organic compounds
Elaidic acid (trans-9-octadecenoic acid)
aDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, bScottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, Scotland, and cEPSRC National Crystallography Service, School of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England
*Correspondence e-mail: che562@abdn.ac.uk
Elaidic acid, C18H34O2, has an essentially linear alkyl chain. The double bond is twisted across the mean direction of the alkyl chain in a skew′, trans, skew conformation. In the the molecules form centrosymmetric O—H⋯O hydrogen-bonded dimers (O⋯O = 2.684 Å).
Comment
The physical, biological and nutritional properties of etc., and how individual molecules can interact with enzymes and receptors. Most natural unsaturated have cis (Z) double bonds. Trans (E) are present in dairy fats and are produced during the catalytic partial hydrogenation used in the production of hardened fats and during deodorization of commodity oils. The labelling of foods with trans content is increasingly required due to their undesirable nutritional properties. Alternative ways of producing hardened fats, such as interesterification or blending with fully saturated fats, and milder deodorization procedures, are being developed to reduce trans content. Trans more closely resemble saturated acids in melting point and nutritional properties, sharing an essentially linear structure which allows closely aligned packing in condensed phases. In contrast, cis double bonds introduce a bend in the alkyl chain, making packing less stable and lowering the melting point. We have determined the structure of elaidic acid (trans-9-octadecenoic acid), (I), to enable a detailed comparison of a trans fatty acid with saturated and cis-unsaturated compounds.
are largely determined by the number, position and configuration of their double bonds. These determine the shape of the molecules, the way molecules can pack together in solid phases, monolayers, bilayersRelatively few crystal structures of 18 have been reported to date: stearic acid (octadecanoic acid) (Malta et al., 1971; Kaneko et al., 1990, 1994a,b), oleic acid (cis-9-octadecenoic acid) (Abrahamsson & Ryderstedt-Nahringbauer, 1962; Kaneko et al., 1997) and petroselinic acid (cis-6-octadecenoic acid) (Kaneko et al., 1992a,b). No trans-octadecenoic acid structure has been reported to date.
are available, as good crystals are difficult to obtain, often being thin plates and often crystallizing in several polymorphs. Most monoenes have low melting points and polyenes are liquids at room temperature. The crystal structures of the following saturated and monoene CElaidic acid (I) has an essentially linear alkyl chain, with the torsion angle between saturated C atoms close to 180° (Table 1). The C7—C8—C9—C10, C8—C9—C10—C11 and C9—C10—C11—C12 torsion angles are −118.8 (4), −179.9 (4) and 118.6 (4)°, respectively, resulting in the double bond being twisted across the mean direction of the alkyl chain in a skew′, trans, skew conformation. The C1–C18 distance is 21.393 (6) Å, comparable with that in fully extended stearic acid structures (21.6 Å; Malta et al., 1971; Kaneko et al., 1990, 1994b). This contrasts with the cis-octadecenoic acids, where the molecules are bent and the C1–C18 distance is reduced to between 17.8 and 19.7 Å (Abrahamsson & Ryderstedt-Nahringbauer, 1962; Kaneko et al., 1997, 1992a,b).
In the , molecules related by inversion centres are linked by O—H⋯O hydrogen bonds to form R22(8) dimers (Bernstein et al., 1995) typical of (Table 2).
of (I)Experimental
A commercial sample of (I) (Sigma, Poole, Dorset, UK) was re-crystallized from ethanol at room temperature. The crystals were composed of very thin stacked sheets which tended to be twisted. After many attempts, a crystal was found from which it was possible to obtain a data set.
Crystal data
|
Data collection
Refinement
|
|
H atoms were treated as riding, with C—H(aromatic) = 0.95 and C—H(CH2) = 0.99 Å, with Uiso(H) = 1.2Ueq(C), C—H(methyl) = 0.98 Å, with Uiso(H) = 1.5Ueq(C), and O—H = 0.87 Å, with Uiso(H) = 1.5Ueq(O). The O-bound H atom was allowed to ride at its position as determined from a difference map. Although the best crystal was selected from many crystallization attempts, the higher than usual values for R, wR and Rint may be a result of the crystal quality. The possibilty that the crystal was twinned was investigated but this did not give any significant results.
Data collection: COLLECT (Nonius, 1998); cell DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).
Supporting information
https://doi.org/10.1107/S1600536805033040/lh6524sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536805033040/lh6524Isup2.hkl
Data collection: COLLECT (Nonius, 1998); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).C18H34O2 | F(000) = 1264 |
Mr = 282.45 | Dx = 1.075 Mg m−3 |
Monoclinic, C2/c | Melting point: 318 K |
Hall symbol: -C 2yc | Mo Kα radiation, λ = 0.71073 Å |
a = 98.48 (2) Å | Cell parameters from 3830 reflections |
b = 4.9381 (3) Å | θ = 3.3–27.6° |
c = 7.1826 (8) Å | µ = 0.07 mm−1 |
β = 92.570 (12)° | T = 120 K |
V = 3489.4 (8) Å3 | Plate, colourless |
Z = 8 | 0.20 × 0.18 × 0.01 mm |
Bruker Nonius KappaCCD area-detector diffractometer | 3830 independent reflections |
Radiation source: Bruker Nonius FR91 rotating anode | 1679 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.150 |
Detector resolution: 9.091 pixels mm-1 | θmax = 27.6°, θmin = 3.3° |
φ and ω scans | h = −126→126 |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | k = −6→6 |
Tmin = 0.987, Tmax = 0.999 | l = −9→9 |
17532 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.102 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.256 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0744P)2 + 7.8445P] where P = (Fo2 + 2Fc2)/3 |
3830 reflections | (Δ/σ)max = 0.001 |
182 parameters | Δρmax = 0.41 e Å−3 |
0 restraints | Δρmin = −0.35 e Å−3 |
Experimental. The scale factors in the experimental table are calculated from the 'size' command in the SHELXL97 input file. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.73264 (3) | 0.7933 (8) | 0.6134 (6) | 0.0228 (10) | |
O1 | 0.74261 (2) | 0.9565 (6) | 0.6713 (4) | 0.0309 (8) | |
O2 | 0.73386 (2) | 0.6167 (6) | 0.4964 (4) | 0.0248 (7) | |
C2 | 0.71969 (3) | 0.8502 (8) | 0.7109 (5) | 0.0201 (10) | |
C3 | 0.70703 (3) | 0.7093 (8) | 0.6268 (6) | 0.0205 (10) | |
C4 | 0.69400 (3) | 0.8111 (8) | 0.7115 (5) | 0.0189 (9) | |
C5 | 0.68092 (3) | 0.6865 (8) | 0.6249 (6) | 0.0209 (10) | |
C6 | 0.66795 (3) | 0.8041 (8) | 0.7042 (6) | 0.0192 (9) | |
C7 | 0.65479 (3) | 0.6840 (8) | 0.6155 (6) | 0.0217 (10) | |
C8 | 0.64192 (3) | 0.8070 (8) | 0.6941 (6) | 0.0217 (10) | |
C9 | 0.62897 (3) | 0.6835 (8) | 0.6108 (5) | 0.0228 (10) | |
C10 | 0.61931 (3) | 0.8140 (8) | 0.5146 (5) | 0.0218 (10) | |
C11 | 0.60645 (3) | 0.6909 (8) | 0.4322 (6) | 0.0245 (10) | |
C12 | 0.59348 (3) | 0.8106 (8) | 0.5097 (5) | 0.0193 (9) | |
C13 | 0.58035 (3) | 0.6919 (8) | 0.4225 (6) | 0.0218 (10) | |
C14 | 0.56738 (3) | 0.8113 (8) | 0.4988 (6) | 0.0208 (10) | |
C15 | 0.55429 (3) | 0.6890 (8) | 0.4087 (6) | 0.0223 (10) | |
C16 | 0.54127 (3) | 0.8076 (8) | 0.4853 (6) | 0.0224 (10) | |
C17 | 0.52827 (3) | 0.6812 (9) | 0.3945 (6) | 0.0282 (11) | |
C18 | 0.51520 (3) | 0.7981 (9) | 0.4725 (7) | 0.0360 (12) | |
H1 | 0.7506 | 0.9756 | 0.6267 | 0.046* | |
H2A | 0.7181 | 1.0481 | 0.7094 | 0.024* | |
H2B | 0.7210 | 0.7940 | 0.8428 | 0.024* | |
H3A | 0.7079 | 0.5117 | 0.6478 | 0.025* | |
H3B | 0.7065 | 0.7411 | 0.4906 | 0.025* | |
H4A | 0.6935 | 1.0102 | 0.6969 | 0.023* | |
H4B | 0.6945 | 0.7711 | 0.8467 | 0.023* | |
H5A | 0.6811 | 0.4884 | 0.6464 | 0.025* | |
H5B | 0.6807 | 0.7170 | 0.4885 | 0.025* | |
H6A | 0.6679 | 1.0026 | 0.6849 | 0.023* | |
H6B | 0.6681 | 0.7704 | 0.8402 | 0.023* | |
H7A | 0.6546 | 0.7151 | 0.4793 | 0.026* | |
H7B | 0.6548 | 0.4860 | 0.6367 | 0.026* | |
H8A | 0.6422 | 0.7806 | 0.8309 | 0.026* | |
H8B | 0.6418 | 1.0043 | 0.6697 | 0.026* | |
H9 | 0.6277 | 0.4949 | 0.6294 | 0.027* | |
H10 | 0.6206 | 1.0025 | 0.4956 | 0.026* | |
H11A | 0.6066 | 0.4935 | 0.4565 | 0.029* | |
H11B | 0.6062 | 0.7173 | 0.2955 | 0.029* | |
H12A | 0.5936 | 0.7795 | 0.6459 | 0.023* | |
H12B | 0.5935 | 1.0088 | 0.4888 | 0.023* | |
H13A | 0.5804 | 0.4938 | 0.4437 | 0.026* | |
H13B | 0.5802 | 0.7224 | 0.2862 | 0.026* | |
H14A | 0.5673 | 1.0094 | 0.4776 | 0.025* | |
H14B | 0.5675 | 0.7802 | 0.6350 | 0.025* | |
H15A | 0.5542 | 0.7206 | 0.2725 | 0.027* | |
H15B | 0.5544 | 0.4908 | 0.4295 | 0.027* | |
H16A | 0.5411 | 1.0055 | 0.4635 | 0.027* | |
H16B | 0.5414 | 0.7770 | 0.6216 | 0.027* | |
H17A | 0.5282 | 0.7132 | 0.2583 | 0.034* | |
H17B | 0.5285 | 0.4830 | 0.4152 | 0.034* | |
H18A | 0.5151 | 0.7603 | 0.6063 | 0.054* | |
H18B | 0.5073 | 0.7141 | 0.4086 | 0.054* | |
H18C | 0.5149 | 0.9943 | 0.4521 | 0.054* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0142 (16) | 0.022 (2) | 0.032 (3) | 0.0038 (16) | −0.0035 (17) | 0.005 (2) |
O1 | 0.0171 (11) | 0.0333 (19) | 0.042 (2) | −0.0079 (12) | 0.0022 (12) | −0.0123 (15) |
O2 | 0.0219 (12) | 0.0276 (18) | 0.0251 (18) | −0.0011 (12) | 0.0008 (11) | −0.0047 (15) |
C2 | 0.0194 (16) | 0.022 (2) | 0.019 (3) | 0.0035 (16) | −0.0021 (15) | −0.0017 (19) |
C3 | 0.0166 (16) | 0.020 (2) | 0.025 (3) | 0.0031 (15) | −0.0015 (16) | 0.0035 (19) |
C4 | 0.0191 (16) | 0.019 (2) | 0.019 (2) | 0.0016 (15) | 0.0015 (16) | −0.0005 (18) |
C5 | 0.0183 (16) | 0.019 (2) | 0.025 (3) | −0.0030 (16) | −0.0059 (16) | 0.0025 (19) |
C6 | 0.0163 (16) | 0.021 (2) | 0.020 (3) | −0.0015 (15) | 0.0024 (15) | 0.0008 (19) |
C7 | 0.0201 (16) | 0.025 (2) | 0.020 (3) | −0.0024 (16) | −0.0050 (16) | 0.0019 (19) |
C8 | 0.0194 (17) | 0.028 (2) | 0.018 (3) | −0.0018 (16) | 0.0021 (16) | 0.0018 (19) |
C9 | 0.0232 (17) | 0.024 (3) | 0.022 (3) | −0.0005 (17) | 0.0028 (17) | −0.001 (2) |
C10 | 0.0154 (16) | 0.023 (2) | 0.026 (3) | −0.0026 (16) | 0.0004 (16) | 0.001 (2) |
C11 | 0.0197 (17) | 0.026 (2) | 0.027 (3) | −0.0010 (16) | −0.0068 (17) | 0.001 (2) |
C12 | 0.0187 (16) | 0.025 (2) | 0.014 (2) | 0.0003 (16) | −0.0002 (15) | 0.0013 (19) |
C13 | 0.0193 (17) | 0.026 (2) | 0.020 (3) | −0.0018 (16) | −0.0023 (16) | 0.0005 (19) |
C14 | 0.0209 (17) | 0.021 (2) | 0.020 (3) | 0.0010 (16) | −0.0022 (16) | 0.0010 (19) |
C15 | 0.0205 (17) | 0.025 (2) | 0.021 (3) | 0.0001 (16) | −0.0032 (16) | −0.002 (2) |
C16 | 0.0232 (17) | 0.021 (2) | 0.023 (3) | 0.0019 (16) | −0.0003 (17) | −0.0014 (19) |
C17 | 0.0207 (17) | 0.037 (3) | 0.027 (3) | −0.0025 (17) | −0.0039 (17) | 0.001 (2) |
C18 | 0.0263 (19) | 0.040 (3) | 0.041 (3) | −0.0003 (19) | −0.0041 (19) | 0.002 (2) |
C1—O2 | 1.221 (5) | C10—C11 | 1.502 (4) |
C1—O1 | 1.323 (4) | C10—H10 | 0.95 |
C1—C2 | 1.508 (5) | C11—C12 | 1.535 (5) |
O1—H1 | 0.8642 | C11—H11A | 0.99 |
C2—C3 | 1.528 (4) | C11—H11B | 0.99 |
C2—H2A | 0.99 | C12—C13 | 1.527 (4) |
C2—H2B | 0.99 | C12—H12A | 0.99 |
C3—C4 | 1.530 (5) | C12—H12B | 0.99 |
C3—H3A | 0.99 | C13—C14 | 1.530 (5) |
C3—H3B | 0.99 | C13—H13A | 0.99 |
C4—C5 | 1.534 (4) | C13—H13B | 0.99 |
C4—H4A | 0.99 | C14—C15 | 1.540 (4) |
C4—H4B | 0.99 | C14—H14A | 0.99 |
C5—C6 | 1.536 (5) | C14—H14B | 0.99 |
C5—H5A | 0.99 | C15—C16 | 1.534 (5) |
C5—H5B | 0.99 | C15—H15A | 0.99 |
C6—C7 | 1.537 (4) | C15—H15B | 0.99 |
C6—H6A | 0.99 | C16—C17 | 1.542 (4) |
C6—H6B | 0.99 | C16—H16A | 0.99 |
C7—C8 | 1.536 (5) | C16—H16B | 0.99 |
C7—H7A | 0.99 | C17—C18 | 1.540 (5) |
C7—H7B | 0.99 | C17—H17A | 0.99 |
C8—C9 | 1.512 (4) | C17—H17B | 0.99 |
C8—H8A | 0.99 | C18—H18A | 0.98 |
C8—H8B | 0.99 | C18—H18B | 0.98 |
C9—C10 | 1.318 (5) | C18—H18C | 0.98 |
C9—H9 | 0.95 | ||
O2—C1—O1 | 123.9 (3) | C9—C10—H10 | 117.1 |
O2—C1—C2 | 124.3 (3) | C11—C10—H10 | 117.1 |
O1—C1—C2 | 111.8 (4) | C10—C11—C12 | 113.7 (3) |
C1—O1—H1 | 128.4 | C10—C11—H11A | 108.8 |
C1—C2—C3 | 115.1 (3) | C12—C11—H11A | 108.8 |
C1—C2—H2A | 108.5 | C10—C11—H11B | 108.8 |
C3—C2—H2A | 108.5 | C12—C11—H11B | 108.8 |
C1—C2—H2B | 108.5 | H11A—C11—H11B | 107.7 |
C3—C2—H2B | 108.5 | C13—C12—C11 | 114.0 (3) |
H2A—C2—H2B | 107.5 | C13—C12—H12A | 108.8 |
C2—C3—C4 | 112.2 (3) | C11—C12—H12A | 108.8 |
C2—C3—H3A | 109.2 | C13—C12—H12B | 108.8 |
C4—C3—H3A | 109.2 | C11—C12—H12B | 108.8 |
C2—C3—H3B | 109.2 | H12A—C12—H12B | 107.7 |
C4—C3—H3B | 109.2 | C12—C13—C14 | 114.2 (3) |
H3A—C3—H3B | 107.9 | C12—C13—H13A | 108.7 |
C3—C4—C5 | 114.3 (3) | C14—C13—H13A | 108.7 |
C3—C4—H4A | 108.7 | C12—C13—H13B | 108.7 |
C5—C4—H4A | 108.7 | C14—C13—H13B | 108.7 |
C3—C4—H4B | 108.7 | H13A—C13—H13B | 107.6 |
C5—C4—H4B | 108.7 | C13—C14—C15 | 113.3 (3) |
H4A—C4—H4B | 107.6 | C13—C14—H14A | 108.9 |
C4—C5—C6 | 113.3 (3) | C15—C14—H14A | 108.9 |
C4—C5—H5A | 108.9 | C13—C14—H14B | 108.9 |
C6—C5—H5A | 108.9 | C15—C14—H14B | 108.9 |
C4—C5—H5B | 108.9 | H14A—C14—H14B | 107.7 |
C6—C5—H5B | 108.9 | C16—C15—C14 | 113.4 (3) |
H5A—C5—H5B | 107.7 | C16—C15—H15A | 108.9 |
C5—C6—C7 | 113.6 (3) | C14—C15—H15A | 108.9 |
C5—C6—H6A | 108.8 | C16—C15—H15B | 108.9 |
C7—C6—H6A | 108.8 | C14—C15—H15B | 108.9 |
C5—C6—H6B | 108.8 | H15A—C15—H15B | 107.7 |
C7—C6—H6B | 108.8 | C15—C16—C17 | 112.6 (3) |
H6A—C6—H6B | 107.7 | C15—C16—H16A | 109.1 |
C8—C7—C6 | 112.9 (3) | C17—C16—H16A | 109.1 |
C8—C7—H7A | 109.0 | C15—C16—H16B | 109.1 |
C6—C7—H7A | 109.0 | C17—C16—H16B | 109.1 |
C8—C7—H7B | 109.0 | H16A—C16—H16B | 107.8 |
C6—C7—H7B | 109.0 | C18—C17—C16 | 112.7 (3) |
H7A—C7—H7B | 107.8 | C18—C17—H17A | 109.0 |
C9—C8—C7 | 113.0 (3) | C16—C17—H17A | 109.0 |
C9—C8—H8A | 109.0 | C18—C17—H17B | 109.0 |
C7—C8—H8A | 109.0 | C16—C17—H17B | 109.0 |
C9—C8—H8B | 109.0 | H17A—C17—H17B | 107.8 |
C7—C8—H8B | 109.0 | C17—C18—H18A | 109.5 |
H8A—C8—H8B | 107.8 | C17—C18—H18B | 109.5 |
C10—C9—C8 | 125.9 (4) | H18A—C18—H18B | 109.5 |
C10—C9—H9 | 117.1 | C17—C18—H18C | 109.5 |
C8—C9—H9 | 117.1 | H18A—C18—H18C | 109.5 |
C9—C10—C11 | 125.7 (4) | H18B—C18—H18C | 109.5 |
O2—C1—C2—C3 | −11.8 (6) | C8—C9—C10—C11 | −179.9 (4) |
O1—C1—C2—C3 | 168.8 (3) | C9—C10—C11—C12 | 118.6 (4) |
C1—C2—C3—C4 | −170.7 (3) | C10—C11—C12—C13 | 178.4 (3) |
C2—C3—C4—C5 | 177.0 (3) | C11—C12—C13—C14 | −179.8 (3) |
C3—C4—C5—C6 | −176.6 (3) | C12—C13—C14—C15 | 179.9 (3) |
C4—C5—C6—C7 | 178.9 (3) | C13—C14—C15—C16 | 179.8 (3) |
C5—C6—C7—C8 | −179.1 (3) | C14—C15—C16—C17 | −179.6 (3) |
C6—C7—C8—C9 | −178.4 (3) | C15—C16—C17—C18 | 179.5 (3) |
C7—C8—C9—C10 | −118.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O2i | 0.87 | 1.86 | 2.684 (3) | 158 |
Symmetry code: (i) −x+3/2, −y+3/2, −z+1. |
Acknowledgements
The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The Scottish Crop Research Institute receives grant-in-aid from the Scottish Executive Environmental and Rural Affairs Department.
References
Abrahamsson, S. & Ryderstedt-Nahringbauer, I. (1962). Acta Cryst. 15, 1261–1268. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Kaneko, F., Kobayashi, M., Kitagawa, Y. & Matsuura, Y. (1990). Acta Cryst. C46, 1490–1492. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992a). Acta Cryst. C48, 1054–1057. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaneko, F., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1992b). Acta Cryst. C48, 1057–1060. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, Y. & Suzuki, M. (1994a). Acta Cryst. C50, 245–247. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaneko, F., Sakashita, H., Kobayashi, M., Kitagawa, Y., Matsuura, Y. & Suzuki, M. (1994b). Acta Cryst. C50, 247–250. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Kaneko, F., Yamazaki, K., Kitagawa, K., Kikyo, T., Kobayashi, M., Kitagawa, Y., Matsuura, Y., Sato, K. & Suzuki, M. (1997). J. Phys. Chem. B, 101, 1803–1809. CSD CrossRef CAS Web of Science Google Scholar
Malta, V., Celotti G., Zannetti, R. & Martelli, A. F. (1971). J. Chem. Soc. B, pp. 548–553. Google Scholar
McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland. Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany. Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.