organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Sheets of π-stacked centrosymmetric mol­ecules in N,N′-bis­­(3-nitro­benzyl­­idene)octane-1,8-di­amine

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 28 September 2005; accepted 29 September 2005; online 5 October 2005)

In mol­ecules of the title compound, C22H26N4O4, which lie across centres of inversion, the central octane fragment adopts a nearly planar all-trans conformation. There are no hydrogen bonds in the crystal structure but the mol­ecules are linked into sheets by a single ππ stacking inter­action.

Comment

As part of our continuing studies of the supramolecular arrangements in imines, and especially in compounds of the type O2NC6H4CH=N—(R)—N=CHC6H4NO2, where R = 1,2-cyclo-C6H10 (Glidewell, Low, Skakle & Wardell, 2005[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699-o1701.]; Glidewell, Low & Wardell, 2005[Glidewell, C., Low, J. N. & Wardell, J. L. (2005). Acta Cryst. C61, o551-o554.]) or R = (CH2)n (Bomfim et al., 2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]), we now report the mol­ecular and supramolecular structure of the title compound, (I)[link].

[Scheme 1]

The mol­ecules of (I)[link] lie across centres of inversion in the space group P21/c, with the reference mol­ecule selected as that lying across ([{1\over 2}], [{1\over 2}], [{1\over 2}]) (Fig. 1[link]). The bond distances (Table 1[link]) clearly show the presence of the double bond C11=N11, with typical skeletal bond angles at C11 and N11. The nitroaryl –CH=N—C fragment is almost planar, as is the eight-carbon fragment of the central spacer, as shown by the leading torsional angles (Table 1[link]); however, the overall mol­ecular conformation is very far from being planar, as shown by the torsion angles around the N11—C11 and C12—C13 bonds, where the non-H substituents are mutually anticlinal and synclinal respectively (Table 1[link] and Fig. 1[link]).

The supramolecular aggregation is very simple; there are no hydrogen bonds of any kind, but a single aromatic ππ stacking inter­action links the mol­ecules into sheets. The aryl ring at (x, y, z), which is part of the mol­ecule centred across ([{1\over 2}], [{1\over 2}], [{1\over 2}]), is almost parallel with the aryl rings at (x, [{1\over 2}]y, [{1\over 2}] + z) and (x, [{1\over 2}]y, −[{1\over 2}] + z), which form parts of the mol­ecules centred across ([{1\over 2}], 0, 1) and ([{1\over 2}], 0, 0), respectively. The dihedral angle between adjacent rings is only 2.5 (2)°, with the ring-centroid separations both 3.762 (2) Å; the inter­planar spacings are ca 3.39 Å and the ring-centroid offsets are ca 1.63 Å. Propagation of this single inter­action by the space group symmetry then generates a (100) sheet in which each mol­ecule is linked to four others (Fig. 2[link]); there are, however, no direction-specific inter­actions between adjacent sheets.

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing the atom-labelling scheme. The atoms marked `a' are at the symmetry position (1 − x, 1 − y, 1 − z) and displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
Stereoview of part of the crystal structure of compound (I)[link], showing the formation of a π-stacked (100) sheet. For the sake of clarity, the H atoms have been omitted.

Experimental

A solution of 3-nitro­benzaldehyde (0.4 mmol) and 1,8-diamino­octane (0.2 mmol) in methanol (20 ml) was heated under reflux for 1 h; the mixture was cooled and the solvent was removed under reduced pressure. The solid residue was recrystallized from 1,2-dichloro­ethane to yield crystals of compound (I)[link] suitable for single-crystal X-ray diffraction (m.p. 359–361 K). IR (KBr): 3086, 2933–2832, 1646, 1610,1580, 1536, 1468, 1439, 1343, 1270, 1155, 1078, 1027, 971, 983, 931, 828, 805, 734, 684, 675, 629, 508 cm−1.

Crystal data
  • C22H26N4O4

  • Mr = 410.47

  • Monoclinic, P 21 /c

  • a = 8.1297 (5) Å

  • b = 19.2452 (15) Å

  • c = 7.4113 (4) Å

  • β = 115.321 (4)°

  • V = 1048.15 (12) Å3

  • Z = 2

  • Dx = 1.301 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2407 reflections

  • θ = 3.2–27.6°

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Plate, yellow

  • 0.35 × 0.24 × 0.06 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.])Tmin = 0.978, Tmax = 0.995

  • 11275 measured reflections

  • 2407 independent reflections

  • 1284 reflections with I > 2σ(I)

  • Rint = 0.070

  • θmax = 27.6°

  • h = −10 → 10

  • k = −24 → 24

  • l = −9 → 9

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.158

  • S = 1.01

  • 2407 reflections

  • 136 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0804P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

C1—C11 1.476 (3)
C11—N11 1.268 (2)
N11—C12 1.455 (2)
C1—C11—N11 122.55 (18)
C11—N11—C12 117.28 (17)
C2—C1—C11—N11 −178.68 (19)
C1—C11—N11—C12 −179.34 (18)
C11—N11—C12—C13 113.8 (2)
N11—C12—C13—C14 −64.9 (2)
C12—C13—C14—C15 −175.69 (16)
C13—C14—C15—C15i 176.9 (2)
C4—C5—N5—O51 −177.60 (19)
Symmetry code: (i) -x+1, -y+1, -z+1.

All H atoms were located in difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (aliphatic), and with Uiso(H) = 1.2Ueq(C).

Data collection: COLLECT (Hooft, 1999[Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

N,N'-bis(3-nitrobenzylidene)octane-1,8-diamine top
Crystal data top
C22H26N4O4F(000) = 436
Mr = 410.47Dx = 1.301 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2407 reflections
a = 8.1297 (5) Åθ = 3.2–27.6°
b = 19.2452 (15) ŵ = 0.09 mm1
c = 7.4113 (4) ÅT = 120 K
β = 115.321 (4)°Plate, yellow
V = 1048.15 (12) Å30.35 × 0.24 × 0.06 mm
Z = 2
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2407 independent reflections
Radiation source: Bruker–Nonius FR91 rotating anode1284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.2°
φ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2424
Tmin = 0.978, Tmax = 0.995l = 99
11275 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0804P)2]
where P = (Fo2 + 2Fc2)/3
2407 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.30 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O510.4726 (2)0.30584 (9)0.2452 (2)0.0497 (5)
O520.4979 (2)0.19476 (9)0.2222 (2)0.0554 (5)
N50.4146 (2)0.24756 (10)0.3007 (2)0.0337 (5)
N110.0789 (2)0.41578 (9)0.7670 (2)0.0351 (5)
C10.0339 (2)0.29242 (11)0.7145 (3)0.0282 (5)
C20.1051 (3)0.22653 (11)0.7750 (3)0.0320 (5)
C30.0066 (3)0.16718 (12)0.6830 (3)0.0364 (6)
C40.1647 (3)0.17372 (11)0.5267 (3)0.0333 (5)
C50.2334 (2)0.23980 (10)0.4686 (3)0.0272 (5)
C60.1394 (2)0.29929 (10)0.5582 (3)0.0277 (5)
C110.1398 (3)0.35460 (11)0.8148 (3)0.0329 (5)
C120.1973 (3)0.47278 (11)0.8757 (3)0.0385 (6)
C130.2532 (3)0.51566 (11)0.7389 (3)0.0367 (6)
C140.3695 (3)0.47560 (11)0.6595 (3)0.0348 (6)
C150.4381 (3)0.51947 (11)0.5348 (3)0.0365 (6)
H20.22320.22170.88100.038*
H30.05670.12240.72750.044*
H40.23320.13390.46120.040*
H60.19140.34390.51460.033*
H110.25830.34860.91930.039*
H12A0.30730.45390.98700.046*
H12B0.13310.50290.93320.046*
H13A0.14230.53240.62470.044*
H13B0.32190.55690.81290.044*
H14A0.29720.43640.57700.042*
H14B0.47540.45580.77370.042*
H15A0.33220.53720.41650.044*
H15B0.50460.56010.61470.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O510.0358 (9)0.0453 (11)0.0507 (9)0.0044 (8)0.0019 (7)0.0050 (8)
O520.0416 (9)0.0479 (11)0.0538 (10)0.0133 (8)0.0013 (8)0.0069 (8)
N50.0295 (9)0.0395 (12)0.0306 (10)0.0026 (9)0.0114 (8)0.0007 (9)
N110.0303 (9)0.0348 (12)0.0375 (10)0.0032 (8)0.0119 (8)0.0019 (8)
C10.0252 (10)0.0350 (13)0.0259 (10)0.0019 (9)0.0125 (9)0.0017 (9)
C20.0261 (10)0.0446 (14)0.0254 (10)0.0023 (10)0.0109 (9)0.0054 (10)
C30.0413 (12)0.0348 (13)0.0364 (12)0.0087 (11)0.0198 (11)0.0076 (10)
C40.0362 (12)0.0346 (13)0.0319 (11)0.0037 (10)0.0173 (10)0.0004 (9)
C50.0240 (10)0.0363 (13)0.0214 (10)0.0001 (9)0.0098 (9)0.0025 (9)
C60.0269 (10)0.0317 (12)0.0272 (10)0.0008 (9)0.0140 (9)0.0020 (9)
C110.0255 (10)0.0433 (14)0.0287 (11)0.0028 (10)0.0105 (9)0.0025 (10)
C120.0366 (11)0.0388 (14)0.0379 (12)0.0059 (10)0.0139 (10)0.0035 (10)
C130.0344 (11)0.0322 (13)0.0407 (12)0.0035 (9)0.0135 (10)0.0029 (10)
C140.0374 (11)0.0291 (12)0.0368 (11)0.0028 (9)0.0149 (10)0.0023 (9)
C150.0393 (12)0.0323 (13)0.0363 (12)0.0004 (10)0.0146 (10)0.0007 (9)
Geometric parameters (Å, º) top
C1—C21.386 (3)C11—H110.95
C1—C61.396 (3)N11—C121.455 (2)
C1—C111.476 (3)C12—C131.520 (3)
C2—C31.394 (3)C12—H12A0.99
C2—H20.95C12—H12B0.99
C3—C41.385 (3)C13—C141.520 (3)
C3—H30.95C13—H13A0.99
C4—C51.382 (3)C13—H13B0.99
C4—H40.95C14—C151.523 (3)
C5—C61.379 (3)C14—H14A0.99
C5—N51.474 (2)C14—H14B0.99
C6—H60.95C15—C15i1.511 (4)
N5—O511.218 (2)C15—H15A0.99
N5—O521.222 (2)C15—H15B0.99
C11—N111.268 (2)
C2—C1—C6119.24 (18)N11—C12—C13110.84 (17)
C2—C1—C11120.40 (17)N11—C12—H12A109.5
C6—C1—C11120.36 (18)C13—C12—H12A109.5
C1—C2—C3121.21 (17)N11—C12—H12B109.5
C1—C2—H2119.4C13—C12—H12B109.5
C3—C2—H2119.4H12A—C12—H12B108.1
C4—C3—C2119.8 (2)C14—C13—C12113.33 (18)
C4—C3—H3120.1C14—C13—H13A108.9
C2—C3—H3120.1C12—C13—H13A108.9
C5—C4—C3118.18 (19)C14—C13—H13B108.9
C5—C4—H4120.9C12—C13—H13B108.9
C3—C4—H4120.9H13A—C13—H13B107.7
C6—C5—C4123.19 (17)C13—C14—C15113.80 (18)
C6—C5—N5118.05 (18)C13—C14—H14A108.8
C4—C5—N5118.76 (17)C15—C14—H14A108.8
C5—C6—C1118.40 (18)C13—C14—H14B108.8
C5—C6—H6120.8C15—C14—H14B108.8
C1—C6—H6120.8H14A—C14—H14B107.7
O51—N5—O52123.31 (16)C15i—C15—C14113.7 (2)
O51—N5—C5118.76 (17)C15i—C15—H15A108.8
O52—N5—C5117.91 (17)C14—C15—H15A108.8
C1—C11—N11122.55 (18)C15i—C15—H15B108.8
N11—C11—H11118.7C14—C15—H15B108.8
C1—C11—H11118.7H15A—C15—H15B107.7
C11—N11—C12117.28 (17)
C6—C1—C2—C30.2 (3)C6—C1—C11—N111.0 (3)
C11—C1—C2—C3179.51 (18)C1—C11—N11—C12179.34 (18)
C1—C2—C3—C40.8 (3)C11—N11—C12—C13113.8 (2)
C2—C3—C4—C50.8 (3)N11—C12—C13—C1464.9 (2)
C3—C4—C5—C60.2 (3)C12—C13—C14—C15175.69 (16)
C3—C4—C5—N5179.22 (17)C13—C14—C15—C15i176.9 (2)
C4—C5—C6—C10.4 (3)C6—C5—N5—O511.4 (3)
N5—C5—C6—C1178.64 (16)C4—C5—N5—O51177.60 (19)
C2—C1—C6—C50.4 (3)C6—C5—N5—O52179.66 (18)
C11—C1—C6—C5179.92 (18)C4—C5—N5—O521.3 (3)
C2—C1—C11—N11178.68 (19)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2005). Acta Cryst. E61, o1699–o1701.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGlidewell, C., Low, J. N. & Wardell, J. L. (2005). Acta Cryst. C61, o551–o554.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds