F2) = 0.075Δρmax = 0.32 e Å3
S = 1.05Δρmin = 0.40 e Å3
2611 reflectionsAbsolute structure: Flack (1983), 1196 Friedel pairs
233 parametersAbsolute structure parameter: 0.03 (3)
1 restraint
Special details top

Experimental. SADABS was used to perform the Absorption correction Parameter refinement on 11680 reflections reduced R(int) from 0.1212 to 0.0551 Ratio of minimum to maximum apparent transmission: 0.736941 The given Tmin and Tmax were generated using the SHELX SIZE command

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
B10.1035 (4)0.2765 (4)0.2720 (3)0.0113 (5)
B20.0908 (4)0.2695 (4)0.5216 (3)0.0114 (6)
B30.3787 (4)0.1696 (3)0.7189 (3)0.0086 (6)
B40.4671 (4)0.1318 (3)0.9806 (3)0.0095 (6)
B50.5905 (4)0.3827 (3)0.9050 (3)0.0092 (6)
B60.8931 (4)0.3814 (4)0.8517 (3)0.0121 (6)
B70.5944 (4)0.3830 (3)0.6449 (3)0.0087 (5)
B80.4913 (4)0.1220 (3)0.5148 (3)0.0099 (6)
O10.2331 (2)0.3060 (2)0.20108 (18)0.0141 (4)
O20.0882 (2)0.2699 (3)0.2085 (2)0.0166 (4)
O30.1776 (2)0.2518 (2)0.41723 (18)0.0137 (4)
O40.0921 (3)0.3203 (3)0.48254 (19)0.0202 (5)
O50.1892 (2)0.2394 (2)0.66179 (18)0.0116 (4)
O60.3931 (2)0.0722 (2)0.84528 (18)0.0105 (4)
O70.5296 (2)0.2872 (2)1.00614 (16)0.0102 (3)
O80.5214 (2)0.3078 (2)0.75752 (16)0.0092 (3)
O90.4256 (2)0.0600 (2)0.61924 (18)0.0094 (4)
O100.5179 (2)0.5466 (2)0.89685 (18)0.0108 (4)
O110.7977 (2)0.3809 (2)0.94971 (17)0.0124 (4)
O120.8015 (2)0.4038 (2)0.70949 (18)0.0117 (4)
O130.5652 (2)0.2750 (2)0.52450 (17)0.0101 (4)
O141.0848 (3)0.3566 (3)0.9032 (2)0.0190 (4)
O150.4999 (2)0.0372 (2)0.39748 (18)0.0107 (4)
Ca10.60200 (6)0.29083 (6)0.27828 (5)0.01030 (12)
H10.191 (5)0.320 (4)0.109 (3)0.029 (9)*
H20.120 (5)0.300 (5)0.119 (4)0.047 (11)*
H40.127 (6)0.337 (5)0.560 (4)0.061 (14)*
H141.130 (6)0.314 (5)0.827 (4)0.054 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
B10.0134 (12)0.0077 (14)0.0125 (13)0.0017 (11)0.0038 (10)0.0002 (11)
B20.0106 (12)0.0130 (14)0.0108 (13)0.0025 (12)0.0037 (10)0.0016 (11)
B30.0082 (13)0.0079 (14)0.0096 (13)0.0014 (10)0.0028 (11)0.0012 (10)
B40.0081 (13)0.0114 (13)0.0081 (14)0.0012 (11)0.0015 (11)0.0006 (11)
B50.0096 (13)0.0100 (13)0.0077 (13)0.0015 (11)0.0025 (11)0.0010 (11)
B60.0111 (14)0.0117 (14)0.0125 (14)0.0002 (11)0.0024 (11)0.0006 (11)
B70.0104 (14)0.0091 (13)0.0061 (13)0.0001 (11)0.0017 (11)0.0018 (11)
B80.0073 (13)0.0107 (13)0.0105 (14)0.0027 (10)0.0010 (10)0.0022 (11)
O10.0138 (8)0.0197 (10)0.0082 (8)0.0015 (8)0.0025 (7)0.0029 (8)
O20.0120 (8)0.0257 (12)0.0108 (9)0.0016 (8)0.0021 (7)0.0009 (8)
O30.0088 (8)0.0214 (10)0.0105 (9)0.0030 (7)0.0027 (7)0.0016 (7)
O40.0140 (9)0.0376 (13)0.0091 (9)0.0075 (9)0.0039 (7)0.0012 (8)
O50.0101 (9)0.0132 (9)0.0120 (9)0.0016 (6)0.0039 (7)0.0000 (6)
O60.0125 (9)0.0101 (9)0.0089 (9)0.0027 (7)0.0035 (7)0.0001 (7)
O70.0130 (8)0.0085 (7)0.0094 (7)0.0003 (9)0.0040 (6)0.0004 (8)
O80.0136 (8)0.0068 (8)0.0076 (8)0.0032 (8)0.0037 (6)0.0010 (7)
O90.0113 (9)0.0088 (9)0.0086 (8)0.0010 (7)0.0038 (7)0.0001 (7)
O100.0139 (9)0.0093 (8)0.0087 (9)0.0015 (7)0.0029 (7)0.0003 (7)
O110.0119 (9)0.0159 (9)0.0089 (9)0.0013 (8)0.0026 (7)0.0003 (7)
O120.0114 (9)0.0120 (9)0.0115 (9)0.0001 (7)0.0035 (7)0.0013 (7)
O130.0112 (8)0.0093 (9)0.0099 (8)0.0012 (8)0.0038 (6)0.0022 (7)
O140.0095 (9)0.0366 (12)0.0108 (9)0.0043 (8)0.0030 (7)0.0018 (8)
O150.0123 (9)0.0107 (8)0.0082 (8)0.0013 (7)0.0017 (7)0.0013 (7)
Ca10.0114 (2)0.0098 (2)0.0096 (2)0.0003 (2)0.00327 (17)0.0004 (2)
Geometric parameters (Å, º) top
B1—O21.370 (3)B8—O151.372 (3)
B1—O31.374 (3)B8—O131.372 (3)
B1—O11.387 (3)B8—O91.375 (3)
B2—O41.363 (3)O1—H10.86 (3)
B2—O51.364 (3)O2—H20.87 (4)
B2—O31.390 (3)O4—H40.90 (4)
B3—O61.458 (3)O14—H140.98 (4)
B3—O91.460 (3)O2—Ca1iii2.626 (3)
B3—O51.465 (3)O4—Ca1iii2.528 (3)
B3—O81.526 (3)O6—Ca1iv2.6320 (18)
B4—O61.361 (3)O7—Ca1v2.5610 (19)
B4—O71.363 (4)O9—Ca1iv2.4806 (18)
B4—O10i1.372 (3)O10—B4vi1.372 (3)
B5—O101.452 (3)O10—Ca1ii2.621 (2)
B5—O71.455 (3)O15—B7iv1.453 (3)
B5—O111.469 (3)Ca1—O12.619 (3)
B5—O81.511 (3)Ca1—O132.5329 (18)
B6—O121.361 (3)Ca1—O152.634 (2)
B6—O111.374 (3)Ca1—O9ii2.4806 (18)
B6—O141.374 (4)Ca1—O4vii2.528 (3)
B7—O131.444 (3)Ca1—O7viii2.5610 (19)
B7—O15ii1.453 (3)Ca1—O10iv2.621 (2)
B7—O121.483 (3)Ca1—O2vii2.626 (3)
B7—O81.519 (3)Ca1—O6ii2.6320 (18)
O2—B1—O3118.8 (2)O9ii—Ca1—O4vii76.20 (7)
O2—B1—O1125.2 (2)O9ii—Ca1—O1366.86 (6)
O3—B1—O1116.0 (2)O4vii—Ca1—O1365.85 (8)
O4—B2—O5120.6 (2)O9ii—Ca1—O7viii114.83 (6)
O4—B2—O3119.2 (2)O4vii—Ca1—O7viii131.92 (7)
O5—B2—O3120.2 (2)O13—Ca1—O7viii162.18 (6)
O6—B3—O9105.4 (2)O9ii—Ca1—O181.81 (7)
O6—B3—O5110.0 (2)O4vii—Ca1—O1145.73 (7)
O9—B3—O5113.5 (2)O13—Ca1—O181.49 (8)
O6—B3—O8110.3 (2)O7viii—Ca1—O181.26 (8)
O9—B3—O8109.42 (19)O9ii—Ca1—O10iv154.72 (6)
O5—B3—O8108.3 (2)O4vii—Ca1—O10iv129.02 (7)
O6—B4—O7122.0 (2)O13—Ca1—O10iv118.17 (6)
O6—B4—O10i124.7 (2)O7viii—Ca1—O10iv52.31 (6)
O7—B4—O10i113.3 (2)O1—Ca1—O10iv74.93 (7)
O10—B5—O7110.5 (2)O9ii—Ca1—O2vii111.21 (6)
O10—B5—O11111.5 (2)O4vii—Ca1—O2vii64.27 (8)
O7—B5—O11108.7 (2)O13—Ca1—O2vii128.64 (8)
O10—B5—O8108.9 (2)O7viii—Ca1—O2vii68.41 (8)
O7—B5—O8110.6 (2)O1—Ca1—O2vii149.66 (6)
O11—B5—O8106.6 (2)O10iv—Ca1—O2vii85.45 (7)
O12—B6—O11121.5 (2)O9ii—Ca1—O6ii53.88 (6)
O12—B6—O14121.4 (2)O4vii—Ca1—O6ii98.03 (7)
O11—B6—O14117.1 (2)O13—Ca1—O6ii120.74 (6)
O13—B7—O15ii112.0 (2)O7viii—Ca1—O6ii63.58 (6)
O13—B7—O12106.6 (2)O1—Ca1—O6ii89.61 (7)
O15ii—B7—O12111.4 (2)O10iv—Ca1—O6ii115.40 (6)
O13—B7—O8110.7 (2)O2vii—Ca1—O6ii78.02 (7)
O15ii—B7—O8108.32 (19)O9ii—Ca1—O15117.30 (6)
O12—B7—O8107.76 (19)O4vii—Ca1—O1592.26 (7)
O15—B8—O13113.8 (2)O13—Ca1—O1552.77 (6)
O15—B8—O9124.5 (2)O7viii—Ca1—O15117.66 (7)
O13—B8—O9121.7 (2)O1—Ca1—O1574.82 (7)
B1—O1—H1118 (2)O10iv—Ca1—O1566.02 (6)
Ca1—O1—H1108 (2)O2vii—Ca1—O15118.11 (7)
B1—O2—Ca1iii139.51 (16)O6ii—Ca1—O15163.61 (6)
B1—O2—H2111 (3)O9ii—Ca1—B891.19 (7)
Ca1iii—O2—H2105 (3)O4vii—Ca1—B880.44 (8)
B1—O3—B2128.9 (2)O13—Ca1—B826.40 (7)
B2—O4—Ca1iii139.90 (17)O7viii—Ca1—B8141.02 (7)
B2—O4—H4110 (3)O1—Ca1—B874.02 (9)
Ca1iii—O4—H4105 (3)O10iv—Ca1—B891.80 (7)
B2—O5—B3127.0 (2)O2vii—Ca1—B8130.46 (8)
B4—O6—B3122.2 (2)O6ii—Ca1—B8143.67 (7)
B4—O6—Ca1iv135.38 (16)O15—Ca1—B826.64 (7)
B3—O6—Ca1iv95.79 (13)O9ii—Ca1—B4viii136.70 (7)
B4—O7—B5123.3 (2)O4vii—Ca1—B4viii137.46 (8)
B4—O7—Ca1v98.58 (15)O13—Ca1—B4viii142.12 (7)
B5—O7—Ca1v134.77 (15)O7viii—Ca1—B4viii26.00 (7)
B5—O8—B7116.33 (19)O1—Ca1—B4viii75.61 (9)
B5—O8—B3122.88 (18)O10iv—Ca1—B4viii26.36 (7)
B7—O8—B3120.73 (18)O2vii—Ca1—B4viii76.60 (9)
B8—O9—B3119.6 (2)O6ii—Ca1—B4viii89.16 (7)
B8—O9—Ca1iv137.40 (16)O15—Ca1—B4viii91.85 (7)
B3—O9—Ca1iv102.32 (14)B8—Ca1—B4viii116.57 (8)
B4vi—O10—B5120.5 (2)O9ii—Ca1—B3ii27.05 (6)
B4vi—O10—Ca1ii95.64 (15)O4vii—Ca1—B3ii82.49 (7)
B5—O10—Ca1ii142.95 (15)O13—Ca1—B3ii93.55 (7)
B6—O11—B5121.7 (2)O7viii—Ca1—B3ii90.83 (7)
B6—O12—B7122.5 (2)O1—Ca1—B3ii89.77 (7)
B8—O13—B7125.3 (2)O10iv—Ca1—B3ii141.33 (7)
B8—O13—Ca198.42 (15)O2vii—Ca1—B3ii91.50 (7)
B7—O13—Ca1136.19 (15)O6ii—Ca1—B3ii27.57 (6)
B6—O14—H14110 (2)O15—Ca1—B3ii144.13 (7)
B8—O15—B7iv122.8 (2)B8—Ca1—B3ii118.24 (8)
B8—O15—Ca193.93 (15)B4viii—Ca1—B3ii115.83 (8)
B7iv—O15—Ca1138.97 (15)
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y+1/2, z+1; (iii) x1, y, z; (iv) x+1, y1/2, z+1; (v) x, y, z+1; (vi) x+1, y+1/2, z+2; (vii) x+1, y, z; (viii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O5vii0.98 (4)1.93 (4)2.900 (3)173 (3)
O1—H1···O14ix0.86 (3)1.95 (3)2.817 (3)177 (3)
O2—H2···O11ix0.87 (4)1.72 (4)2.585 (3)172 (4)
O2—H2···O7ix0.87 (4)2.50 (4)2.917 (4)110 (3)
O4—H4···O12iii0.90 (4)1.81 (4)2.695 (3)171 (4)
O4—H4···O13iii0.90 (4)2.27 (4)2.751 (3)113 (3)
Symmetry codes: (iii) x1, y, z; (vii) x+1, y, z; (ix) x1, y, z1.
 

References

First citationBrandenburg, K. (1999). DIAMOND. Release 2.1a. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrovkin, A. A., Zayakina, N. V. & Brovkina, V. S. (1975). Kristallografiya, 20, 911–916.  CAS Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZayakina, N. V. & Brovkin, A. A. (1978). Kristallografiya, 23, 1167–1170.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds