Comment
The pharmacological properties of piperidine derivatives have led to many studies of the design and synthesis of these compounds (Hu et al., 2002
; Walker et al., 2005
). In addition, a number of these derivatives can act as complexing reagents with metal ions. We have previously studied the application of aminophenol derivatives as ion size recognition reagents (Hirayama et al., 2001
), and in this work, describe the crystal structure of 2,4-dichloro-6-(piperidin-1-ylmethyl)phenol, (I)
, which would be expected to act as an effective chelating reagent.
Compound (I)
crystallizes in the monoclinic space group P21/c, with one molecule in the asymmetric unit. The bond lengths and angles observed in the piperidylmethyl group are all in the normal ranges and comparable with those of other related compounds (Deng et al., 2001
; Yuan et al., 2004
). The piperidine ring adopts the usual chair conformation. The torsion angles C1—C6—C7—N1 and C5—C6—C7—N1 are 44.20 (18) and −139.28 (14)°, respectively. There is an intramolecular O—H⋯N hydrogen bond (Table 2
).
In the crystal structure, the shortest intermolecular C⋯C contact distance is 3.533 (2) Å for C4⋯C6i [symmetry code: (i) −x, −y, −z]. In addition, weak intermolecular Cl⋯Cl contacts are observed. The contact distances Cl1⋯Cl1ii and Cl1⋯Cl2iii are 3.4596 (6) and 3.5734 (6) Å, respectively [symmetry code: (ii) −x, −y, 1 − z; (iii) x, −
− y,
+ z]. The packing of the molecules in the crystal structure is stabilized by π–π interactions and Cl⋯Cl contacts between dichlorobenzene groups.
| Figure 1 A view of the molecule of (I) , showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. The dashed line indicates the O—H⋯N hydrogen bond. |
| Figure 2 The packing of the molecules of (I) , viewed down the a axis, with Cl⋯Cl contacts shown as dashed lines. |
Experimental
Compound (I)
was prepared by the Mannich reaction. 2,4-Dichlorophenol (6.52 g, 40 mmol), piperidine (3.41 g, 40 mmol) and paraformaldehyde (1.20 g, 40 mmol) in methanol (80 ml) were refluxed for 6 h. The mixture was cooled to room temperature, then the solvent was evaporated under vacuum. The resulting oil was extracted with chloroform and evaporated to yield a solid. The product was recrystallized from methanol to give colourless crystals suitable for X-ray analysis. Yield 52.6%; m.p. 335.0–335.4 K. Analysis calculated for C12H15Cl2NO: C 55.40, H 5.81, N 5.38%; found: C 55.49, H 5.87, N 5.37%. 1H NMR (CDCl3, p.p.m., 400 MHz): 1.46–1.69 (m, 6H, CH2), 2.53 (brs, 4H, CH2), 3.65 (s, 2H, CH2), 6.85 (d, J = 2.5 Hz, 1H, ArH), 7.24 (d, J = 2.5 Hz, 1H, ArH), 10.2 (brs, 1H, OH).
Data collection
Rigaku AFC-7R diffractometer ω–2θ scans Absorption correction: none 3619 measured reflections 2937 independent reflections 2773 reflections with F2 > 2σ(F2) Rint = 0.026 θmax = 27.5° h = −12 → 12 k = −15 → 0 l = −8 → 14 3 standard reflections every 150 reflections intensity decay: 2.4%
|
O1—C1 | 1.3559 (19) | N1—C7 | 1.474 (2) | N1—C8 | 1.466 (2) | N1—C12 | 1.472 (2) | | C2⋯C5i | 3.609 (2) | C4⋯C6i | 3.533 (2) | Cl1⋯Cl1ii | 3.4596 (17) | Cl1⋯Cl2iii | 3.5734 (17) | | C7—N1—C8 | 110.88 (12) | C7—N1—C12 | 111.67 (12) | C8—N1—C12 | 110.63 (12) | N1—C7—C6 | 111.09 (12) | N1—C8—C9 | 111.12 (14) | N1—C12—C11 | 109.91 (14) | Symmetry codes: (i) -x, -y, -z; (ii) -x, -y, -z+1; (iii) . | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O1—H1⋯N1 | 0.86 | 1.87 | 2.6456 (18) | 149 | | |
The H atom of the hydroxyl group was found in a difference Fourier map. The other H atoms were placed in idealized positions with C—H = 0.95 Å. All the H atoms were refined as riding, with Uiso(H) = 1.2Ueq(C).
Data collection: WinAFC (Rigaku/MSC, 2004
); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2004
); program(s) used to solve structure: SIR92 (Altomare et al., 1994
); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003
); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997
); software used to prepare material for publication: CrystalStructure.
Supporting information
Data collection: WinAFC (Rigaku/MSC, 2004); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.
2,4-Dichloro-6-(piperidin-1-ylmethyl)phenol
top Crystal data top C12H15Cl2NO | F(000) = 544.00 |
Mr = 260.15 | Dx = 1.356 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 9.571 (4) Å | θ = 15.5–17.1° |
b = 11.794 (4) Å | µ = 0.49 mm−1 |
c = 11.345 (5) Å | T = 298 K |
β = 95.89 (3)° | Prism, colorless |
V = 1273.9 (9) Å3 | 0.50 × 0.20 × 0.20 mm |
Z = 4 | |
Data collection top Rigaku AFC-7R diffractometer | θmax = 27.5° |
ω–2θ scans | h = −12→12 |
3619 measured reflections | k = −15→0 |
2937 independent reflections | l = −8→14 |
2773 reflections with F2 > 2σ(F2) | 3 standard reflections every 150 reflections |
Rint = 0.026 | intensity decay: 2.4% |
Refinement top Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[0.0034Fo2 + 1σ(Fo2)]/(4Fo2) |
wR(F2) = 0.133 | (Δ/σ)max < 0.001 |
S = 1.01 | Δρmax = 0.29 e Å−3 |
2776 reflections | Δρmin = −0.52 e Å−3 |
160 parameters | |
Special details top Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY |
Refinement. Refinement using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl1 | 0.00145 (5) | 0.00105 (4) | 0.34766 (4) | 0.06163 (16) | |
Cl2 | 0.15815 (5) | −0.25596 (4) | −0.00840 (5) | 0.06854 (18) | |
O1 | 0.13660 (12) | 0.18416 (10) | 0.23010 (10) | 0.0490 (3) | |
N1 | 0.32577 (12) | 0.25542 (11) | 0.09257 (12) | 0.0405 (3) | |
C1 | 0.13976 (13) | 0.08428 (12) | 0.17126 (12) | 0.0365 (3) | |
C2 | 0.08247 (14) | −0.01252 (13) | 0.21869 (14) | 0.0386 (3) | |
C3 | 0.08777 (14) | −0.11769 (13) | 0.16480 (13) | 0.0413 (4) | |
C4 | 0.14981 (16) | −0.12490 (13) | 0.06086 (14) | 0.0430 (4) | |
C5 | 0.20396 (16) | −0.02974 (14) | 0.00985 (13) | 0.0426 (4) | |
C6 | 0.19853 (14) | 0.07499 (13) | 0.06342 (12) | 0.0380 (3) | |
C7 | 0.24692 (17) | 0.18072 (14) | 0.00526 (12) | 0.0451 (4) | |
C8 | 0.46615 (17) | 0.20956 (14) | 0.12827 (17) | 0.0492 (4) | |
C9 | 0.5435 (2) | 0.28102 (19) | 0.22575 (18) | 0.0598 (5) | |
C10 | 0.5516 (2) | 0.40308 (18) | 0.1869 (2) | 0.0624 (5) | |
C11 | 0.40624 (18) | 0.44785 (16) | 0.1433 (2) | 0.0597 (5) | |
C12 | 0.33535 (18) | 0.37185 (14) | 0.04735 (17) | 0.0495 (4) | |
H1 | 0.2023 | 0.2252 | 0.2061 | 0.060* | |
H2 | 0.0502 | −0.1831 | 0.1989 | 0.049* | |
H3 | 0.2455 | −0.0372 | −0.0623 | 0.051* | |
H4 | 0.1673 | 0.2207 | −0.0302 | 0.054* | |
H5 | 0.3053 | 0.1599 | −0.0541 | 0.054* | |
H6 | 0.4572 | 0.1339 | 0.1552 | 0.058* | |
H7 | 0.5188 | 0.2100 | 0.0617 | 0.059* | |
H8 | 0.4929 | 0.2777 | 0.2934 | 0.071* | |
H9 | 0.6355 | 0.2519 | 0.2454 | 0.071* | |
H10 | 0.5908 | 0.4481 | 0.2514 | 0.075* | |
H11 | 0.6098 | 0.4075 | 0.1240 | 0.074* | |
H12 | 0.3505 | 0.4484 | 0.2080 | 0.072* | |
H13 | 0.4134 | 0.5227 | 0.1137 | 0.072* | |
H14 | 0.3896 | 0.3719 | −0.0182 | 0.060* | |
H15 | 0.2436 | 0.3991 | 0.0228 | 0.059* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl1 | 0.0704 (3) | 0.0678 (3) | 0.0514 (3) | −0.0096 (2) | 0.0291 (2) | 0.0034 (2) |
Cl2 | 0.0754 (3) | 0.0506 (3) | 0.0815 (4) | −0.0108 (2) | 0.0169 (3) | −0.0219 (2) |
O1 | 0.0556 (6) | 0.0418 (6) | 0.0522 (6) | −0.0045 (5) | 0.0185 (5) | −0.0036 (5) |
N1 | 0.0360 (6) | 0.0403 (7) | 0.0448 (7) | −0.0068 (5) | 0.0027 (5) | 0.0067 (5) |
C1 | 0.0324 (6) | 0.0399 (8) | 0.0372 (7) | −0.0003 (5) | 0.0035 (5) | 0.0021 (6) |
C2 | 0.0330 (7) | 0.0458 (8) | 0.0378 (7) | −0.0012 (5) | 0.0069 (5) | 0.0058 (6) |
C3 | 0.0329 (7) | 0.0424 (8) | 0.0479 (8) | −0.0076 (6) | 0.0012 (6) | 0.0049 (6) |
C4 | 0.0373 (7) | 0.0425 (8) | 0.0485 (9) | −0.0048 (6) | 0.0013 (6) | −0.0056 (7) |
C5 | 0.0372 (7) | 0.0530 (9) | 0.0383 (8) | −0.0058 (7) | 0.0071 (6) | −0.0042 (7) |
C6 | 0.0318 (6) | 0.0460 (8) | 0.0358 (7) | −0.0059 (5) | 0.0022 (5) | 0.0037 (6) |
C7 | 0.0446 (8) | 0.0526 (9) | 0.0380 (8) | −0.0104 (7) | 0.0032 (6) | 0.0070 (7) |
C8 | 0.0406 (8) | 0.0426 (9) | 0.0633 (11) | −0.0031 (7) | 0.0004 (7) | 0.0057 (8) |
C9 | 0.0481 (9) | 0.0676 (12) | 0.0612 (11) | −0.0068 (8) | −0.0061 (8) | −0.0005 (9) |
C10 | 0.0526 (10) | 0.0561 (11) | 0.0772 (13) | −0.0122 (8) | 0.0008 (9) | −0.0112 (9) |
C11 | 0.0570 (10) | 0.0440 (10) | 0.0794 (13) | −0.0071 (8) | 0.0137 (9) | −0.0042 (9) |
C12 | 0.0459 (8) | 0.0433 (9) | 0.0595 (10) | −0.0035 (7) | 0.0074 (7) | 0.0114 (8) |
Geometric parameters (Å, º) top Cl1—C2 | 1.7323 (17) | C11—C12 | 1.516 (2) |
Cl2—C4 | 1.7396 (17) | O1—H1 | 0.860 |
O1—C1 | 1.3559 (19) | C3—H2 | 0.950 |
N1—C7 | 1.474 (2) | C5—H3 | 0.950 |
N1—C8 | 1.466 (2) | C7—H4 | 0.950 |
N1—C12 | 1.472 (2) | C7—H5 | 0.950 |
C1—C2 | 1.398 (2) | C8—H6 | 0.950 |
C1—C6 | 1.402 (2) | C8—H7 | 0.950 |
C2—C3 | 1.386 (2) | C9—H8 | 0.950 |
C3—C4 | 1.376 (2) | C9—H9 | 0.950 |
C4—C5 | 1.387 (2) | C10—H10 | 0.950 |
C5—C6 | 1.380 (2) | C10—H11 | 0.950 |
C6—C7 | 1.506 (2) | C11—H12 | 0.950 |
C8—C9 | 1.521 (2) | C11—H13 | 0.950 |
C9—C10 | 1.510 (3) | C12—H14 | 0.950 |
C10—C11 | 1.523 (2) | C12—H15 | 0.950 |
| | | |
C2···C5i | 3.609 (2) | Cl1···Cl1ii | 3.4596 (17) |
C4···C6i | 3.533 (2) | Cl1···Cl2iii | 3.5734 (17) |
C5···C2i | 3.609 (2) | Cl2···Cl1iv | 3.5734 (17) |
C6···C4i | 3.533 (2) | | |
| | | |
C7—N1—C8 | 110.88 (12) | N1—C7—H5 | 109.4 |
C7—N1—C12 | 111.67 (12) | C6—C7—H4 | 109.1 |
C8—N1—C12 | 110.63 (12) | C6—C7—H5 | 109.0 |
O1—C1—C2 | 119.38 (13) | H4—C7—H5 | 109.5 |
O1—C1—C6 | 121.91 (13) | N1—C8—H6 | 109.0 |
C2—C1—C6 | 118.71 (14) | N1—C8—H7 | 108.9 |
Cl1—C2—C1 | 118.49 (12) | C9—C8—H6 | 109.9 |
Cl1—C2—C3 | 119.67 (12) | C9—C8—H7 | 108.5 |
C1—C2—C3 | 121.84 (15) | H6—C8—H7 | 109.5 |
C2—C3—C4 | 118.15 (15) | C8—C9—H8 | 108.3 |
Cl2—C4—C3 | 119.06 (12) | C8—C9—H9 | 109.9 |
Cl2—C4—C5 | 119.61 (13) | C10—C9—H8 | 108.7 |
C3—C4—C5 | 121.33 (15) | C10—C9—H9 | 109.8 |
C4—C5—C6 | 120.52 (15) | H8—C9—H9 | 109.5 |
C1—C6—C5 | 119.39 (14) | C9—C10—H10 | 109.6 |
C1—C6—C7 | 119.11 (14) | C9—C10—H11 | 108.9 |
C5—C6—C7 | 121.41 (14) | C11—C10—H10 | 109.3 |
N1—C7—C6 | 111.09 (12) | C11—C10—H11 | 108.9 |
N1—C8—C9 | 111.12 (14) | H10—C10—H11 | 109.5 |
C8—C9—C10 | 110.59 (16) | C10—C11—H12 | 108.6 |
C9—C10—C11 | 110.66 (15) | C10—C11—H13 | 109.9 |
C10—C11—C12 | 110.78 (15) | C12—C11—H12 | 108.3 |
N1—C12—C11 | 109.91 (14) | C12—C11—H13 | 109.8 |
C1—O1—H1 | 106.2 | H12—C11—H13 | 109.5 |
C2—C3—H2 | 121.00 | N1—C12—H14 | 109.4 |
C4—C3—H2 | 121.00 | N1—C12—H15 | 109.2 |
C4—C5—H3 | 119.00 | C11—C12—H14 | 108.8 |
C6—C5—H3 | 120.00 | C11—C12—H15 | 110.0 |
N1—C7—H4 | 108.7 | H14—C12—H15 | 109.5 |
| | | |
C7—N1—C8—C9 | −175.31 (14) | Cl1—C2—C3—C4 | 178.40 (11) |
C8—N1—C7—C6 | 73.99 (16) | C1—C2—C3—C4 | −1.0 (2) |
C7—N1—C12—C11 | 175.25 (13) | C2—C3—C4—Cl2 | 179.87 (11) |
C12—N1—C7—C6 | −162.14 (13) | C2—C3—C4—C5 | −0.9 (2) |
C8—N1—C12—C11 | −60.74 (18) | Cl2—C4—C5—C6 | −179.93 (11) |
C12—N1—C8—C9 | 60.22 (19) | C3—C4—C5—C6 | 0.9 (2) |
O1—C1—C2—Cl1 | 3.24 (18) | C4—C5—C6—C1 | 1.1 (2) |
O1—C1—C2—C3 | −177.40 (13) | C4—C5—C6—C7 | −175.45 (13) |
O1—C1—C6—C5 | 177.40 (13) | C1—C6—C7—N1 | 44.20 (18) |
O1—C1—C6—C7 | −6.0 (2) | C5—C6—C7—N1 | −139.28 (14) |
C2—C1—C6—C5 | −2.9 (2) | N1—C8—C9—C10 | −56.2 (2) |
C2—C1—C6—C7 | 173.73 (12) | C8—C9—C10—C11 | 52.9 (2) |
C6—C1—C2—Cl1 | −176.51 (10) | C9—C10—C11—C12 | −54.2 (2) |
C6—C1—C2—C3 | 2.8 (2) | C10—C11—C12—N1 | 57.7 (2) |
Symmetry codes: (i) −x, −y, −z; (ii) −x, −y, −z+1; (iii) x, −y−1/2, z+1/2; (iv) x, −y−1/2, z−1/2. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···N1 | 0.86 | 1.87 | 2.6456 (18) | 149 |
Acknowledgements
This study was supported financially in part by Grants-in-Aid for Scientific Research (No.16750061) from the Japan Society for the Promotion of Science.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Web of Science CrossRef IUCr Journals Google Scholar
Deng, X., Guo, Y.-M., Du, M. & Fang, Y.-Y. (2001). Acta Cryst. E57, o488–o489. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hirayama, N., Horita, Y., Oshima, S., Kubono, K., Kokusen, H. & Honjo, T. (2001). Talanta, 53, 857–862. Web of Science CrossRef PubMed CAS Google Scholar
Hu, X. E., Kim, N. K., Ledoussal, B. & Colson, A.-O. (2002). Tetrahedron Lett. 43, 4289–4293. Web of Science CrossRef CAS Google Scholar
Rigaku/MSC (2004). WinAFC and CrystalStructure. Version 3.7.0. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA. Google Scholar
Walker, S. M., Williams, J. T., Russell, A. G. & Snaith, J. S. (2005). Tetrahedron Lett. 46, 6611–6615. Web of Science CSD CrossRef CAS Google Scholar
Yuan, D., Zhang, M., Pan, Z. & Ma, P. (2004). Acta Cryst. E60, o1321–o1322. Web of Science CSD CrossRef IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.
 | CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890