organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A hydrogen-bonded chain of rings in (E)-3-(4-nitro­phenyl­amino­carbon­yl)prop-2-enoic acid

CROSSMARK_Color_square_no_text.svg

aInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 12 October 2005; accepted 19 October 2005; online 27 October 2005)

In the title compound, C10H8N2O5, the mol­ecules are linked into chains of rings by the concerted action of one N—H⋯O and one C—H⋯O hydrogen bond.

Comment

We have recently reported the mol­ecular and supramolecular structures of two 2-(X-nitro­phenyl­amino­carbon­yl)benzoic acids (X = 2 and 4), formed from phthalic anhydride and the appropriate nitro­aniline (Glidewell et al., 2004[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120-o124.]). We now report the related compound (E)-3-(4-nitro­phenyl­amino­carbon­yl)propen-2-oic acid, (I)[link] (Fig. 1[link]), formed from maleic anhydride and 4-nitro­aniline. Although the mol­ecule of (I)[link] is simple, it contains a number of potential sites for involvement in inter­molecular inter­actions; in particular, hard and soft hydrogen bonds and aromatic π-π stacking inter­actions are possible.

[Scheme 1]

There are two intra­molecular hydrogen bonds in compound (I)[link]. A rather short and almost linear O—H⋯O hydrogen bond (Fig. 1[link]) controls the conformation of the maleate fragment, forming an S(7) ring, while a weaker C—H⋯O hydrogen bond forming an S(6) ring appears to control the mutual orientation of the maleate and nitroaryl fragments. Accordingly, the mol­ecular skeleton is almost planar, as shown by the relevant torsion angles (Table 1[link]). The bond distances within the acyclic portion of the mol­ecule (Table 1[link]) clearly show the location of single and double bonds; the C—O distances in the carboxylic acid group are consistent with the location of the carboxyl H atom deduced from difference maps.

The mol­ecules of (I)[link] are linked into chains of rings by an N—H⋯O hydrogen bond, augmented by a rather long C—H⋯O hydrogen bond. Amide atom N1 and aryl atom C16 in the mol­ecule at (x, y, z) both act as hydrogen-bond donors to carboxyl atom O44 in the mol­ecule at (1 − x, [{1\over 2}] + y, [{3\over 2}]z), so forming a C(7)C(9)[R12(6)] (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) chain of rings running parallel to the [010] direction and generated by the 21 screw axis along ([{1\over 2}], y, [{3\over 4}]) (Fig. 2[link]). Two chains of this type pass through each unit cell but there are no significant direction-specific inter­actions between adjacent chains; in partic­ular, C—H⋯π(arene) hydrogen bonds and aromatic ππ stacking inter­actions are absent.

[Figure 1]
Figure 1
The mol­ecule of compound (I)[link], showing displacement ellipsoids drawn at the 30% probability level. The dashed line indicates a hydrogen bond.
[Figure 2]
Figure 2
Part of the crystal structure of (I)[link], showing the formation of a chain of rings along [010]. Atoms marked with an asterisk (*) or an ampersand (&) are at the symmetry positions (1 − x, [{1\over 2}] + y, [{3\over 2}]z) and (1 − x, −[{1\over 2}] + y, [{3\over 2}]z), respectively. Dashed lines indicate hydrogen bonds. H atoms have been omitted.

Experimental

A solution containing equimolar quantities of maleic anhydride and 4-nitro­aniline (2 mmol of each) in diethyl ether (20 ml) was heated under reflux for 1 h and then left overnight at room temperature. The solvent was removed under reduced pressure and the resulting solid product was recrystallized from ethanol (m.p. 472–474 K). IR (cm−1): 3200–2000 (br), 1707, 1635, 1596, 1566, 1497, 1457, 1407, 1335, 1307, 1271, 1230, 1110, 971, 898, 863, 797, 750, 687, 610, 597, 501, 432.

Crystal data
  • C10H8N2O5

  • Mr = 236.18

  • Monoclinic, P 21 /c

  • a = 9.6052 (7) Å

  • b = 12.8416 (10) Å

  • c = 9.0921 (7) Å

  • β = 114.388 (2)°

  • V = 1021.41 (13) Å3

  • Z = 4

  • Dx = 1.536 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2702 reflections

  • θ = 2.8–29.0°

  • μ = 0.13 mm−1

  • T = 291 (2) K

  • Block, yellow

  • 0.27 × 0.14 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • φ and ω scans

  • Absorption correction: multi-scan(SADABS; Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03), Bruker AXS Inc., Madison, Wisconsin, USA.])Tmin = 0.956, Tmax = 0.988

  • 8437 measured reflections

  • 2702 independent reflections

  • 1379 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 29.0°

  • h = −13 → 13

  • k = −17 → 17

  • l = −17 → 17

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.116

  • S = 0.87

  • 2702 reflections

  • 155 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0597P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Selected geometric parameters (Å, °)[link]

C1—O1 1.2413 (19)
C1—C2 1.478 (2)
C2—C3 1.328 (2)
C3—C4 1.482 (3)
C4—O43 1.307 (2)
C4—O44 1.206 (2)
C13—C14—N14—O41 −6.8 (3)
C12—C11—N1—C1 −0.5 (3)
C11—N1—C1—C2 177.37 (17)
N1—C1—C2—C3 175.98 (19)
C2—C3—C4—O43 3.3 (3)

Table 2
Hydrogen-bond geometry (Å, °)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O43—H43⋯O1 0.82 1.72 2.537 (2) 174
C12—H12⋯O1 0.93 2.31 2.899 (2) 121
N1—H1⋯O44i 0.86 1.96 2.814 (2) 172
C16—H16⋯O44i 0.93 2.50 3.260 (2) 139
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

All H atoms were located in difference maps and then treated as riding atoms, with distances C—H = 0.93 Å, N—H 0.86 Å and O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03), Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03), Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

(E)-3-(4-nitrophenylaminocarbonyl)propen-2-oic acid top
Crystal data top
C10H8N2O5F(000) = 488
Mr = 236.18Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2702 reflections
a = 9.6052 (7) Åθ = 2.8–29.0°
b = 12.8416 (10) ŵ = 0.13 mm1
c = 9.0921 (7) ÅT = 291 K
β = 114.388 (2)°Plate, yellow
V = 1021.41 (13) Å30.27 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
2702 independent reflections
Radiation source: fine-focus sealed X-ray tube1379 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φω scansθmax = 29.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.956, Tmax = 0.988k = 1717
8437 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.87 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
2702 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.23 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72801 (13)0.03077 (9)0.65778 (16)0.0570 (4)
O411.28952 (17)0.24682 (13)0.4548 (2)0.0831 (5)
O421.22748 (17)0.40730 (12)0.45950 (19)0.0764 (5)
O430.54851 (15)0.10562 (9)0.68397 (18)0.0606 (4)
O440.36370 (16)0.10330 (10)0.7637 (2)0.0779 (5)
N10.74726 (15)0.20691 (11)0.67282 (18)0.0472 (4)
N141.21330 (18)0.31419 (15)0.4797 (2)0.0592 (4)
C10.68626 (19)0.11613 (13)0.6895 (2)0.0452 (4)
C20.5665 (2)0.12856 (14)0.7505 (2)0.0511 (5)
C30.47741 (19)0.05686 (14)0.7728 (2)0.0518 (5)
C40.4612 (2)0.05654 (14)0.7397 (2)0.0513 (5)
C110.86599 (18)0.22698 (13)0.6247 (2)0.0432 (4)
C120.9471 (2)0.15067 (14)0.5844 (2)0.0525 (5)
C131.0627 (2)0.17921 (15)0.5391 (2)0.0535 (5)
C141.09543 (19)0.28272 (14)0.5340 (2)0.0473 (4)
C151.01897 (19)0.35913 (14)0.5764 (2)0.0506 (5)
C160.9034 (2)0.33121 (13)0.6206 (2)0.0490 (5)
H10.70740.26130.69510.057*
H20.55130.19630.77710.061*
H30.41310.08270.81750.062*
H120.92370.08070.58790.063*
H131.11760.12870.51240.064*
H151.04490.42880.57520.061*
H160.84990.38240.64800.059*
H430.60740.06410.67110.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0632 (8)0.0394 (7)0.0860 (10)0.0039 (6)0.0485 (8)0.0025 (6)
O410.0746 (10)0.0901 (12)0.1107 (13)0.0030 (8)0.0647 (11)0.0045 (9)
O420.0798 (10)0.0701 (11)0.0976 (12)0.0170 (8)0.0549 (10)0.0073 (8)
O430.0678 (9)0.0419 (7)0.0883 (10)0.0045 (6)0.0485 (8)0.0033 (7)
O440.0809 (10)0.0540 (9)0.1270 (14)0.0141 (7)0.0711 (10)0.0005 (8)
N10.0492 (9)0.0366 (8)0.0661 (10)0.0007 (6)0.0343 (8)0.0008 (7)
N140.0509 (10)0.0737 (12)0.0605 (11)0.0059 (8)0.0306 (9)0.0009 (9)
C10.0464 (10)0.0390 (10)0.0559 (11)0.0013 (8)0.0268 (9)0.0046 (8)
C20.0551 (11)0.0375 (9)0.0710 (13)0.0022 (8)0.0364 (11)0.0010 (9)
C30.0532 (11)0.0458 (11)0.0689 (13)0.0022 (8)0.0379 (11)0.0011 (9)
C40.0511 (11)0.0440 (10)0.0664 (13)0.0000 (8)0.0318 (10)0.0040 (9)
C110.0434 (10)0.0420 (10)0.0487 (11)0.0006 (7)0.0238 (9)0.0008 (8)
C120.0559 (11)0.0395 (10)0.0705 (13)0.0012 (8)0.0344 (11)0.0020 (9)
C130.0524 (11)0.0507 (11)0.0662 (13)0.0033 (8)0.0332 (11)0.0052 (9)
C140.0431 (10)0.0546 (11)0.0488 (11)0.0034 (8)0.0235 (9)0.0014 (9)
C150.0543 (11)0.0425 (10)0.0611 (12)0.0047 (8)0.0300 (11)0.0032 (9)
C160.0551 (11)0.0385 (10)0.0616 (12)0.0023 (8)0.0324 (10)0.0012 (8)
Geometric parameters (Å, º) top
C11—C161.391 (2)N14—O421.226 (2)
C11—C121.392 (2)N1—C11.341 (2)
C11—N11.4037 (19)N1—H10.86
C12—C131.383 (2)C1—O11.2413 (19)
C12—H120.93C1—C21.478 (2)
C13—C141.371 (3)C2—C31.328 (2)
C13—H130.93C2—H20.93
C14—C151.373 (2)C3—C41.482 (3)
C14—N141.467 (2)C3—H30.93
C15—C161.375 (2)C4—O431.307 (2)
C15—H150.93C4—O441.206 (2)
C16—H160.93O43—H430.82
N14—O411.214 (2)
C16—C11—C12119.45 (15)O41—N14—C14118.40 (17)
C16—C11—N1115.95 (14)O42—N14—C14117.92 (16)
C12—C11—N1124.60 (15)C1—N1—C11130.08 (14)
C13—C12—C11119.81 (16)C1—N1—H1115.0
C13—C12—H12120.1C11—N1—H1115.0
C11—C12—H12120.1O1—C1—N1122.92 (15)
C14—C13—C12119.36 (16)O1—C1—C2123.96 (15)
C14—C13—H13120.3N1—C1—C2113.12 (15)
C12—C13—H13120.3C3—C2—C1129.25 (17)
C13—C14—C15121.78 (15)C3—C2—H2115.4
C13—C14—N14119.88 (16)C1—C2—H2115.4
C15—C14—N14118.33 (16)C2—C3—C4132.11 (17)
C14—C15—C16119.06 (16)C2—C3—H3113.9
C14—C15—H15120.5C4—C3—H3113.9
C16—C15—H15120.5O44—C4—O43120.03 (17)
C15—C16—C11120.52 (16)O44—C4—C3118.49 (17)
C15—C16—H16119.7O43—C4—C3121.47 (15)
C11—C16—H16119.7C4—O43—H43109.5
O41—N14—O42123.67 (16)
C16—C11—C12—C130.7 (3)C13—C14—N14—O42171.96 (18)
N1—C11—C12—C13179.74 (17)C15—C14—N14—O427.1 (3)
C11—C12—C13—C140.2 (3)C16—C11—N1—C1179.60 (17)
C12—C13—C14—C151.6 (3)C12—C11—N1—C10.5 (3)
C12—C13—C14—N14177.45 (17)C11—N1—C1—O12.0 (3)
C13—C14—C15—C161.9 (3)C11—N1—C1—C2177.37 (17)
N14—C14—C15—C16177.11 (16)O1—C1—C2—C34.6 (3)
C14—C15—C16—C110.9 (3)N1—C1—C2—C3175.98 (19)
C12—C11—C16—C150.4 (3)C1—C2—C3—C42.9 (4)
N1—C11—C16—C15179.46 (15)C2—C3—C4—O44175.9 (2)
C13—C14—N14—O416.8 (3)C2—C3—C4—O433.3 (3)
C15—C14—N14—O41174.12 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O43—H43···O10.821.722.537 (2)174
C12—H12···O10.932.312.899 (2)121
N1—H1···O44i0.861.962.814 (2)172
C16—H16···O44i0.932.503.260 (2)139
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the University of Aberdeen for funding the purchase of the Bruker SMART 1000 diffractometer. JLW thanks CNPq and FAPERJ for financial support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART (Version 5.624), SAINT-Plus (Version 6.02A) and SADABS (Version 2.03), Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2004). Acta Cryst. C60, o120–o124.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds