organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Meth­oxy­benzo­yl)-6-(4-meth­oxy­phen­yl)-3-phenyl-3,4-di­hydro-2H-1,3-oxazine-2,4-dione

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England, and bDepartment of Chemistry, Yozgat Faculty of Arts and Sciences, Erciyes University, 66200 Yozgat, Turkey
*Correspondence e-mail: h.adams@sheffield.ac.uk

(Received 12 October 2005; accepted 25 October 2005; online 31 October 2005)

In the title compound, C25H19NO6, the mol­ecular structure is stabilized by intra- and inter­molecular C—H⋯O hydrogen bonds. The inter­molecular hydrogen bonds link the mol­ecules into a herringbone-like dimer.

Comment

Oxazine derivatives have been shown to be antimicrobial agents (Bayomi et al., 1985[Bayomi, S. M., Price, K. E. & Sowell, J. W. Sr (1985). J. Heterocycl. Chem. 22, 729-734.]), fungicides (Player et al., 1993[Player, M. R., Sowell, J. W., Sr., Williams, G. R. & Cowley, G. T. (1993). J. Heterocycl. Chem. 30, 125-128.]), and also to exhibit some cytotoxic or antitumour activity (Eger & Frey, 1992[Eger, K. & Frey, M. (1992). Arch. Pharm. 325, 551-556.]; Mordarski et al., 1970[Mordarski, M., Chylinska, B. & Urbanski, T. (1970). Arch. Immunol. Ther. Exp. 18, 679-699.]; Mordarski & Chylinska, 1971[Mordarski, M. & Chylinska, J. B. (1971). Arch. Immunol. Ther. Exp. 19, 533-545.], 1972[Mordarski, M. & Chylinska, B. (1972). Arch. Immunol. Ther. Exp. 20, 607-617.]). In the light of this, we have synthesized and characterized the title compound, (2), and have determined its structure by X-ray analysis.

[Scheme 1]

The mol­ecular structure of (2) is illustrated in Fig. 1[link]. The rings (A, B, C and D) are each essentially planar, with r.m.s. deviations of 0.031 (2), 0.019 (2), 0.017 (2) and 0.006 (2) Å, respectively. The dihedral angles between the rings are A/B = 64.31 (9)°, A/C = 19.49 (16)°, A/D = 82.31 (8)°, B/C = 62.22 (9)°, B/D = 61.61 (9)° and C/D = 63.73 (8)°. The bond lengths and angles are in agreement with reported literature values (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

The structure is stabilized by intra- and inter­molecular C—H⋯O hydrogen bonds (Table 1[link]). In the crystal structure, the C—H⋯O inter­molecular hydrogen bonds link the mol­ecules into herringbone-like dimers which are stacked along the b axis (Fig. 2[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (2), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.
[Figure 2]
Figure 2
Packing diagram of (2); C—H⋯O hydrogen bonds are indicated by dashed lines.

Experimental

Compound (1) was prepared from the cyclo­condensation reaction that occurs between p,p′-dimethoxy­dibenzoyl­ketene and oxalyl chloride (Hökelek et al., 2002[Hökelek, T., Sarıpınar, E., Yıldırım, ˙ I., Akkurt, M. & Akçamur, Y. (2002). Acta Cryst. E58, o30-o32.]). Compound (2) was obtained from 1.0 g (2.96 mmol) (1) and 0.35 g (2.96 mmol) phenyl isocyanate in a 25 ml round-bottomed flask equipped with a calcium chloride tube. The mixture was heated at 393 K for 1 h. The cooled reaction mixture was triturated with dry diethyl ether and then recrystallized from n-butanol (yield 0.83 g, 65%, m.p. 480 K). IR (KBr, cm−1): ν 1774 (C5—O4), 1690 (C4—O1), 1646 (C1—O2). 1H NMR (CDCl3): δ 7.95–6.81 (m, 13H, Ar—H), 3.84, 3.79 (s, 6H, CH3O); 13C NMR (CDCl3): δ 190.80 (C5—O4), 166.60 (C4—O1), 165.04 (C1—O2), 162.36–113.47 (C=C, aromatic and aliphatic), 57.52, 57.44 (CH3O). Analysis calculated for C40H35N3O5: C 69.93, H 4.42, N 3.26%; found: C 69.80, H 4.51, N 3.14%.

Crystal data
  • C25H19NO6

  • Mr = 429.41

  • Monoclinic, P 21 /c

  • a = 10.950 (2) Å

  • b = 5.8163 (12) Å

  • c = 30.968 (6) Å

  • β = 91.010 (4)°

  • V = 1972.0 (7) Å3

  • Z = 4

  • Dx = 1.446 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1626 reflections

  • θ = 4.5–50.4°

  • μ = 0.10 mm−1

  • T = 150 (2) K

  • Needle, colourless

  • 0.32 × 0.12 × 0.12 mm

Data collection
  • Bruker SMART1000 CCD area-detector diffractometer

  • ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.967, Tmax = 0.988

  • 13592 measured reflections

  • 3456 independent reflections

  • 2069 reflections with I > 2σ(I)

  • Rint = 0.089

  • θmax = 25.0°

  • h = −13 → 13

  • k = −6 → 6

  • l = −36 → 36

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.154

  • S = 0.98

  • 3456 reflections

  • 291 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0743P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O3 0.95 2.33 2.665 (4) 100
C14—H14⋯O2i 0.95 2.45 3.384 (4) 168
C19—H19⋯O1ii 0.95 2.47 3.231 (4) 137
C24—H24A⋯O2iii 0.98 2.52 3.225 (4) 128
Symmetry codes: (i) -x+2, -y+1, -z; (ii) x, y-1, z; (iii) -x+2, -y+2, -z.

H atoms were positioned geometrically [C—H = 0.95 (CH) and 0.98 Å (CH3)] and constrained to ride on their parent atoms, with Uiso(H) = 1.2 (1.5 for meth­yl) times Ueq(C).

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SHELXTL (Bruker, 1997[Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

5-(4-Methoxybenzoyl)-6-(4-methoxyphenyl)-3-phenyl-3,4-dihydro-2H- 1,3-oxazine-2,4-dione top
Crystal data top
C25H19NO6F(000) = 896
Mr = 429.41Dx = 1.446 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1626 reflections
a = 10.950 (2) Åθ = 4.5–50.4°
b = 5.8163 (12) ŵ = 0.10 mm1
c = 30.968 (6) ÅT = 150 K
β = 91.010 (4)°Needle, colourless
V = 1972.0 (7) Å30.32 × 0.12 × 0.12 mm
Z = 4
Data collection top
Bruker SMART1000 CCD area-detector
diffractometer
3456 independent reflections
Radiation source: fine-focus sealed tube2069 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
Detector resolution: 100 pixels mm-1θmax = 25.0°, θmin = 1.3°
ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
k = 66
Tmin = 0.967, Tmax = 0.988l = 3636
13592 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0743P)2]
where P = (Fo2 + 2Fc2)/3
3456 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6735 (2)0.7296 (4)0.11287 (8)0.0240 (6)
O10.67967 (19)0.9619 (4)0.17188 (7)0.0298 (6)
O20.6885 (2)0.4649 (4)0.05875 (7)0.0338 (6)
O30.83870 (19)0.7146 (4)0.06689 (7)0.0289 (6)
O40.85931 (19)1.3629 (4)0.15074 (7)0.0338 (6)
O51.3284 (2)1.0185 (4)0.25164 (7)0.0333 (6)
O61.3438 (2)1.0754 (4)0.00958 (7)0.0348 (6)
C10.7291 (3)0.6242 (6)0.07882 (10)0.0267 (8)
C20.8967 (3)0.8928 (5)0.08885 (10)0.0233 (7)
C30.8472 (3)0.9798 (5)0.12479 (10)0.0234 (7)
C40.7289 (3)0.8971 (5)0.13949 (10)0.0244 (7)
C50.9024 (3)1.1690 (6)0.15289 (10)0.0238 (7)
C61.0064 (3)1.1116 (5)0.18196 (9)0.0227 (7)
C71.0659 (3)0.9017 (5)0.18022 (10)0.0268 (8)
H71.03310.78300.16240.032*
C81.1723 (3)0.8613 (6)0.20394 (10)0.0276 (8)
H81.21210.71640.20230.033*
C91.2202 (3)1.0334 (5)0.22997 (10)0.0242 (7)
C101.1577 (3)1.2405 (5)0.23456 (10)0.0279 (8)
H101.18741.35420.25410.034*
C111.0519 (3)1.2796 (5)0.21046 (10)0.0255 (8)
H111.00981.42150.21330.031*
C121.0107 (3)0.9500 (5)0.06736 (10)0.0239 (7)
C131.0635 (3)0.7939 (5)0.03880 (10)0.0259 (8)
H131.02340.65230.03280.031*
C141.1730 (3)0.8423 (6)0.01923 (10)0.0272 (8)
H141.20720.73550.00040.033*
C151.2328 (3)1.0478 (5)0.02836 (10)0.0271 (8)
C161.1798 (3)1.2093 (6)0.05475 (10)0.0288 (8)
H161.21881.35300.05970.035*
C171.0694 (3)1.1609 (5)0.07399 (10)0.0272 (8)
H171.03301.27300.09200.033*
C180.5537 (3)0.6412 (5)0.12381 (10)0.0247 (7)
C190.5450 (3)0.4390 (5)0.14677 (10)0.0291 (8)
H190.61650.36200.15690.035*
C200.4305 (3)0.3499 (6)0.15487 (11)0.0340 (8)
H200.42310.20980.17040.041*
C210.3272 (3)0.4636 (6)0.14058 (11)0.0358 (9)
H210.24890.40070.14600.043*
C220.3367 (3)0.6701 (6)0.11821 (11)0.0359 (9)
H220.26520.74970.10890.043*
C230.4507 (3)0.7586 (6)0.10954 (10)0.0296 (8)
H230.45830.89840.09400.035*
C241.4195 (3)1.2633 (6)0.02427 (12)0.0368 (9)
H24A1.38181.40930.01560.055*
H24B1.50041.25050.01140.055*
H24C1.42791.25780.05580.055*
C251.4026 (3)0.8185 (6)0.24371 (12)0.0362 (9)
H25A1.36200.68170.25510.054*
H25B1.48240.83720.25810.054*
H25C1.41380.80060.21260.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0209 (14)0.0267 (15)0.0244 (15)0.0043 (12)0.0004 (12)0.0018 (12)
O10.0317 (13)0.0315 (13)0.0263 (13)0.0015 (10)0.0048 (11)0.0048 (10)
O20.0344 (14)0.0349 (14)0.0324 (13)0.0098 (11)0.0033 (11)0.0135 (11)
O30.0269 (13)0.0323 (13)0.0277 (13)0.0080 (10)0.0025 (10)0.0063 (10)
O40.0310 (13)0.0254 (13)0.0447 (15)0.0073 (11)0.0069 (11)0.0064 (11)
O50.0312 (14)0.0340 (14)0.0342 (13)0.0002 (11)0.0091 (11)0.0036 (11)
O60.0283 (13)0.0348 (14)0.0418 (14)0.0050 (11)0.0088 (11)0.0046 (11)
C10.0254 (18)0.0309 (19)0.0238 (17)0.0046 (16)0.0016 (15)0.0019 (16)
C20.0208 (17)0.0220 (18)0.0269 (18)0.0008 (14)0.0041 (14)0.0010 (14)
C30.0214 (18)0.0244 (18)0.0245 (17)0.0009 (14)0.0009 (14)0.0002 (14)
C40.0265 (18)0.0197 (18)0.0268 (18)0.0024 (14)0.0059 (15)0.0007 (14)
C50.0177 (17)0.0250 (19)0.0290 (18)0.0018 (14)0.0044 (14)0.0017 (14)
C60.0222 (17)0.0265 (18)0.0195 (16)0.0037 (14)0.0018 (14)0.0009 (14)
C70.0307 (19)0.0211 (18)0.0285 (18)0.0032 (15)0.0004 (15)0.0053 (14)
C80.0271 (19)0.0249 (18)0.0310 (18)0.0002 (15)0.0008 (15)0.0005 (15)
C90.0215 (18)0.0312 (19)0.0200 (17)0.0030 (15)0.0016 (14)0.0019 (14)
C100.0308 (19)0.0256 (19)0.0274 (18)0.0057 (15)0.0015 (15)0.0048 (14)
C110.0286 (19)0.0222 (18)0.0257 (18)0.0020 (14)0.0029 (15)0.0026 (14)
C120.0216 (18)0.0247 (18)0.0254 (18)0.0004 (14)0.0013 (14)0.0031 (14)
C130.0248 (18)0.0248 (18)0.0279 (18)0.0002 (15)0.0045 (15)0.0004 (14)
C140.0268 (19)0.0258 (19)0.0290 (18)0.0005 (15)0.0018 (15)0.0036 (15)
C150.0237 (18)0.032 (2)0.0254 (18)0.0003 (15)0.0019 (15)0.0003 (15)
C160.0290 (19)0.0244 (18)0.0329 (19)0.0048 (15)0.0002 (16)0.0010 (15)
C170.0290 (19)0.0236 (18)0.0292 (18)0.0014 (15)0.0047 (15)0.0040 (15)
C180.0236 (18)0.0272 (18)0.0233 (17)0.0032 (15)0.0017 (14)0.0045 (14)
C190.030 (2)0.029 (2)0.0283 (18)0.0020 (16)0.0014 (15)0.0009 (15)
C200.038 (2)0.031 (2)0.034 (2)0.0076 (17)0.0034 (17)0.0014 (16)
C210.030 (2)0.048 (2)0.0293 (19)0.0078 (18)0.0048 (16)0.0075 (17)
C220.026 (2)0.049 (2)0.033 (2)0.0002 (17)0.0014 (16)0.0005 (18)
C230.0275 (19)0.034 (2)0.0271 (18)0.0000 (16)0.0024 (15)0.0001 (15)
C240.031 (2)0.033 (2)0.047 (2)0.0107 (16)0.0038 (17)0.0006 (17)
C250.033 (2)0.038 (2)0.037 (2)0.0059 (17)0.0059 (17)0.0040 (17)
Geometric parameters (Å, º) top
N1—C11.371 (4)C12—C171.398 (4)
N1—C41.407 (4)C12—C131.400 (4)
N1—C181.455 (4)C13—C141.382 (4)
O1—C41.207 (4)C13—H130.9500
O2—C11.197 (4)C14—C151.390 (4)
O3—C11.368 (4)C14—H140.9500
O3—C21.387 (3)C15—C161.380 (4)
O4—C51.224 (4)C16—C171.386 (4)
O5—C91.355 (4)C16—H160.9500
O5—C251.443 (4)C17—H170.9500
O6—C151.366 (4)C18—C191.379 (4)
O6—C241.441 (4)C18—C231.385 (4)
C2—C31.345 (4)C19—C201.384 (4)
C2—C121.463 (4)C19—H190.9500
C3—C41.461 (4)C20—C211.376 (5)
C3—C51.521 (4)C20—H200.9500
C5—C61.478 (4)C21—C221.391 (5)
C6—C71.385 (4)C21—H210.9500
C6—C111.402 (4)C22—C231.380 (4)
C7—C81.386 (4)C22—H220.9500
C7—H70.9500C23—H230.9500
C8—C91.383 (4)C24—H24A0.9800
C8—H80.9500C24—H24B0.9800
C9—C101.394 (4)C24—H24C0.9800
C10—C111.386 (4)C25—H25A0.9800
C10—H100.9500C25—H25B0.9800
C11—H110.9500C25—H25C0.9800
C1—N1—C4124.6 (3)C12—C13—H13119.5
C1—N1—C18115.8 (3)C13—C14—C15119.7 (3)
C4—N1—C18119.3 (3)C13—C14—H14120.2
C1—O3—C2123.4 (2)C15—C14—H14120.2
C9—O5—C25117.3 (2)O6—C15—C16124.0 (3)
C15—O6—C24117.8 (3)O6—C15—C14115.7 (3)
O2—C1—O3118.5 (3)C16—C15—C14120.3 (3)
O2—C1—N1125.4 (3)C15—C16—C17119.7 (3)
O3—C1—N1116.0 (3)C15—C16—H16120.1
C3—C2—O3119.9 (3)C17—C16—H16120.1
C3—C2—C12130.5 (3)C16—C17—C12121.2 (3)
O3—C2—C12109.5 (3)C16—C17—H17119.4
C2—C3—C4120.4 (3)C12—C17—H17119.4
C2—C3—C5125.7 (3)C19—C18—C23121.5 (3)
C4—C3—C5113.9 (3)C19—C18—N1119.5 (3)
O1—C4—N1120.6 (3)C23—C18—N1119.0 (3)
O1—C4—C3124.6 (3)C18—C19—C20118.9 (3)
N1—C4—C3114.9 (3)C18—C19—H19120.5
O4—C5—C6122.2 (3)C20—C19—H19120.5
O4—C5—C3119.1 (3)C21—C20—C19120.3 (3)
C6—C5—C3118.6 (3)C21—C20—H20119.9
C7—C6—C11118.5 (3)C19—C20—H20119.9
C7—C6—C5122.2 (3)C20—C21—C22120.4 (3)
C11—C6—C5119.1 (3)C20—C21—H21119.8
C6—C7—C8121.3 (3)C22—C21—H21119.8
C6—C7—H7119.3C23—C22—C21119.7 (3)
C8—C7—H7119.3C23—C22—H22120.2
C9—C8—C7119.5 (3)C21—C22—H22120.2
C9—C8—H8120.3C22—C23—C18119.2 (3)
C7—C8—H8120.3C22—C23—H23120.4
O5—C9—C8124.2 (3)C18—C23—H23120.4
O5—C9—C10115.6 (3)O6—C24—H24A109.5
C8—C9—C10120.2 (3)O6—C24—H24B109.5
C11—C10—C9119.6 (3)H24A—C24—H24B109.5
C11—C10—H10120.2O6—C24—H24C109.5
C9—C10—H10120.2H24A—C24—H24C109.5
C10—C11—C6120.6 (3)H24B—C24—H24C109.5
C10—C11—H11119.7O5—C25—H25A109.5
C6—C11—H11119.7O5—C25—H25B109.5
C17—C12—C13117.9 (3)H25A—C25—H25B109.5
C17—C12—C2121.8 (3)O5—C25—H25C109.5
C13—C12—C2120.3 (3)H25A—C25—H25C109.5
C14—C13—C12121.1 (3)H25B—C25—H25C109.5
C14—C13—H13119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O30.952.332.665 (4)100
C14—H14···O2i0.952.453.384 (4)168
C19—H19···O1ii0.952.473.231 (4)137
C24—H24A···O2iii0.982.523.225 (4)128
Symmetry codes: (i) x+2, y+1, z; (ii) x, y1, z; (iii) x+2, y+2, z.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBayomi, S. M., Price, K. E. & Sowell, J. W. Sr (1985). J. Heterocycl. Chem. 22, 729–734.  CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEger, K. & Frey, M. (1992). Arch. Pharm. 325, 551–556.  CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Sarıpınar, E., Yıldırım, ˙ I., Akkurt, M. & Akçamur, Y. (2002). Acta Cryst. E58, o30–o32.  CrossRef IUCr Journals Google Scholar
First citationMordarski, M. & Chylinska, J. B. (1971). Arch. Immunol. Ther. Exp. 19, 533–545.  CAS Google Scholar
First citationMordarski, M. & Chylinska, B. (1972). Arch. Immunol. Ther. Exp. 20, 607–617.  CAS Google Scholar
First citationMordarski, M., Chylinska, B. & Urbanski, T. (1970). Arch. Immunol. Ther. Exp. 18, 679–699.  CAS Google Scholar
First citationPlayer, M. R., Sowell, J. W., Sr., Williams, G. R. & Cowley, G. T. (1993). J. Heterocycl. Chem. 30, 125–128.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds